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On the contribution of internal 
variability and external forcing 
factors to the Cooling trend over 
the Humid Subtropical Indo-
Gangetic Plain in India
Reshmita Nath1,2, Yong Luo   1,2, Wen Chen   3 & Xuefeng Cui4

The summer surface air temperature (SAT) in the Humid Subtropical Climate Zone in India, exhibits 
a significant cooling trend (~−3 °C/40 yrs.) in CRU observational data during 1961–2000. Here we 
investigate the contribution of internal and external factors, which are driving this cooling trend. 
Using the Community Earth System Model-Large Ensemble (CESM-LE), we analyze the historical 
climate change in presence of internal climate variability. Most of the model ensemble members could 
reproduce this amplified cooling (<−3 °C) as shown from CRU data. Further analyses reveals that 
external forcing displays a strong cooling effect over this region, while internal variability displays 
mixed cooling (in most cases) and warming signals. The signal to noise ratio i.e. the ratio of external 
forcings and internal climatic variability is less than 1, which indicates that internal climatic variability 
dominates over the forced response. Furthermore, to quantify the role of different external forcing 
factors we used the CCSM4 single forcing simulations. The simulation results from CESM-LE and CCSM4 
suggest that the cooling trend over the region is primarily due to the combined influence of internal 
variability (~73%) and partly due to aerosol (~10%) and ozone only forcing, which strongly mask the 
warming effect of GHG and solar forcing.

The Humid Subtropical Climatic Zone (HSTC) in India, which primarily comprises the Indo-Gangetic Plain 
(IGP) region of Central India are highly vulnerable to the climatic extremities. Moreover, this region is coming 
under the direct influence of the Indian summer monsoon (ISM). The HSTC region is the home for ~40% of total 
population and yields ~50% of total agricultural production of India. Geographically, the HSTC zone is stretching 
from Punjab in the North to the West Bengal in the East and the probability of drought is higher in this region1,2. 
The IGP is one of the world’s largest plains, which was formed by the rivers like Indus, Ganga, Yamuna, Ghaghara, 
Gandak and Kosi, in the eastern part of the Indian sub-continent, and they are originated from the Himalayas.

It is known that the Indian Summer Monsoon (ISM) is initiated by unequal surface solar heating of the Indian 
subcontinent and the Indian Ocean in the pre-monsoon and monsoon season. Therefore, the strength of mon-
soonal precipitation correlated closely with the land-ocean temperature gradient3. In some recent studies, Roxy 
et al.3 and Jin and Wang4 observed a moderate cooling trend in pre monsoon SAT over the Indian subconti-
nent during 1950–2002. While since 2002, the pre-monsoon season has reversed in tandem with the monsoonal 
precipitation revival. This revival of ISM precipitation is driven by a strong warming signature over the Indian 
subcontinent and slower rates of warming over the Indian Ocean. The continental Indian warming is attributed 
to a reduction of low cloud due to decreased ocean evaporation in the Arabian Sea, and thus decreased moisture 
transport to India4. Here we observed a strong cooling trend over the HSTC region, however, the factors i.e. the 
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external forcings and internal climatic variability contributing to the trend during the monsoon months (June–
August) in the last half of 20th century are not yet explored and need to be analyze in details.

The trajectory of the Earth’s climate is determined by the combined influences of internal climatic variability 
and anthropogenic climate change5. Here the term internal climatic variability attributes the unforced natural 
variability of the climate system that occurs in absence of external forcing, and includes processes intrinsic to the 
atmosphere, the ocean, and the coupled ocean-atmosphere system6–9. At regional scale the signature of anthro-
pogenic climate change might have masked by the internal variability6,7,10–12. In the tropics, due to smaller magni-
tude of natural variability, the signal of anthropogenic warming appears to emerge significantly, prior to the mid 
and high latitudes13–17.

The latest Intergovernmental Panel on Climate Change reports indicate that, the impacts of anthropogenic 
forcing factors e.g. greenhouse gas (GHG), aerosol (AS), black carbon (BC), land use (LU), and ozone (OZ) 
contribute maximum to the warming of atmosphere and ocean. On the other hand, the cooling trend in internal 
variability masked the warming trend significantly. Therefore, understanding the externally forced climate change 
and the internal variability is a pressing challenge as evidenced by the considerable range of model sensitivities to 
the identical set of radiative forcings5,18. However, for isolating the relative contribution of anthropogenic climate 
change and the internally generated climatic variability, it requires a specific climate model with ensembles of 
simulations and each member is subjected to the identical external forcing.

In the recent decades, the atmospheric carbonaceous aerosols have potential impact on the regional climate, 
hydrological cycle etc. oversouth Asia19–21. Among the major anthropogenic sources, biomass burning, indus-
trial and vehicular emissions have contributed significantly to the total aerosol content of the atmosphere and 
in particular to the carbonaceous species over northern India and the IGP region22–24. The warming potential of 
these species can influence the atmospheric circulation pattern and the cloud-precipitation efficiency over south 
and south-east Asia19,25,26. The varying nature and strength of emission sources (anthropogenic and natural), 
transport pathways of chemical constituents and boundary layer dynamics are the dominant factors that contrib-
ute to the pronounced seasonal variability27–30. In addition, recent reports also linked the weakening of Indian 
summer monsoon rainfall with large scale deforestation and land use/land cover changes (LULCC)31 (Paul et 
al.31. Moreover, using high-resolution regional climate model (RegCM4) simulations and prescribed land cover 
of years 1950 and 2005, it is demonstrated that part of the changes in moderate rainfall events and temperature 
have been caused by LULCC32 (Halder et al.32 On the other hand, a recent study by Joshi and Rai33 reported that 
the opposite phases of AMO and IPO together modulates the total/moderate rainfall over west central and north-
east regions in an asymmetric manner; whereas their warm phase stimulates the heavy rainfall over west central 
region, while their opposite phases together influences the precipitation extremes over the northeastern region.

Therefore, both the anthropogenic forcings and the internal variability appear to have significant impact on 
the climatic variability over the HSTC region, under warming scenario. In the present analysis, we investigate 
the relative contribution of the two factors (external and internal) in driving the cooling trend over HSTC region 
during the last half of 20th century. It is essential to understand the antecedent conditions that may driving the 
rapid warming trend after 2000 and revival of ISM over the Indian landmass. The rest of the paper is organized 
as follows: Section 2 describes the models and experimental design, as well as the observational datasets used to 
supplement the model simulated trend. Section 3 provides results on the range of climate trends for a historical 
period of 40 years from each model ensemble, showing the relative contributions from internal variability and 
external forcing in terms of spatial maps, signal-to-noise ratios, and the likelihood that the trend will have a par-
ticular sign (e.g., warming). Section 4 describes the results from CCSM4 single forcing simulations and highlights 
the relative contribution of the individual forcings. Finally, section 5 concludes, summarizes the main findings 
and a discussion of the results.

Data and Methodology
CESM1-CAM5-BGC-Large Ensemble.  Community Earth System Model Large Ensemble (CESM-LE) is 
designed with an explicit goal of enabling assessment of recent past and near-future climate change (1920–2080) 
in the presence of internal climate variability. Quiet often the internal climate variability is confused with model 
error17 and at times difficult to disentangle. All CESM-LE simulations use a single CMIP5 coupled climate model: 
the Community Earth System Model, version 1, with the Community Atmosphere Model, version 5 [CESM1 
(CAM5)] with a horizontal resolution, approximately 1° in all model components. The CESM1 (CAM5) consists 
of coupled atmosphere, ocean, land, and sea ice component models. In addition to land carbon cycle calculations, 
the CESM-LE simulations also include diagnostic biogeochemistry (BGC) calculations for the ocean ecosystem 
and the atmospheric carbon dioxide cycle34–37. Each CESM-LE ensemble member has a unique climate trajectory 
because of small round-off level differences in their atmospheric initial conditions. In other words, the CESM-LE 
ensemble spread results from internally generated climate variability alone. After initial condition memory is lost, 
within a time span of few weeks in the atmosphere, each member evolves chaotically and is affected by the atmos-
pheric circulation fluctuations, which is the characteristic of a random and stochastic process7,38. The CESM-LE 
experiment, therefore, uniquely enables to assess the relative influence of internal climate variability and forced 
climate change on the climate system.

Usually, the CESM-LE was started with a multi-century 1850 control simulation with constant preindustrial 
forcing. The first ensemble member with initial conditions was simulated from a randomly selected date in the 
1850 control run: 1 January, year 402 and was integrated forward from 1850 to 2100. Ensemble members 2–30 
were all started on 1 January 1920 using slightly different initial conditions and the spread in ensemble members 
3–30 was generated by round-off level differences in their initial air temperature fields (order of 10−14 K). Except 
the differences in the initial air temperature field, all the simulations had the same initial conditions. Moreover, 
all the 35 CESM-LE members share essentially the same ocean initial conditions; the CESM-LE does not sample 
internal climate variability resulting from differing ocean states.
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The historical forcings are applied from 1920 to 200539 and representative concentration pathway 8.5 (RCP8.5) 
forcing40,41 from 2006 to 2080. The CESM-LE simulations used the ozone concentrations calculated by a high-top 
coupled chemistry–climate model {CESM1 [Whole Atmosphere Community Climate Model (WACCM)]} with 
specified ozone depleting substances42.

CCSM4 1° 20th Century Single Forcing Simulations.  The Community Atmosphere Model (CAM4) is 
using the Lin–Rood finite volume core, which has much improved representation of deep convection scheme. The 
horizontal grid used is latitude/longitude with 288 × 200 points, resulting in a uniform resolution of 1.25° × 0.9° 
in the 1° version, and half the number of grid points in both directions in the 2° version. CAM4 uses 26 layers 
in the vertical. A freeze-dry modification was implemented to the low cloud parameterization43, which has the 
effect of reducing the amount of wintertime low cloud in the Arctic region. The Froude number coefficient in the 
gravity wave parameterization was retuned, which improved the CAM4 simulation in the upper atmosphere44.

The CCSM4 1850 control runs have the following forcings, which are kept constant during the runs. The 
incoming solar radiation at the top of atmosphere (TOA) is 1360.9 W m22, and the CO2 level is set to 284.7 ppm. 
Aerosol concentrations of sulfate, black and organic carbon, dust, and sea salt are specified from a historical run 
using the CCSM chemistry component with prescribed emissions39, plus a low background level due to volcanic 
activity. The model was initialized with fields from the end of a previous short coupled run that had slightly dif-
ferent parameter settings. The 1° 1850 control was run for 1300 years, but some very small corrections were made 
during the run. The CCSM4 model had used gridded emissions of reactive gases and aerosols for use in chemistry 
model simulations needed by climate models for the Climate Model Intercomparison Program #5 (CMIP5) in 
support of the Intergovernmental Panel on Climate Change (IPCC) Fifth Assessment report (AR5). The model 
estimate for the year 2000 inventory, which represents a combination of existing regional and global inventories 
to capture the best information available at this point; 40 regions and 12 sectors are used to combine the various 
sources. The region number 26 represents India and it used GFEDv2 inventory seasonality to redistribute total 
carbon emissions of the region in space and time to improve the carbon emission patterns. The historical recon-
struction of each emitted compound, for each region and sector, is then forced to agree with our 2000 estimate, 
ensuring continuity between past and 2000 emissions. Simulations from two chemistry-climate models are used 
to test the ability of the emission dataset can capture long-term changes in atmospheric ozone, carbon monoxide, 
aerosol distributions and their interaction with background atmospheric conditions. The aerosol optical depth 
and additional aerosol diagnostics are in good agreement with previously published estimates and observations.

The CCSM4 twentieth-century runs begin in January 1850 and end in December 2005. They are forced by 
time series of solar output, greenhouse gases, aerosols, and volcanic activity. The solar output anomaly time series 
is described in Lean et al.45 and is added to the 1360.9 W m22 used in the 1850 control run. The CCSM4 volcanic 
activity is included by a time series of varying aerosol optical depths46. The CO2 and other greenhouse gases 
(methane and nitrous oxide) are specified as in the IPCC third assessment report. Atmosphere aerosol burden 
(sulfate, organic carbon, and sea salt), aerosol deposition (black carbon and dust) onto snow, and nitrogen depo-
sition also vary with time. The burdens and deposition rates were obtained from a twentieth-century run with the 
CCSM chemistry component active, which is forced with prescribed historical emissions39. These concentrations 
do contain an annual cycle and are linearly interpolated in time from year to year within each month. This leads 
to a smoothly varying aerosol forcing compared to concentrations found in a fully interactive aerosol model. 
However, this probably does not affect the long-term trend and impact of these aerosols. The initial conditions 
for the five members of the CCSM4 twentieth-century ensemble are taken from years 863, 893, 937, 983, and 
1031 of the 18 1850 control run, which were chosen to be after the last model correction and to span the range of 
variability in the North Atlantic meridional overturning circulation44. The model experiments, total numbers of 
single forcing simulations, and the time duration of the individual runs, which are used in this analysis, are listed 
in Table 1.

Methodology.  The projected climate trends in individual model realizations would results from the super-
position of external natural forcings, internal climate variability and the anthropogenic external forcing (i.e. GHG 
increases), i.e.

. = . . . + . . . + . . .Tot trend Ext Nat forc Ext anthro forc Int Clim variab( ) (1)

Model experiments
No. of ensemble 
members

Experiment Run 
Period

Land only forcing 3 1850–2005

GHGs only forcing 3 1850–2005

Aerosols only forcing 
(EC + BC + SO4)

3 1850–2005

Ozone only forcing 2 1850–2005

Solar only forcing 3 1850–2005

Volcanoes only forcing 3 1850–2005

Black Carbon only forcing 1 1850–2005

Sulphate only forcing 1 1850–2005

Table 1.  CCSM4 simulations, no. of ensemble members and experiment run period.
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As we mentioned in the introduction, the individual CESM-LE ensemble members are subjected to an iden-
tical radiative forcing and except a small difference in the initial air temperature field, all the simulations have the 
same initial conditions. After initial condition memory is lost, each member evolves chaotically and the spread 
is resulting from the internally generated climate variability alone. To illustrate this point, we partition the total 
trends of the individual model realizations into contributions from the externally forced response and the internal 
variability5. The external factors include both the anthropogenic (GHGs, aerosols etc.) and the natural factors 
(solar & volcanoes). Therefore, the partitioning can be done by averaging all the ensemble members (represent 
external forced response), which is constant in all the runs and by subtracting the forced response (i.e. ensemble 
mean) from the total trend (represents internal climatic variability), respectively. It can be written as,

. = . −Nat Variab Tot Trend Ensemble Mean Trend( ) ( ) (2)1
35

1
35

A quantitative assessment of internal variability and the external forcings can be done using a simple 
signal-to-noise (SNR) analysis. It can be defined as an absolute value of the forced (ensemble mean) trend divided 
by the standard deviation of trends across the individual ensemble members. This standard metrics convey useful 
information about the magnitudes of the forced and internally generated components of future climate change; 
although they do not convey anything about the spatial coherence of the internal contribution.

= =SNR Forced
Natural

Mean
Std (3)

From these large ensembles, we quantified the chances that temperature had increased (or decreased) in the 
historical periods and also over the coming decades by counting the number of runs with a positive trend divided 
by the total number of runs for each model. We reiterate that in these model ensembles, the reason why individual 
runs may show opposite-signed trends at a given location is due to unpredictable, internally generated variability. 
It can be written as,

=
. +

.
×warming trend No of runs with ve trend

Total no of runs
% 100

(4)

Less positive trend (i.e. warming) indicates more negative trend (i.e. cooling).
Relative contribution of the internal climatic variability and the anthropogenic forcings can be calculated as,

=
+

× = −. . .Nat Std
abs Mean Std

Anthro Nat
[ ( ) ]

100, 100
(5)perc perc perc

The contribution of aerosol, ozone and volcano forcing and natural variability driving the cooling trend can 
be obtained as,

. =
+ + +

×.Int var Tint
Taer Tozn Tvol Tint[ ]

100,
(6)perc

and so on for other variables, where, Tint, Taer, Tozn, and Tvol represent the trend in internal variability, aerosol 
only, ozone only and volcano only simulations, respectively.

Results from CESM1.1
Overview of SAT trends.  In the beginning, we plotted the summer (JJA) surface air temperature (SAT) 
trends from the CRU based observation data during 1961–2000 in Fig. 1. A multidecadal cooling trend is pre-
dominant over the HSTC zone, particularly in the IGP region. To compare the results with model based simu-
lations, we performed trend analysis over 1961–2000 periods from each of the CESM1 (35 ensemble members) 
runs, which are presented in Fig. 2. The observation can be seen as a superposition of contribution from the 
internal climatic variability and the external forcing factors (Equation 1). We compare the temperature trend 
with NCEP reanalysis data (Supplementary Fig. 1) and the cooling trends are consistent with the CRU based 
observation data.

In Fig. 2, we show a subset of results to illustrate some key points in the HSTC region. Summer SAT decadal 
trends over the analysis period (Fig. 2) display considerable diversity across the CESM1 35-member ensemble, 
despite each simulation being subject to identical radiative forcing. For example, many of the ensemble members 
exhibit amplified cooling (<−0.75 °C/dec i.e. −3.0 °C/40 years) over the HSTC zone of India (EM 1, 7, 11, 15, 19, 
20, 24, 29, 31 and 34), some exhibits mild cooling (EM 3, 4, 6, 12, 14, 16, 17, 18, 21, 23, 25, 28 and 32), while few 
show weak warming (<0.5 °C/dec i.e. 2.0 °C/40 years) over the region (EM 2, 22, 26, 27 and 33). However, most of 
the ensemble simulations reflect the cooling trend over the HSTC zone; a pattern resembles with the observation 
results in Fig. 1.

Partitioning of total trends into internal and forced components.  The variety of climate trends 
in individual model realizations results from the superposition of internal climate variability and the response 
to external forcing (i.e., GHG increases). To illustrate this point, we partition the total decadal trends into con-
tributions from the externally forced response (obtained by averaging all ensemble members) and the internal 
variability (obtained by subtracting the forced response from the total trend) (equation 2). Figure 3 represents 
the spatial pattern and the significant (>95%) decadal trend of the externally forced component (include GHGs, 
aerosols, ozone, land use and natural external forcings), under the historical scenario. It is generated by aver-
aging the trend of the 35 ensemble members based on CESM1. In Fig. 3, the decadal cooling trends exhibit a 
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continental-scale pattern with maximum amplitudes of approximately <=−3 °C/40 years, which stretches from 
west to East over most of the HSTC zone. The amplitude of cooling trend maximizes along the IGP region. Several 
external forcing factors might have responsible for the cooling trend in the HSTC region. In the recent decades, 
the atmospheric carbonaceous aerosols have potential impact on the regional climate, hydrological cycle etc. 
over the south Asia19–21 and a stronger driver of the atmospheric cooling trend. Among the major anthropogenic 
sources, biomass burning, industrial and vehicular emissions have contributed significantly to the total aero-
sol content of the atmosphere and in particular to the carbonaceous species over northern India and the IGP 
region22–24. Additionally, natural external factors like volcano only forcing might have contributed to the cooling 
trend significantly.

The model uncertainties which are referred as internal variability in the CESM ensembles are obtained by 
subtracting the ensemble mean trend from the total trends. Figure 4, displays the decadal trends resulting from 
internal climatic variability or model uncertainties under the historical scenario. If we look carefully, in Fig. 4, 
both the decadal cooling (<=−2 °C/40 years, EM 1, 7, 11, 15, 19, 20, 24, 29, 31 and 34) and warming (>=2 °C/40 
years, EM 2, 5, 9, 22,26, 27, 33 and 35) trends appear to dominate the HSTC zone, in particular over the IGP 
region. Therefore, the internal climatic variability introduces wide range of uncertainty to the climate model sim-
ulations. A recent study by Joshi and Rai33 provide a deep insight on low-frequency variability and its extremes 
over India under the combined influence of the Atlantic multidecadal oscillation (AMO) and the interdecadal 
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Figure 1.  SAT trend from observation. Summer SAT significant (>90%) trends [1961–2000; °C (40 yr)−1] 
from CRU based observation data. The maps in the figure are generated using the MATLAB software (Version: 
R2012b (8.0.0.783) & http://www.mathworks.com/products/matlab/?s_tid=srchtitle).

Figure 2.  SAT total trend from model simulations. Decadal trends [1961–2000; °C (dec)−1] in summer SAT 
from CESM1 ensemble members (35). The subplot in the top left corner represents member 1 and counting 
forward towards right. The maps in the figure are generated using the MATLAB software (Version: R2012b 
(8.0.0.783) & http://www.mathworks.com/products/matlab/?s_tid=srchtitle).

http://www.mathworks.com/products/matlab/?s_tid=srchtitle
http://www.mathworks.com/products/matlab/?s_tid=srchtitle
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Pacific oscillation (IPO). The large scale changes in monsoonal circulation might have contributed and impart 
regional coherence to the internal component of surface climate trends over the HSTC region.

Quantifying the relative contributions of internal variability and external forcing.  The results 
shown above give a qualitative impression of the range of patterns and amplitudes of the historical SAT trends 
over the HSTC zone because of external radiative forcing and internal variability. Here we provide a quantitative 
assessment using a simple signal-to-noise (SNR) analysis (Equation 3). As mentioned before, the Fig. 3 estimated 
the forced SAT trends in the CESM1, by averaging over all the ensemble members, under the historical scenario. 
On the other hand, Fig. 5 shows the standard deviation of the SAT trends (e.g., internal variability) across the 
ensemble members, during the analysis period. From the standard deviation plot, it is clear that the uncertainty 
due to natural or internal variability is very strong over the HSTC zone. The signal-to-noise ratio (SNR) between 
the forced SAT trend and the internal variability is shown in Fig. 6, under the historical scenario. These standard 
metrics convey useful information about the magnitudes of the forced and internally generated components of 
late 20th century climate change; although they do not convey anything about the spatial coherence of the internal 
contribution.
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Figure 3.  SAT trend due to external forcings. Ensemble mean decadal SAT trends [1961–2000; °C (dec)−1]. It 
represents the externally forced responses. The maps in the figure are generated using the MATLAB software 
(Version: R2012b (8.0.0.783) & http://www.mathworks.com/products/matlab/?s_tid=srchtitle).

Figure 4.  SAT trend due to internal variability. Summer SAT decadal trends after decomposition [1961–2000; 
°C (dec)−1] from the total trends. It actually represents the internal climatic variability among the runs. The 
subplot in the top left corner represents member 1 and counting forward towards right. The maps in the figure 
are generated using the MATLAB software (Version: R2012b (8.0.0.783) & http://www.mathworks.com/
products/matlab/?s_tid=srchtitle).

http://www.mathworks.com/products/matlab/?s_tid=srchtitle
http://www.mathworks.com/products/matlab/?s_tid=srchtitle
http://www.mathworks.com/products/matlab/?s_tid=srchtitle
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If we look into the spatial pattern of SNR in Fig. 6, the value of SNR is less than 1, throughout the HSTC 
region. It indicates the relative dominance of the internal climatic variability over the forced response in driving 
the long term trends in SAT. Therefore, the natural or internal variability appears to masked the warming trend 
over the HSTC region, to a greater extent.

Chance of positive trends.  From these large ensembles, one can quantify the chances that tempera-
ture increases (or decreases) and will projected to increase (or decrease) during the historical decades. It can 
be done by counting the number of runs with a positive trend divided by the total number of runs for each 
model (Equation 4). It can be reiterated that in these model ensembles, the reason why individual runs may 
show opposite-signed trends at a given location is due to unpredictable, internally generated climatic variability. 
Figure 7 shows the results for summer SAT decadal trends for the historical (1961–2000) period. It is noteworthy 
that a low chance of warming (positive trend) implies a high chance of a negative trend i.e. cooling.

Over the period, the CESM1 model simulations show a higher than 95% chance that summers cools almost 
over much of the HSTC region, while warming trend dominates elsewhere in the Asian continent (not shown 
here). In the HSTC region, the relative contribution of anthropogenic warming is partially counteracted by the 
cooling trend due to internal climatic variability.
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Figure 5.  Standard deviation. It represents the same as Fig. 3 but for standard deviation. Higher the standard 
deviation, higher the contribution of natural variability is. The maps in the figure are generated using the 
MATLAB software (Version: R2012b (8.0.0.783) & http://www.mathworks.com/products/matlab/?s_
tid=srchtitle).
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Figure 6.  Signal to Noise Ratio. It represents the SNR (forced/natural) during 1961–2000. SNR < 1 indicates 
relative dominance of natural variability over forced factors. The maps in the figure are generated using 
the MATLAB software (Version: R2012b (8.0.0.783) & http://www.mathworks.com/products/matlab/?s_
tid=srchtitle).
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Results from CCSM4
Single forcing simulation trends.  The total climate trends in the individual model realizations would 
results from the superposition of external natural forcings, internal climate variability and the anthropogenic 
external forcing (Equation 1). Using the CESM1, we can separate out the external forcings and the internal cli-
matic variability; however, it is extremely difficult to quantify the relative contribution of the individual external 
forcing factors influencing the total trend.

Therefore, to examine the contribution of the individual forcings we have used the CCSM4 single forcing 
simulations, separately for all forcings, land only, GHG only, aerosol only, ozone only, solar only and volcano only 
forcings. More details about the model experiments, number of runs, etc. are available in Table 1. The long-term 
trend in the SAT from the model outputs is analyzed so that the natural and anthropogenic signals in simulated 
SAT anomaly timeseries (w.r.t. 1971–2000) over India from 1961 to 2000 can be detected during the summer 
monsoon months (Fig. 8). Results show that the anthropogenic forcing factors such as GHG and aerosols can 
significantly affect the SAT trend over the HSTC zone (particularly the IGP region). Due to GHG only forcing 
(Fig. 8b), a warming trend (~2.4 °C/40 yrs) predominates along the IGP region, stretching between 15–35°N and 
65–90°E. However, the cooling trend due to rapid increase in aerosol loading (Fig. 8a) and the ozone only forcing 
(Fig. 8c) can mask the warming effect of GHG to some extent. Despite, the negative contribution of aerosol and 
ozone, an overall warming trend predominates over this region due to anthropogenic only forcing. The land 
only forcing (Fig. 8f) has weak contribution to the SAT trend in the HSTC region; however, weak cooling trend 
in the western and southern peninsular region of India is predominant. In external natural forcing category, the 
solar only (Fig. 8d) and the volcanic only (Fig. 8h) forcings contributes contrastingly, with strong warming trend 
(>2.4 °C/40 yrs) and weak cooling trend, over the IGP region, respectively. Therefore, both the anthropogenic 
only and external natural only forcings have mixed response to the total SAT trend over the Indian region.

To further investigate the relative contribution of each of the external forcing factors, we plotted the time 
series of area mean (15–35°N and 65–90°E) SAT anomalies for all the single forcing runs, which are shown in 
Fig. 9. An 11 years running mean smoothing filter is applied on each of the time series, to remove the inter-annual 
variability and to highlight the multidecadal variability in the trends. The GHG only and solar only forcings 
exhibit a stronger warming trends (maximum value reaches 0.55 °C and 0.2 °C, respectively), whereas, the land 
only, aerosol only, volcano only and ozone only forcing displays cooling trend and the minimum value reaches 
~ −0.25 °C, −0.1 °C, −0.2 °C and −0.15 °C, respectively in the recent few decades. Additionally, the internal 
climatic variability (from CESM1.1 analysis) contribute significantly to the cooling, resulting an overall cool-
ing trend in the HSTC region. We then quantify the relative contribution of individual forcing factors i.e. aero-
sol, ozone, volcano only forcings and internal variability driving the cooling trend over the HSTC region using 
Equation 6. The internal variability contributes maximum, which can explain approximately 72% of the temper-
ature variability over that region, whereas, aerosol, ozone and volcano only forcings contribute ~10%, 8.9% and 
8%, respectively (Supplementary Fig. 2).

It is worthy to mention that a wide range of uncertainties are involved in climate model simulations in terms 
of different forcings factors, particularly the aerosol forcing contributes largely to the uncertainties. Lu et al.47 
show that the residential sector contributes the most to overall emission uncertainties in India (60–65% for Black 
Carbon and 67–74% for Organic Carbon). In CCSM4 single forcings simulations, the uncertainties in aerosol 
only simulations are approximately 35%, which may result from black carbon and/or sulphate aerosols. Since 
CCSM4 model have 1 simulation both for sulphate and black carbon only forcing, we cannot quantify their con-
tributions to the uncertainties involved in net aerosols forcings.
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Figure 7.  Chances of positive trend. Chances of positive trend or warming (%) during 1961–2000. Note that 
a low chance implies a high chance of a negative or cooling trend. The maps in the figure are generated using 
the MATLAB software (Version: R2012b (8.0.0.783) & http://www.mathworks.com/products/matlab/?s_
tid=srchtitle).
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Conclusions and Discussions
We have used the CESM-LE data to assess the climate change in presence of internal climate variability during 
1961–2000. The summer (JJA) SAT trend during the 1961–2000 period exhibit an amplified cooling (<−3 °C/40 
years) in the HSTC region (include IGP). The total trend is partitioned into contributions from the externally 
forced response and the internal variability. The forced response displays a cooling trend with maximum ampli-
tudes of approximately <=−3 °C/40 years during the analysis period in the HSTC zone. The internal climatic 
variability, also exhibits a strong cooling trend in majority of the ensembles, however, few displays warming trend 
in the HSTC region. The internal variability, therefore, introduces a wide range of uncertainty in the model sim-
ulations. For the analysis period, the SNR is less than 1, throughout the contiguous HSTC region, indicates that 
the internal climatic variability dominates over the forced response. It is indicative to the fact that, the relative 
contribution of the natural or internal variability masked the warming trend due to external factors in the HSTC 
zone, to a greater extent. Moreover, during the analysis period, the CESM1 model simulations show a higher than 
95% chance that summers cools almost over much of the HSTC zone.

Figure 8.  Single forcing trends from CCSM4. Summer SAT trends [1961–2000; °C (40 yr)−1] for (a) aerosol 
only (b) GHG only (c) Ozone only (d) Solar only (e) Black Carbon only (f) Land only and (h) Volcanic only 
forcings from CCSM4. The maps in the figure are generated using the MATLAB software (Version: R2012b 
(8.0.0.783) & http://www.mathworks.com/products/matlab/?s_tid=srchtitle).
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Figure 9.  Single forcing timeseries. 11 years smoothed time series of CCSM4 SAT anomalies for GHG only, 
land only, aerosol only, ozone only, solar only and volcano only over the HSTC zone.
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Next, using the CCSM4 single forcing simulations, we quantify the contribution of individual external forcing 
factors, separately. The strong warming trend due to the GHG only and Solar only forcings are counteracted by 
the cooling trend due to the aerosol only, volcano only, land only and ozone only forcings. Additionally, from 
CESM-LE, the internal climatic variability contribute significantly to the cooling, resulting an overall cooling 
trend in the HSTC region. Therefore, the strong GHG warming trend is partially counteracted, primarily by the 
influence of the internal climatic variability (~73%) and partially by certain external forcing factors e.g. aerosol 
(~10%), volcano, ozone etc. Despite the present study analyzes the historical cooling trend in the HSTC zone, it is 
essential to study how the near term future trend in SAT will change under strong warming due to anthropogenic 
forcing factors. Moreover, it is essential to study the variety of natural variabilities and its mechanism which are 
driving the cooling trend over the region.

Data Availability Statement
The authors declare to make the data used in this manuscript available anytime on requirement.
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