
Citation: Soares, I.; Belote, B.L.;

Santin, E.; Dal Pont, G.C.; Kogut,

M.H. Morphological Assessment and

Biomarkers of Low-Grade, Chronic

Intestinal Inflammation in

Production Animals. Animals 2022,

12, 3036. https://doi.org/10.3390/

ani12213036

Academic Editors: Guillermo Ramis

and Livia Mendonça Pascoal

Received: 26 September 2022

Accepted: 28 October 2022

Published: 4 November 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

animals

Review

Morphological Assessment and Biomarkers of Low-Grade,
Chronic Intestinal Inflammation in Production Animals
Igor Soares 1,*, Bruna L. Belote 1, Elizabeth Santin 1, Gabriela C. Dal Pont 2 and Michael H. Kogut 3

1 ISI Institute, Cambé, Parana 86187-025, Brazil
2 Department of Poultry Science, Texas A&M University, College Station, TX 77843, USA
3 Southern Plains Agricultural Research Center, United States Department of Agriculture—Agricultural

Research Service (USDA-ARS), College Station, TX 77845, USA
* Correspondence: igor.soares@isiinstitute.com

Simple Summary: Production animals are continuously exposed to environmental and dietary
factors that might induce a state of low-grade, chronic intestinal inflammation. This condition com-
promises the productive performance and well-fare of these animals, requiring studies to understand
what causes it and to develop control strategies. An intestinal inflammatory process is generally
associated with alterations in the structure and functionality of its wall, resulting in the release of
cellular components into the blood and/or feces. These components can act as biomarkers, i.e., they
are measured to identify and quantify an inflammatory process without requiring invasive methods.
In this review we discuss the mechanisms of low-grade inflammation, its effects on animal production
and sustainability, and the identification of biomarkers that could provide early diagnosis of this
process and support studies of useful interventional strategies.

Abstract: The complex interaction between the intestinal mucosa, the gut microbiota, and the diet
balances the host physiological homeostasis and is fundamental for the maximal genetic potential
of production animals. However, factors such as chemical and physical characteristics of the diet
and/or environmental stressors can continuously affect this balance, potentially inducing a state
of chronic low-grade inflammation in the gut, where inflammatory parameters are present and
demanding energy, but not in enough intensity to provoke clinical manifestations. It’s vital to
expand the understanding of inflammation dynamics and of how they compromise the function
activity and microscopic morphology of the intestinal mucosa. These morphometric alterations are
associated with the release of structural and functional cellular components into the feces and the
blood stream creating measurable biomarkers to track this condition. Moreover, the identification
of novel, immunometabolic biomarkers can provide dynamic and predictors of low-grade chronic
inflammation, but also provide indicators of successful nutritional or feed additive intervention
strategies. The objective of this paper is to review the mechanisms of low-grade inflammation, its
effects on animal production and sustainability, and the biomarkers that could provide early diagnosis
of this process and support studies of useful interventional strategies.
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1. Introduction

The gastrointestinal tract (GIT) is of great importance in animal production, not
simply because of it is role in digestion and absorption of nutrients, but also due to its im-
munometabolic and neuroendocrinologic functions in regulating animal physiology [1–4].
The intestine of all animals is a complex, but hollow tube in which the external environment
within the lumen is separated from the inside of the animal by a thin, yet remarkably
efficient barrier system. The lumen side of the intestine harbors a diverse community of
commensal microbes that have co-evolved with the host immune system which is pre-
dominately located in the internal side of the intestine. These microbes, tolerated and
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anatomically contained by the mucosal immune system, execute functions that are critical
for host physiology.

The immune system contributes to the intestinal homeostasis by diverse ways. Be-
sides defending the organism against potential pathogens, the immune system prevents
organisms of the microbiota from reaching the intestinal epithelium or deeper tissues and
develops a state of tolerance to the commensal microorganisms of the lumen [5]. This
constant vigilance of the microbiota involves physical, biochemical, and immunological
barriers of the intestinal mucosa [5]. During intestinal homeostasis, the microbiota and
the immune system operates in symbiosis through a bi-directional relationship, where
both characters influence one another’s development, composition, and functionality [6].
The tolerance required to maintain this state of homeostasis involves the activation of
pattern recognition receptors (PRRs) present in certain cells of the innate immune system.
These receptors are activated by their continuous interaction with structural and func-
tional elements from the gut microbial community, including lipopolysaccharides (LPS)
and peptidoglycans (PGNs) from the bacterial cell walls and other microbial-associated
molecular patterns (MAMPs). Cells containing these receptors present PRR-mediated
signaling pathways that, when activated, regulates the responsiveness of PRRs, induce
the production of high levels of regulatory proteins, such as interleukin-10 (IL-10) and
transforming growth factor-β (TGF-β), and induce the differentiation of the T-regulatory
subpopulation of T lymphocytes [5,7].

The ‘intestinal ménage trois’, composed by the gut microbiota, mucosal immune
system, and diet, represent a multidirectional, chemical, and biological interactive complex.
These elements work together, influencing each other at the cellular and molecular level to
coordinate an intestinal immunometabolic homeostasis [8] that is translated as a ‘healthy’
gut. The nutritional components and physical form of an animals’ diet, as well as its
presence or not (e.g., starving, increased feed intakes and nutrient excesses) on the intestinal
lumen have profound effects not only on gut health, but also on the total energy homeostasis
and overall health of the animal [9,10]. In the context of this review, the microbiota
transduces dietary nutrients into signals recognized by the PRRs of the innate immune
system to promote or inhibit inflammation [10]. This process is mediated by the metabolic
reprogramming of immune cells, merging immunological and metabolic processes into
a process called immunometabolism and that is intimately associated with the gut and
organismal health [11–15].

Historically, metabolism and inflammation have been viewed as two separate physio-
logical processes with distinct but essential roles in animal biology: metabolism regulates
nutrient uptake and usage while inflammation is a protective immune response involved
in host defense and repair. Both systems react to a host’s environmental stressors to
restore homeostasis. The interplay between metabolic status and immune response (im-
munometabolism) plays an important role in maintaining homeostasis, understanding
disease pathogenesis, and developing novel disease interventions in the context of the
metabolic regulation of immune functionality.

Recognizing the immunometabolic pathways and their morphological, cellular, and
biochemical components will help to identify, characterize, and standardize specific biomark-
ers that are accurate indicators of normal or pathogenic processes in production animals.

2. Intestinal Inflammation: What Is It?

The intestinal inflammation participates in dysbiosis in poultry and swine [16,17],
but more studies are necessaire for us to comprehend if the inflammation is the cause or
the effect of this condition [18–21]. However, both acute and chronic inflammation are
known to cause dysbiosis, irrespective if the process derives from infection or not (“sterile
inflammation”) [17]. The disruption of GIT homeostasis can jeopardize animals’ health thus
affecting performance and profitability. Along with the complexity of the organ, several
external factors affect the intestinal homeostatic status and stimulates inflammation. These
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factors include thermal and behavioral stress, nutritional challenges, animal density and
pathogen exposure [18,22,23].

Inflammation is a normal and highly regulated physiological reaction that aims to
recover and repair a harmed tissue. In response to the detection of infectious processes and
damage to host structures, cells of the innate immunity produce signaling molecules that ac-
tivate a network of immunological and physiological events for the purpose of restoring the
homeostasis and functionality [24–26]. Varied factors can trigger an inflammatory response,
shaping its phenotype, efficacy, duration, and consequences. The physiological inflamma-
tion, one of the possible phenotypes, is the balance between tolerance to the microbiota and
reactivity to pathogens, as we discuss in our introduction to this review. The pathologic
inflammation is usually an acute process that occurs in response to toxins and infection,
commonly leading to collateral damage to the inflamed site and its surrounding, as well
as to increased metabolic energy use. The metabolic inflammation is a chronic low-grade
response induced by the excessive nutrient intake, where the consequent metabolic surplus
activates the same signaling pathways that operate in immune responses to pathogens.
(vi) Sterile inflammation, also a chronic low-grade inflammatory process, occurs in the
absence of infection as a response to chemical, physical, and metabolic stimuli [24].

The physiological inflammation is an essential component of the intestinal homeostasis,
but other inflammatory phenotypes must be limited due to their impact on the intestinal
functionality and their energetic cost. Animals in the modern production industry are not
only threatened by microbiologic challenges, but also by non-infectious factors that can lead
to low-graded inflammation, such as increased feed intake/nutrient excess and components
in ingredients of the diet that can activate receptors of the immune system. However, the
impact of these nutritional triggers can be minimized by thoughtful dietary strategies. These
practices include the use of enzymes (e.g., mannanase, proteases, xylanases) to reduce
undigestible dietary components (e.g., mannans and other non-starch polysaccharides from
the cell wall of vegetable ingredients) that may be recognized by PRRs or be fermented by
the microbial community, resulting in the production of pro-inflammatory metabolites.

3. Inflammation Impact on Animal Production

Although not constituting a clinical disease, an excessive or chronically activated
inflammatory response contributes to loss of tissue function and waste of metabolic en-
ergy, leading to poor performance and decreased animal welfare [25]. Gut inflammation
promotes drastic alterations on intestinal architecture, resulting in increased intestinal
permeability [27–29], decreased absorption and digestibility of nutrient, occurrence of fluid
loss and diarrhea [23,28,29]. The increase in the permeability of the intestinal mucosa, also
referred as “leaky gut”, leads to translocation of gut bacteria, microbial compounds, and/or
antigens to the blood stream, generating a systemic immune response [23,27–30].

Besides diverting nutrients and energy from functions that are essential to the animal
productivity, the inflammatory process can also induce tissue catabolism [31–33]. As an
example, proteins in the skeletal muscles undergo proteolysis and protein synthesis is
limited to increase the availability of amino acids to fuel the inflammatory responses [34].
Lastly, the metabolism of lipids and sugars stores are increased to produce more energy for
the immune system [31].

4. Chronic Inflammation

In his recent essay, Medzhitov [35] stated that “because infection and injury-induced
inflammation are the most prominent and most studied forms of the response, we may
have skewed our understanding of inflammation according to these extreme conditions”.
In commercial animal production, this reductionist view of inflammation and the use
of antibiotic growth promoters (AGPs) in animal feeds limited our understanding of
the complete physiological roles of inflammation in maintaining and monitoring tissue
homeostasis [24,25]. Specifically, the removal of AGPs from animal feeds has provided
evidence that the failure to remove the inflammatory trigger results in a chronic and low-
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grade sterile inflammation. As mentioned above, this basal inflammatory response impairs
the ability of the animal to reach 100% of its genetic potential given that nutrients are
diverted away from growth to support the inflammatory response.

Currently, commercial swine and broiler operations are regularly exposed to several
non-infectious, environmental factors that can act as inflammatory triggers, including
animal density, poor quality of feed ingredients, nutrient dense diets (high protein or high
non-starch polysaccharides), changes in feed formulation, mycotoxins, diets with high
amounts of antinutritional factors, and heat stress. The exposure to any of these triggers
for an extended period (days to weeks) can lead to the above-mentioned chronic intesti-
nal inflammatory state, resulting in a disrupted digestive function, increased oxidative
stress, microbiota dysbiosis, loss of barrier functionality, and immune dysfunctions, as
we described in our study on the development of models to induce low-graded intestinal
inflammation [36]. Additionally, some swine and broiler producers have relied on antibiotic
growth promoters AGPs to compensate for potential poor husbandry and management
issues. Therefore, AGPs were never truly used to control enteric infections, as stated by
Dal Pont et al. [36] given that intestinal infections predominately promote acute but not
chronic inflammation.

5. Morphometric Assessment of Gut Health

Morphometric analysis is one of the possible methods to evaluate gut health in animal
production and it becomes even more important during the occurrence of low-grade
chronic inflammation, where lesions in the intestine are not visible to the naked eye. Dal
Pont and colleagues clearly demonstrated this in their development of a diet-triggered
low-grade, chronic inflammation model in broiler chickens, where no macroscopic lesions
were observed throughout the 35-days growth cycle [36]. A robust characterization of the
microscopic processes constituting this continuous basal inflammation becomes essential,
as long as we understand that its negative impacts on animal performance starts long
before macroscopic alterations are observed, if at all.

For many years, the microscopic analysis of gut health has been based on the measure-
ment of intestinal villus height and crypt depth [37]. Briefly, the villi function as absorptive
structures and their height has been indicative of the absorptive area for nutrients. Whereas,
the crypts are the primary sites of epithelial progenitor cells, with their depth expressing the
turnover rate of the intestinal epithelium [38]. Thus, a higher villus enhances the absorptive
capacity of the lumen and deeper crypts indicate a rapid epithelial cell turnover because
various types of special cells are present in the crypt, including absorptive, secretory, and re-
generative cells [38]. Although these two morphological features may provide an indication
of structural alterations in the intestines, they provide no real direct functional evaluations
of them. In fact, the recognition of MAMPS and damage-associated molecular patterns
(DAMPS) by PRRs releases a cascade of chemical mediators that will alter the morphology
of the intestinal mucosa. Consequently, several microscopic alterations may be observed
during this process, including increases in lamina propria thickness, epithelial thickness,
enterocytes proliferation, inflammatory cell infiltration in the epithelium, inflammatory
cell infiltration in the lamina propria, goblet cells proliferation, and congestion of villus by
blood cells and could increase the surface area of the villi that is inverse to its functionality.

In broilers, the histological alterations that succeed the macroscopic lesions lead to
the development of the I See Inside (ISI) methodology [39–43]. This tool has gained atten-
tion by translating microscopic changes in numbers that can be correlated to zootechnical
performance and by characterizing the health and functionality of the intestinal mucosa
based on specific parameters that are compromised under inflammation. Moreover, the ISI
methodology has supported the characterization of sub-clinical inflammatory processes
that might not cause gross lesions in all upper intestine and cecum. In studies applying
the methodology, broilers fed with low levels of aflatoxin (50 to 250 ppb) in experimental
conditions did not present any macroscopic lesions in targeted organs, although histopatho-
logical changes at the same ages were observed [39,44,45]. Applying a model of enteritis
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elicited by Clostridium perfringens and Eimeria spp., Sanches et al. [43] did not observe
gross lesions in the challenged broilers, but microscopic alterations were indeed verified
in the intestinal mucosa these animals. Interestingly, the unchallenged birds presented
a similar (but statistically lower) pattern in the evolution of the inflammatory parame-
ters when compared to the infected group. This finding suggested that the experimental
challenge just worsened an already ongoing low-grade inflammation in the gut mucosa,
which could be linked to dietary, management, and/or environmental factors, as cited
above. In fact, the ISI methodology allowed the researchers to differentially quantify the
histological inflammatory lesions between groups and to statistically correlate them with
zootechnical performance.

Correlations between the villus width and the ISI scores (data not published) suggest
that the inflammatory process (expressed through the ISI methodology) turns the villus
larger, although the expanded surface of these structures does not mean a better absorptive
capacity. In fact, villi can present very close heights but with different levels of internal
alterations related to inflammation (Figure 1). In broilers, the parameters measured by the
ISI methodology have better characterized the losses of functionality in the whole intestine.
The chronic inflammation characterized by the ISI scores at initial ages was statistically
correlated with lower zootechnical performance at later periods [41].

Figure 1. Photomicrography of chicken ileum section stained with hematoxylin and eosin (200×)
(from authors archive). Villi A and B display very close heights, although villus A presents increased
lamina propria thickness and increased infiltration by inflammatory cells. These alterations are
comprised by the ISI methodology and allow to relate structural alterations to the loss of functionality.

Two novel models to induce low-grade gut inflammation were applied by Dal Pont
et al. [36] in broilers chickens with the ISI methodology as a “gold test” of microscopic villi
changes. The increased ISI scores of histologic alterations in the duodenal, jejunal, and
ileal mucosa were joined by a significant increase in the leak of calprotectin and lipocalin
through the feces, important inflammatory biomarkers. In fact, the ISI methodology was
able to prove the occurrence of a low-grade inflammation and demonstrated that the
chicken intestinal inflammation evolves in a spatial and temporal pattern through the
small intestine.
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6. Structural and Inflammatory Biomarkers

Production animal industries require reliable non-invasive biomarkers of gut health,
inflammation, and disease. Two recent reviews have documented a number of potential
biomarkers in poultry [3,46]. However, most of the potential biomarkers of animal gut
health been inconsistent in documenting a healthy or diseased intestine. Here, we outline
a number of potential novel biomarkers that have recently been identified as viable tools
to evaluate production animal gut health, but probably will require more samples under
different conditions to validate their value to the production animal industry. In addition
to the descriptions, Figure 2 illustrates how these components reach the blood and/or feces
in a state of inflammation.

Figure 2. Illustration of how different biomarkers reach the blood and/or the feces during inflamma-
tion in the intestinal mucosa. LP, lamina propria; EL, epithelial layer; IN, intestinal lumen; BV, blood
vessel; GNB, Gram-negative bacteria; BC, bacterial community; MPO, myeloperoxidase; NGAL,
neutrophil-gelatinase associated lipocalin; LPS, lipopolysaccharide; LPB, LPS-binding protein; I-FABP,
intestinal fatty acid binding protein; DAO, diamine oxidase. ↑, increased; ↓, decreased levels during
inflammation. In the illustration, zonulin interacts with its receptors in enterocytes, changing the
structure of the tight junctions and, consequently, increasing the paracellular influx. This increased
permeability allows bacterial components and metabolites, such as endotoxins and D-lactate, to cross
the epithelial barrier and reach the blood stream. Destroyed enterocytes resultant of the inflamma-
tory process release their internal components, such as I-FABP and DAO, in the circulatory system.
Healthy enterocytes produce citrulline and release it into the blood stream. Therefore, its levels are
reduced when enterocytes are damaged. Neutrophils and macrophages that reach the mucosa release
antimicrobial components such as neopterin, calprotectin, MPO, NGAL and lactoferrin, which reach
the IN. It must be noted that the described biomarkers might reach both the IN and BV.

We should point out that all the potential biomarkers reviewed herein (particularly
the metabolic markers discussed in the next topic) are projected as functional quantitative
measurements of intestinal inflammation and are not disease specific. Fecal biomarkers
would be more definitive of intestinal inflammation, whereas plasma biomarkers would be
indicators of more systemic conditions. Overall, these biomarkers can be predictive and
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have the potential to serve as a diagnostic screening tests. Each biomarker will require the
development of a functional range to determine a ‘threshold’ level that is an indicator of
chronic intestinal inflammation. The main applications of these tests would be to rapidly
differentiate healthy animals from diseased.

Lipopolysaccharide-binding protein (LPB) is produced by hepatocytes and released
to the blood stream as part of the acute phase response to LPS, upregulated by IL-1, IL-6,
and tumor necrosis factor α [47]. While a N-terminal domain of LPB binds to the LPS
lipid A with high affinity, its C-terminal continues the endotoxin processing by delivering
it to (i) CD14 proteins, thus forming a LPS-CD14 complex that is recognized by Toll-
like receptors 4 and stimulates the immune response, or (ii) to circulating lipoproteins,
which take them inside hepatocytes for metabolizing and excretion on the bile, where
it’s deactivated by bile salts [48–52]. Plasmatic/serum level of LPB have been an indirect
biomarker of endotoxin leakage from the gut, applied to track factors that interact with the
gut inflammation and integrity [53,54] as infections [55,56], heat or/and feed restriction
stress [57–64], diet, and bacterial gut composition [65–70].

Calprotectin is a calcium-bound protein complex expressed and released by neu-
trophils in inflamed sites, but also by monocytes, activated macrophages, and dendritic
cells [71–74]. As part of the innate immune response, this protein sequestrates zinc and
manganese thus disrupting bacterial and fungal metabolic pathways and exposing these
microorganisms to stress [75–77]. Other calprotectin functions include chemotaxis and
endothelial adhesion of neutrophils, and the upregulation of certain cytokines, as IL-1β,
IL-6 and TNF-α [73]. Fecal and circulating levels of calprotectin have been used as a
biomarker to track the gut inflammatory activity in human [78–83] and canine [74,84–86]
patients with chronic enteropathies. In swine, the biomarker has been applied to evaluate
the intestinal disruption by pathogenic enterobacteria and their toxins [87–92], but also to
evaluate the positive effects of dietary supplementations on the intestinal inflammation
and integrity [92–94]. Studies in human health show that the blood levels of calprotectin
increase in response to diverse conditions involving tissue damage and inflammation, not
exclusively in the intestine [72,95]. Consequently, measuring the calprotectin levels in the
feces should provide safer inferences between the biomarker and an intestinal inflammatory
process [96].

Lipocalin-2 or Neutrophil-gelatinase associated lipocalin (NGAL) is a glycoprotein
highly abundant in the cytoplasm of neutrophils, where it is stored in granules. The
NGAL antibacterial activity relies on binding to bacterial siderophores, thus preventing mi-
croorganisms from capturing necessary iron for their metabolism [97–99]. While increased
NGAL levels in the blood and urine have been associated with acute kidney injury [100,101],
the upregulation of NGAL expression during intestinal injury and inflammation [102,103]
has made the NGAL concentration in the feces a potential biomarker of intestinal impair-
ment in IBD patients [104–109]. The same concept has been applied in swine, where fecal
lipocalin has been targeted to evaluate the intestinal integrity response to variables such as
dietary supplementation [110–112], pregnancy, lactation, and obesity in sows [113,114].

Lactoferrin is a glycoprotein secreted by neutrophils and epithelial cells and with
affinity for iron, a feature that allows lactoferrin to limit the bacterial growth by reducing
the Fe3+ availability for their metabolism. Besides its bacteriostatic potential, lactoferrin
also displays direct antibacterial effects and can modulate the immune response [115,116].
Lactoferrin is an important secretion of neutrophils in inflamed sites, thus allowing its
fecal concentration to be applied as a biomarker of intestinal inflammatory activity in
human patients with chronic enteropathies [117–119]. We did not find any report of fecal
or circulating lactoferrin as a biomarker in swine, [NO_PRINTED_FORM] thus requiring
preliminary studies to understand its applicability in pigs.

Myeloperoxidase (MPO) is an enzyme abundantly found in cytoplasmatic granules
of myeloid cells, as neutrophils. In an inflamed site, elicited leucocytes (i) degranulate the
enzyme in the extracellular microenvironment and (ii) phagocytizes invading elements, fus-
ing the phagosome with MPO-filled granules. The enzyme reacts with hydrogen peroxide
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to form hypochlorous acid, a potent bactericidal agent that contributes to the elimination of
pathogens [120–122]. Molecules of MPO secreted in the intestinal lumen and inside leuco-
cytes debris during inflammatory episodes can be quantified in the feces, thus unveiling an
ongoing intestine inflammation. This principle is applied to track enteropathies in humans
and dogs [123–125], but little was found in swine, where the biomarker did not respond to
a chemical challenge to induce enteritis [126]. Studies have related MPO expression and
activity to the development of cardiovascular and other inflammatory diseases [127–129].
Therefore, the fecal measurement of the biomarker would be recommended to track the
intestinal impairment specifically.

Neopterin is a substance produced by activated monocytes/macrophages, with IFN-γ
as its major inducer. Neopterin acts in the cellular redox system of leucocytes, promoting
the synthesis of oxygen and nitrogen reactive species and boosting their antimicrobial
effect [130–132]. Serum, urinary and fecal neopterin concentrations have satisfactorily
related to chronic enteropathies in humans, with increased values in patients with Crohn’s
disease and ulcerative colitis due to its synthesis in inflamed sites [133,134]. Studies
in swine have targeted serum neopterin to assess the immune activation during surg-
eries [135,136] and kidney injury [137], but no study was found applying it as a marker of
intestinal injury. Although blood levels of neopterin have been associated with intestinal
inflammation, as mentioned above, studies demonstrate that increased circulating concen-
trations of neopterin can be also related to cardiovascular diseases, cancer, and sepsis in
humans [138–142]. This indicates that feces would be the proper material to measure the
biomarker when aiming to assess intestinal health.

Intestinal Fatty Acid Binding Protein (I-FABP) is present in the cytoplasm of mature
enterocytes, where it binds non-covalent and reversibly to fatty acids thus enhancing their
solubility and improving their transportation throughout the cytosol [143,144]. Variants are
expressed in many organs and, as intracellular proteins, their presence in the blood stream
indicates tissue damage with the leak of protein from harmed cells [145–147]. Factors
inducing intestinal inflammation and injury as sepsis, ischemia, infection, and chemical
challenge have increased the I-FABP serum concentration in varied species, including
swine [126,148–155].

Diamine oxidase (DAO) is an intracellular enzyme highly expressed in mature entero-
cytes (thus present in the tip of intestinal villi) and that catalyzes the oxidation of polyamines,
as histamine [156–158]. Injuries to the enteric mucosa are related to higher circulating levels
of DAO, which leak from the damaged enterocytes into the blood stream [159,160]. Factors
compromising the gut integrity as heat stress [161], bacterial [162–165], viral [166,167] or
chemical [126] enteric challenge, ischemia [160,168], and exposure to mycotoxins [163,169]
have increased the DAO circulating concentrations, thus confirming its potential to express
the mucosa impairment.

Citrulline is an amino acid produced and exclusively released by enterocytes, mainly
in the small intestine, through the metabolization of dietary glutamine and its deriva-
tives [170,171]. Decreased circulating levels of citrulline may imply that enterocytes are
being damaged, thus compromising the amino acid synthesis and reducing its release in the
blood stream. Such a relation is explored in human health to assess the cytotoxic effects of
chemo- and radiotherapy on the gut mucosa, which result in mucositis [172–175]. Citrulline
circulating levels have also responded to intestinal cytotoxicity in dogs and rats, but this
is still controversial in these species [176–179]. In swine, the concentration in plasma was
reduced in animals with chemically induced enteritis [126], but no other report was found
to insure the reliability of citrulline as a biomarker of intestinal damage in pigs.

Zonulin is an important modulator of the tight junctions (TJ), increasing the para-
cellular permeability to, theoretically, enhance the water outflux and “wash” the luminal
surface from harmful elements [180,181]. Its expression in the gut mucosa was shown
to be upregulated by bacterial infections [182] and exposure to gluten [183], thus being
associated with enteric inflammation. The reaction cascade evoked by zonulin culminates
in the displacement of certain TJ proteins, including the zonula occludens-1 (ZO-1). As an
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evident target of zonulin, ZO-1 is found rearranged in the cytoplasm instead of near the
cell membrane, where it mediates the bridge between the external claudin and occludin to
the internal cytoskeleton [182,184]. In human health, fecal zonulin is a potential biomarker
of Crohn’s Disease activity [185,186], being also applied in studies with dogs to evaluate
gut integrity [187–190]. Serum levels of zonulin have been targeted for the same purpose
in swine [111,169,191], although the zonulin expression by other tissues may not allow a
secure relation to gut health [192].

Endotoxin is an alternative to host-based biomarkers, being originated from the en-
teric bacterial community. The term “endotoxin” refers to Lipid A, a glucosamine-based
phospholipid that constitutes the hydrophobic portion of LPS from the outer membrane of
gram-negative bacteria [193,194]. Given that these bacterial structures are not supposed
to reach the blood stream in the absence of factors increasing the intestinal permeability,
researchers have already targeted the plasma/serum levels of endotoxin to track the effects
of intestinal infection, obesity, gestation, lactation, heat stress and exposure to mycotox-
ins, and treatments on the inflammatory status of the intestine in varied animal species,
including swine [163,169,191,195–199].

D-lactate is the d-isomer of 2-hydroxypropanoate. Differently from its L-isomer,
D-lactate is only produced in nanomolar concentrations by mammalian cells, being pre-
dominantly originated from the microbial fermentation in the colon [200,201]. Serum
d-lactate levels have been purposed as a biomarker of gut injury induced by ischemia,
including in swine, since this bacterial byproduct leaks from the gut lumen when the mu-
cosa is compromised [60,155,202–204]. Moreover, the biomarker has also been associated
with the expression of improvements in the gut health of unchallenged pigs treated with
phytobiotic products [110,191] or prebiotic [205]. Challenging factor such as infection by
enterotoxigenic E. coli [196,206], exposure to mycotoxin [207], weaning period [208], and
septic shock [152] had their gut damaging effect represented by increased circulating levels
of D-lactate in swine.

The measurement of fecal cytokines is an alternative to gene expression assays that
require invasive samplings, besides allowing to target their production specifically in the
gut mucosa. Studies have reported increased fecal concentrations of cytokines such as
IL-6 and IL-8 in humans and dogs with intestinal inflammation [209–211], but we did
not identify fecal assess of cytokines in swine. Additionally, we do not approach the
quantification of cytokines in blood in this review since their circulating levels are not
specific for intestinal inflammation. Therefore, inferences about gut health based on the
blood measurement of cytokines as a biomarker would be limited without an additional
tool to diagnose an enteric inflammatory process.

7. Metabolic Biomarkers of Low-Grade, Chronic Intestinal Inflammation

The process of inflammation promotes metabolic reprogramming in a process now
known as immunometabolism [212]. Immunometabolism can be further separate into
two categories: cellular and tissue. Cellular immunometabolism is the reprogramming of
immune cells that regulates cell phenotype and function and environmental conditions
and Tissue immunometabolism which is the study of the influence of the immune cells and
their metabolic reprogramming on organ metabolism [212]. The main functional feature of
metabolic reprogramming under inflammation is the (a) shift in energy production from
oxidative phosphorylation to aerobic glycolysis (Warburg effect) and (b) the alteration in
epigenetic programming through DNA accessibility and chromatin structure (enhanced
histone acetylation and suppressed DNA methylation) [213,214]. What stands out is that im-
munometabolism provides not only energy and intermediate precursors of macromolecule
biosynthesis for cellular and tissue housekeeping functions, but also delivers immune
metabolites that serve as essential signaling molecules involved in the immunoregulatory
processes that drive immune and inflammatory activation [215–217]. The reprogramming
of metabolic pathways such as glycolysis, the Krebs cycle, mitochondrial respiration (oxida-
tive phosphorylation) and the pentose phosphate pathway, during immune cell activation
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all result in the production of these immune metabolites [217] or metabolic regulators [218].
Functionally, immunometabolites to act as signaling effector molecules that modulate
transcription factors, alter protein function, epigenetic and posttranslational modifiers, and
inhibitors/activators of specific enzyme pathways [217,219–224].

7.1. Transcription Factors as Metabolic Biomarkers

Hypoxia-inducible factor-1α (HIF1α) is essential to the cellular metabolism and adap-
tation to cellular stress caused by hypoxia and fundamental reprogrammer of inflammatory
cell metabolism that promotes inflammatory gene expression. A set of “signature” anabolic
genes/proteins involved in the control of cellular metabolism have their expression reg-
ulated by HIF-1α. These proteins include all enzymes in the glycolysis pathway, glucose
transporters, transferrin receptor, and the induction of pro-inflammatory genes [225,226]. Fur-
ther, HIF-1α play a role in effector functions of macrophages and T cells during inflammation.

Peroxisome proliferator-activated receptor gamma (PPAR-γ) is involved sustaining
fatty acid metabolism by regulating fatty acid storage and glucose metabolism. The receptor
is an endogenous regulator of intestinal inflammation whose levels are suppressed during
chronic inflammation [227,228].

Nuclear factor-κ–light-chain-enhancer of activated B cells (NF-κB) regulates multiple
components of innate and adaptive immune functions and functions as a focal facilitator of
inflammatory responses including inducing the expression of various pro-inflammatory
genes, including those encoding cytokines and chemokines. Further, NF-κB is a regulator of
energy metabolism networks by controlling the balance between the utilization of glycolysis
and mitochondrial respiration [229,230].

7.2. Metabolic Intermediates as Metabolic Biomarkers

Succinate is an immunometabolite intermediate of the Kreb’s cycle that plays a crucial
role in adenosine triphosphate (ATP) generation in mitochondria but has been found to
play a regulatory role as a signaling molecule during intestinal inflammation [231,232].
Specifically, succinate stabilizes HIF-1α in activated macrophages, activates dendritic cells,
and post-translationally modifies pro-inflammatory cytokines.

Citrate, like succinate, is an intermediate of the Kreb’s cycle which regulates carbo-
hydrate and lipid metabolism and can have both pro- and anti-inflammatory functions in
macrophages and dendritic cells depending on the cellular local of the immunometabo-
lite [233]. Excess citrate, during the Kreb’s cycle, is transported out of the mitochondria
into the cytosol of macrophages where it is involved in the production of prostaglandins
and nitric oxide, and via the generation of malonyl-CoA and acetyl-CoA impact cytokine
production. Citrate can also generate itaconate via aconitate, which promotes an anti-
inflammatory response.

Nicotinamide adenine dinucleotide (NAD+) is a critical metabolic intermediate that
participates as enzymatic cofactor in redox reactions and as a co-substrate for some enzymes
such as sirtuins, adenosine diphosphate ribose transferases and synthases. With these
roles, NAD+ metabolism regulates a broad spectrum of cellular functions such as energy
metabolism, DNA repair, regulation of the epigenetic landscape and inflammation [234].

Nicotinamide phosphoribosyltransferase (NAMPT) catalyzes the rate-limiting step of
the NAD salvage pathway [235] and is ubiquitously detected in all tissues. Extracellular
NAMPT, also known as visfatin or pre-B cell colony-enhancing factor (PBEF), has been
considered to be a circulating hormone/cytokine released by several tissues has been
shown to play a key role metabolism and inflammation [236]. Sirtuins (SIRT) are NAD+
-dependent epigenetic and metabolic regulators [237]. Members of the sirtuin family protect
tissue homeostasis by sensing bioenergy demands and react by making alterations in the
cell nutrients. Sirtuins play a critical role in homeostasis by stimulating anabolic glycolysis
during inflammation and, alternatively, reprogram metabolism by inducing lipolysis/fatty
acid oxidation after the removal of the inflammatory trigger.
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7.3. Post-Translational Modifiers as Metabolic Biomarkers

The kinases AMPK and mTOR mediate signaling pathways that play crucial and
opposing functions in immunometabolism of inflammation [238].

AMP-activated protein kinase (AMPK) is a serine threonine kinase that is highly con-
served through evolution. This protein is a sensor of cellular energy status found in
eukaryotic cells that is activated under conditions of low intracellular ATP. The AMPK is
a vital metabolic energy regulator in avian species [239] whose main role is monitoring
the ratio of AMP:ATP and to adjust metabolic processes accordingly. Furthermore, AMPK
can receive signals of cellular energy state and respond, via phosphorylation, that then
influences glycolysis/gluconeogenesis, protein synthesis, fatty acid synthesis, and fatty
acid oxidation. Numerous studies have shown that the phosphorylation of AMPK hampers
inflammatory responses, whereas dephosphorylation of AMPK is associated with increased
inflammation [240–242]. The reprogramming of cellular metabolism is imperative for
immune cells responding to environmental cues and AMPK directs the metabolic adap-
tation of immune cells upon nutrient limitation and contributes to the immune response
in vivo [242]. Lastly, AMPK modifies inflammation by antagonizing NF-κB, transcription
of pro-inflammatory cytokines [240]. Therefore, AMPK would be identified is a negative
immunometabolic regulator of inflammation.

Mechanistic target of rapamycin (mTOR) is a serine/threonine kinase that also plays a
role in cell growth and metabolism by sensing environmental cues. This kinase is phospho-
rylated when nutrients are in abundance especially when immune cells are in metabolically
demanding situations, such as stimulation with growth factors, nutrient availability, and
immune regulatory signals [243,244]. Phosphorylated mTOR senses cues from the immune
microenvironment and elevates immune cell growth and proliferation [245]. The mTOR
pathway aids in a cell’s ability to meet high metabolic demands by promoting anabolic pro-
cess, such as lipid and protein synthesis and repressing catabolic processes [246]. Moreover,
mTOR is considered a positive immunometabolic regulator of inflammation.

8. Conclusions

Maintenance of intestinal health is critical to a successful animal production industry.
For decades the swine and poultry industry has relied upon the inclusion of AGPs in the
feed to achieve this goal and by extension improve growth performance. With the removal
of AGPs, the emergence of chronic, low-level gut inflammation has come to the forefront of
concern. Although the mechanisms by which AGPs promote intestinal health and suppress
the development of inflammation are not well understood, it is generally believed that it
occurs as a result of stabilization of the microbial communities within the gut as well as
suppression of pathogen colonization.

With the removal of AGPs from feed, there is now a critical need for examining
new strategies that the animal industry can utilize to control the development of chronic
low-grade inflammation. The intestine of swine is constantly exposed to a number of
environmental triggers including weaning period, intestinal pathogens, poor quality of
feed ingredients, high energy diets, changes in feed formulation, and intrinsic chemical
and physical characteristics of dietary ingredients that stimulate inflammation and lead to
a reduction in performance. Additionally, other conditions such as pregnancy, lactation
and obesity have also been associated with alterations in the intestinal homeostasis.

The chronic low-grade inflammatory response that occur in the intestine results in
impairments to the digestive function and, consequently, decreased growth rate. Be-
sides capturing resources from functions that are essential to the animal productivity,
pro-inflammatory mediators promote muscle catabolism to supply amino acids and energy
substrates for the inflammatory process. In addition to the detrimental effects on perfor-
mance, the compromising of carcass traits can be related to chronic inflammation and the
consequent shifts in the systemic metabolism.

Intestinal low-grade, chronic inflammation is a key contributor to complications affect-
ing production animal performance. To support novel approaches to these complications,
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it is vital to expand our understanding of the inflammatory dynamics and to monitor
them. Here we summarize potential biomarkers reflecting intestinal-specific inflammatory
dynamics for use in swine and poultry production worldwide. Immune responses have
been linked to energy metabolism (immunometabolism); thus, the integration of these
systems and their cooperation in responding to fluctuations in the energy and nutritional
environment would be beneficial. The identification of immunometabolic biomarkers
should provide dynamic and definitive predictors and biomarkers of low, grade chronic
inflammation, but also provide indicators of successful nutritional or feed additive inter-
vention strategies.
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