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Background: Mild traumatic brain injuries (mTBIs) are a significant social, sport, and

military health issue. In spite of advances in the clinical management of these injuries,

the underlying pathophysiology is not well-understood. There is a critical need to

advance objective biomarkers, allowing the identification and tracking of the long-term

evolution of changes resulting from mTBI. Diffusion-weighted imaging (DWI) allows for

the assessment of white-matter properties in the brain and shows promise as a suitable

biomarker of mTBI pathophysiology.

Methods: 34 individuals within a year of an mTBI (age: 24.4 ± 7.4) and 18 individuals

with no history of mTBI (age: 23.2± 3.4) participated in this study. Participants completed

self-report measures related to functional outcomes, psychological health, post-injury

symptoms, and sleep, and underwent a neuroimaging session that included DWI.

Whole-brain white matter was skeletonized using tract-based spatial statistics (TBSS)

and compared between groups as well as correlated within-group with the self-report

measures.

Results: There were no statistically significant anatomical differences between the two

groups. After controlling for time since injury, fractional anisotropy (FA) demonstrated

a negative correlation with sleep quality scores (higher FA was associated with better

sleep quality) and increasing depressive symptoms in the mTBI participants. Conversely,

mean (MD) and radial diffusivity (RD) demonstrated positive correlations with sleep

quality scores (higher RD was associated with worse sleep quality) and increasing

depressive symptoms. These correlations were observed bilaterally in the internal capsule

(anterior and posterior limbs), corona radiata (anterior and superior), fornix, and superior

fronto-occipital fasciculi.

Conclusion: The results of this study indicate that the clinical presentation of

mTBI, particularly with respect to depression and sleep, is associated with reduced

white-matter integrity in multiple areas of the brain, even after controlling for time since
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injury. These areas are generally associated not only with sleep and emotion regulation

but also cognition. Consequently, the onset of depression and sleep dysfunction as well

as cognitive impairments following mTBI may be closely related to each other and to

white-matter integrity throughout the brain.

Keywords: white matter integrity, Pittsburgh sleep quality index, beck depression inventory, fractional anisotropy,

radial diffusivity, internal capsule, superior fronto-occipital fasciculus, corona radiata

INTRODUCTION

Concussions and mild traumatic brain injuries (mTBI) represent
a significant public and military health crisis. 1.6 to 3.8 million
sport-related concussions (SRCs) are reported annually (1, 2),
and more than 300,000 mTBIs (hereafter referring to both mTBIs
and SRCs) have been documented in military personnel since
the year 2000 (3). The actual incidence of these injuries is
likely much higher, as estimates reflect only those for which
treatment is sought (4). Treatment costs for mTBIs top $22
billion annually in the United States (5). Individuals sustaining
an mTBI may exhibit any number of clinical features, including
changes in cognitive and motor function as well as post-injury
depression, somatic symptoms, and sleep-wake cycle disruption
(6). However, these clinical signs and symptoms are not generally
associated with visible structural abnormalities when using
traditional diagnostic/clinical neuroimaging techniques (e.g.,
structural magnetic resonance imaging (MRI) or computed
tomography (CT) in the emergency department). Furthermore,
although many of the clinical signs and symptoms resolve
within the first month post-injury (6), many individuals
continue to experience symptoms well beyond this clinical
timeframe.

Among those persistent symptoms, sleep disruption and
depression are among the most common. Estimates of the
prevalence of sleep disruption following mTBI ranges from
30 to 80% (7–9), with complaints of insomnia, hypersomnia,
and pleiosomnia all reported (8, 10–12). Individuals with prior
mTBI also often report and exhibit depressive symptoms, with
an estimated 6% per year being clinically diagnosed with
depression (13) and many more exhibiting depressive symptoms
(14). Notably, depression may additionally cause altered sleep
patterns (15). Collectively, both sleep disruption and depression
can impair cognitive and physical function (16–20) and may
therefore exacerbate the symptoms of and delay the recovery
from anmTBI. However, to date, there are have a limited number
of studies that have identified the neural correlates of both
sleep disruption (21) or depression (22, 23) following mTBI.
Consequently, it is needful to identify objective biomarkers
of both the pathophysiology and post-injury recovery that
underpin the evolution of post-mTBI sleep disruption and
depression.

One imaging methodology that is particularly sensitive to
altered brain structure is diffusion tensor imaging (DTI). In DTI,
water molecule diffusion properties in the brain are quantified,
principally by fractional anisotropy (FA) and mean diffusivity
(MD). FA quantifies molecular diffusion along three dimensions

(FA = 0: diffusion is equally likely in any direction; FA =

1: diffusion occurs along one direction), while MD quantifies
the average three-dimensional diffusion rate. Additionally, radial
diffusivity (RD) and axial diffusivity (AD) reflect the rates of
diffusion perpendicular and parallel to the underlying tissue,
respectively. These diffusion metrics, and most prevalently FA,
are thought to provide an index of white matter integrity.
Mouse models of neural trauma have demonstrated decreased
AD concomitant with axonal damage (24, 25) and negative
correlations between RD and myelination [e.g., higher RD is
associated with reduced myelination; (25, 26)]. MD, the average
of AD and RD, is non-specific with respect to the direction
of diffusion. Increases in MD and coincident decreases in FA
are often associated with neural trauma and neurodegeneration
(27, 28), including mTBI (29–31).

Mild traumatic brain injuries may reflect a model of
diffuse axonal injury (DAI), characterized by damage to, and
subsequently the loss of, axons, myelin, or both (32–34).
Demyelination has been observed in animal models of mTBI (35)
and may be secondary to axonal loss or loss of oligodendrocytes
supplying undamaged axons (36–39). Regardless of mechanism,
white matter integrity may be compromised following mTBI.
Therefore, DTI metrics may provide a suitable biomarker of
both microstructural changes following mTBI as well as clinical
presentation.

With respect to mTBI, numerous publications have featured
DTI-related findings in civilian, military, and sport populations,
spanning timeframes from acute to remote (years) post-injury
(40–42). Despite the density of publications, there is little
consistency in the findings with respect to directional changes
in DTI metrics. While some studies, for instance, report lower
FA following mTBI (43–47), this is not always the case (48–
51). Such inconsistent patterns are also present with respect to
MD, AD, and RD (43, 46, 48, 52). Given the heterogeneous
nature of mechanistic/neural changes in mTBI and generally
small study sample sizes, such inconsistency is not unexpected
and necessitates additional exploration.

Despite the inconsistency in directional findings for DTI
diffusion metrics following mTBI, several affected white matter
pathways do exhibit some consistency. Changes or differences
in FA and MD in the corpus callosum, anterior and posterior
corona radiata, anterior and posterior thalamic radiations,
superior and inferior longitudinal fasciculi, corticospinal tracts,
and internal capsule, are commonly reported (40, 41, 53). Such
consistency of reporting suggests that these white matter tracts
may be particularly susceptible to themultiple mechanisms (focal
injuries, shearing) that may result in an mTBI (40, 41, 53).

Frontiers in Neurology | www.frontiersin.org 2 June 2018 | Volume 9 | Article 468

https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurology#articles


Raikes et al. DTI and Sleep Quality and Depression After mTBI

Importantly, prior work related to major depressive disorder
(54) and insomnia (55, 56), as well as sleep quality (57) and
variability (58) in generally healthy populations, has consistently
demonstrated correlations with FA, such that more negative
outcomes (e.g., greater depressive symptoms, lower sleep quality,
and increased variability) are associated with lower FA in these
same tracts. Given the overlapping tracts identified on DTI
following mTBI and those related to sleep quality and depression
from other populations, it is likely that these tracts play an
important role in post-mTBI symptom presentation. However, to
date, there are no DTI-related findings specific to mTBI and sleep
quality or depression.

The purpose of this study was to use DTI to correlate
diffusion metrics with self-report indices of sleep quality and
depression in individuals with a recent mTBI. This study
is part of a larger, on-going project aimed at identifying
structural and neural correlates of self-report, neurocognitive,
and behavioral outcomes following mTBI. Here, we compared
DTI metrics between individuals within a year of an mTBI and
individuals with no self-reported history of mTBI. Additionally,
we computed within-group correlations between diffusion
metrics and self-report outcomes in the National Institute of
Neurological Disorders and Stroke (NINDS) Common Data
Elements (CDEs; http://www.commondataelements.ninds.nih.
gov/) psychiatric and psychological status [e.g., depression; (59)]
domain and self-reported sleep quality (60). We hypothesized,
consistent with the view that mTBI reflects aspects of DAI
(32–34), that FA would be lower, and MD, AD, and RD
higher in the mTBI group than in the healthy controls. Further
we hypothesized that this pattern would extend to symptom
presentation, with greater post-mTBI depressive symptoms, and
lower sleep quality associated with lower FA and greater MD, AD,
and RD.

MATERIALS AND METHODS

Participants
A total of 52 individuals (n = 34 with a history of a recent
(within 12 months) mTBI; n = 18 healthy control individuals
with no documented history of head trauma) participated
in the present study. Participants were recruited from the
Tucson metropolitan area via multiple methods including
Internet advertisements, posted flyers, and referral through local
emergency departments. The presence of mTBI was defined
in agreement with the American Congress of Rehabilitation
Medicine guidelines including (1) alteration of mental status
related to specific head trauma lasting up to 24 h; (2) loss of
consciousness <30min; (3) post-traumatic amnesia lasting <1
day; and (4) initial Glasgow Coma Scale between 13 and 15
(61). To be eligible, participants were required to provide written
documentation from a medical provider or other professional
who either witnessed the injury or provided immediate treatment
or care as a result of the injury.

All participants were right-handed and reported English as
their first language. Individuals were not eligible to participate in
this study in the presence of (1) any contraindications for MRI,
(2) education <9th grade, (3) history of alcoholism or substance

abuse, (4) colorblindness, or (5) lifetime history of DSM-IV
Axis I disorder. Healthy control participants were additionally
ineligible with any lifetime history of TBI or sport participation
in concussion high-risk sports (e.g., football, rugby, boxing, ice
hockey, wrestling, soccer, or martial arts) for longer than 1
month. All participants were compensated for their time. All
study procedures were approved by The University of Arizona
Institutional Review Board and the US Army Human Research
Protections Office. All participants provided written informed
consent prior to participation. Participant demographics are
further summarized in Table 1.

Materials and Procedure
As part of a larger, on-going study, individuals in the current
sample were evaluated at one of six pre-specified time points
relative to their injury date: 2-weeks, 4-weeks, 3-months, 6-
months, or 12-months post-injury (see Table 1). The purpose of
the larger study is to examine structural and neural correlates of
neuropsychological, behavioral, and self-reported outcomes over
the first year following an mTBI. Individuals are included at only
one of six time points and treated as exemplars of recovery at that
time. We report here on a subset of the outcomes.

All participants underwent a comprehensive
neuropsychological evaluation, including several self-report
measures (described below), followed by a neuroimaging session
that included diffusion-weighted imaging (DWI). Only a subset
of the outcome measures are presented here. In addition to
indices of depressive symptoms and sleep quality, we included
NINDS CDEs related to global outcomes, post-mTBI symptom
presentation, and perceived health-related quality of life, all
of which may be impacted by depression and/or lower sleep
quality.

Self-Report Outcomes
Glasgow Outcome Scale - Extended (GOS-E)
The GOS-E is a structured interview commonly used to assess
overall disability and recovery following TBI (62). It is a core
element of the NINDS CDEs for all levels of severity of
TBI, including sport-related concussion. Scores on subscales
for the GOS-E quantify disability in cognition, independence,
employability, and social or community participation. These
subscales are cumulatively reported as a single overall outcome,
ranging from 1 (death) to 8 (upper good recovery). Reliability for
the GOS-E is high [κ = 0.85; (62)].

Beck Depression Inventory-II (BDI-II)
The BDI-II is a self-administered survey requiring self-appraisal
of mood over the preceding 2 weeks (63, 64). Increasing scores
on the BDI-II are associated with increasing levels of depression
symptoms. The BDI-II has high test-retest reliability (r >

0.9), as well as construct (vs. the original BDI) and moderate
concurrent (vs. the State-Trait Anxiety Inventory Anxiety and
Depression factors) validity (r > 0.68; (65, 66)). Previous work
has demonstrated that individuals with both recent mTBIs and a
history of mTBI report higher levels of depression and increased
likelihood for depression by comparison to individuals without
mTBI (22, 67–71).
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TABLE 1 | Participant demographics and self-report measures.

Healthy Control mTBI Statistica p Effect Sizeb

Mean (SD) Mean (SD)

n 18 34

DEMOGRAPHICS

Age (years) 23.2 (3.4) 24.4 (7.4) −0.795 0.430 −0.232

Height (in) 67.2 (4.3) 66.4 (4.2) 0.649 0.520 0.189

Weight (lb) 158.4 (41.5) 151.8 (38.1) 0.565 0.576 0.165

Total mTBIsc 0 [0] 2 [1] −12.6 <0.001 −3.673

Sex (n) 0.272d 0.602 0.144

Male 9 13

Female 9 21

Race/Ethnicity (n) 4.063d 0.540 0.577

Asian/Pacific Islander 2 3

Black/African American 0 2

Hispanic/Latino 1 0

Native American/ American Indian 2 2

Other 0 1

White 12 25

Weeks Post-Injury (n)

2 weeks 6 (17.6%)

4 weeks 8 (23.5%)

12 weeks 7 (20.6%)

24 weeks 6 (14.7%)

52 weeks 9 (23.5%)

Mechanism of Injury (n)

Sports-related 13 (38.2%)

Slip and/or fall 7 (20.6%)

MVA 6 (17.6%)

Bike related 4 (11.8%)

Environmentale 3 (8.8%)

Assault 1 (2.9%)

SELF-REPORT MEASURES

PSQI Total Score 3.7 (1.8) 6.8 (3.5) −4.227 <0.001 −1.232

BDI–II Total Score 2.4 (2.9) 9.6 (8.1) −4.636 <0.001 −1.351

RPQ-3 0.2 (0.6) 2.4 (2.5) −4.771 <0.001 −1.391

RPQ-13 0.3 (1.0) 10.7 (10.6) −5.616 <0.001 −1.637

SWLS Total Score 26.6 (6.0) 26.2 (4.9) 0.230 0.819 0.067

GOS-E Outcomef (n)

Upper Good Recovery 10

Lower Good Recovery 13

Upper Moderate Disability 10

Upper Severe Disability 1

a Tests are two-tailed t-tests unless otherwise indicated.
b Cohen’s d effect sizes.
cData presented as median [interquartile range].
d χ2 test.
e Mechanism of injury is for the most recent mTBI. Environmental accidents include falls from ladders or unanticipated contact with environmental features (ground, structures) unrelated

to sports or falls.
f No GOS-E data were collected on the healthy control participants.

mTBI, mild traumatic brain injury; MVA, motor vehicle accident; PSQI, Pittsburgh Sleep Quality Index; BDI-II, Beck Depression Inventory – 2; RPQ, Rivermead Post-concussion Symptom

Questionnaire; SWLS, Satisfaction with Life Survey; GOS-E, Glasgow Outcome Scale-Extended.
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Pittsburgh Sleep Quality Index (PSQI)
The PSQI is an 18-item self-report questionnaire yielding
information about overall sleep quality, latency, duration,
efficiency, disturbances, medication use, and the effects on
daytime function (60). Better sleep quality is associated with
lower scores, with scores of >5 indicating poor sleep and >8
indicating insomnia. Prior work has indicated good test-retest
reliability (r > 0.80; (60)) and sensitivity to sleep disruption
following mTBI (72, 73).

Satisfaction With Life Survey (SWLS)
The SWLS is a self-administered survey in which individuals
assess current life satisfaction based on five questions. Questions
are scored “Strongly Disagree” (1) to “Strongly Agree” (7) and
summedwith amaximum value of 35 (74). Higher scores indicate
greater life satisfaction. The SWLS has demonstrated test-retest
reliability [r > 0.80; (75)]. It is a basic element of the NINDS
CDEs for concussion and mTBI (59). Previous research has
indicated that individuals with prior mTBIs report greater life
dissatisfaction (76, 77).

Rivermead Post-Concussion Symptom Questionnaire

(RPCSQ)
The RPCSQ is a common post-mTBI assessment of symptom
presentation and is a basic element of the NINDS CDEs for
concussion and mTBI (59). Participants self-report the extent to
which 16 symptoms currently affect them compared to preinjury-
levels. Ratings range from “Not experienced at all” (0) and
“No more of a problem” (1) to “A severe problem (4) (78).
Previous analyses of the RPCSQ have identified a two-factor
structure, such that the first three questions (RPQ3) are sensitive
to acute injury symptoms while the final 13 (RPQ13) are sensitive
to chronic symptoms. These two scales have good test-retest
reliability (r > 0.70) and external validity [ρ > 0.60; (79)], and
the RPQ is a significant predictor of 3-month outcomes (80).

Diffusion-Weighted Imaging
We acquired DWI data using single-shot echo planar imaging
(EPI) (TE = 88ms; TR = 9600ms; acquisition matrix = 128
× 128; FOV: 256 × 256; slice thickness = 2mm with no
gap) on a Siemens Skyra 3.0 Tesla MRI machine (32-channel
head coil; MAGNETO Skyra Siemens Healthcare). Images were
acquired following a within-lab standardized process, including
cross checks on image acquisition parameters at the time of
scanning, with a single MRI technician overseeing all scanning
procedures. Diffusion gradients were applied along 72 directions,
with b = 1000 s/mm2 and six non-diffusion weighted images
(b0). Preprocessing followed the standard pipeline available
through FMRIB Software Library’s [FSL; (81)], including EPI
distortion correction using TOPUP (82), motion and eddy
current distortion correction using eddy (83), skull-stripping
with the brain extraction tool [BET; (84)], and diffusion tensor
model fitting using DTIFIT (85). Output from DTIFIT includes
separate images for FA, MD and three eigenvalues (λ1, λ2, λ3).
λ1 is the axial diffusivity and radial diffusivity is the average of λ2

and λ3.

The four DTI-metric images (FA, MD, AD, and RD) were
then nonlinearly registered to a standard template (FMRIB-
58) followed by affine-alignment to standard space (MNI, 1 ×

1 × 1mm) using Tract-Based Spatial Statistics [TBSS; (86)].
A study-specific, averaged whole-brain skeletonized FA mask
was created through TBSS (threshold = 0.2). Skeletonizing in
this way reduces the number of voxels considered in statistical
modeling by only including voxels near the center of whitematter
tracts.

Whole-brain voxel-wise statistical analysis was conducted
via FSL’s randomise using threshold-free cluster enhancement
(87) with 5000 permutations. Significant voxels were identified
as those with p < 0.05 after family-wise error rate (FWER)
adjustment for multiple comparison. We tested between-group
differences using a two-sample T-test for each of the DTI metrics
(FA, MD, AD, RD), controlling for age, sex, and days post-injury.
For the self-report measures, we fit within-group GLMs for each
combination of measure and metric, controlling for age, sex, and
days since injury (mTBI only). Within-group correlations for
the relationships between DTI metrics and self-report outcome
measures were examined.

A mask of all significant voxels was created for each of
the DTI metrics. These masks were then used to compute the
mean DTI-metric value for each participant, which was then
extracted for post-hoc analyses. Mean DTI-metric values and self-
report measures were scatter-plotted and the partial correlation
coefficient, after controlling for age, sex, and days post-injury,
was computed. Significant white matter voxels were anatomically
identified using the JohnsHopkins University (JHU) ICBM-DTI-
81 White-Matter Labels atlas (88).

Statistical Analyses
Between-group comparisons for continuous demographic
characteristics and self-report measures were analyzed using a
two-tailed T-test in R [v. 3.4.2; (89)]. The between-group gender
and ethnicity comparisons were computed using a Chi-square
test. Average values over all significant voxels were plotted in
R as scatterplots with the relevant self-report outcomes using
ggplot2 (90). For the healthy control participants, taking an
inverse transformation of the BDI scores [y =

1
(x+1

)] and

a square transformation (y = x2) of the SWLS scores was
necessary to reduce skewness. No GOS-E data were collected
for the healthy control participants, as this measure is specific to
brain injury.

RESULTS

Demographic and Self-Report Measures
Demographic characteristics and self-report outcomes are
summarized inTable 1. No participants were active dutymilitary;
however, we did not query for Veteran status. The groups
did not differ in age, height, weight, or gender. Brain injured
participants reported a median number of mTBIs, including the
one used for referral, of 2 (range: 1–4). Most individuals (n= 13)
reported a sports-related mechanism of injury for the referring
mTBI. The mTBI participants reported significantly more
post-concussive symptoms, poorer sleep quality, and greater
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depressive symptoms than the healthy control participants. The
majority of the mTBI participants (n= 23, 68%) reported a good
recovery as assessed via the GOS-E.

Given the dynamic nature of post-mTBI recovery and the
role that time since injury may play, we additionally report the
means and standard deviations for the self-reported outcomes
for each of the six distinct time points in Table 2. Given the
small sample sizes across all of the post-mTBI groups, we do
not report any between-group statistical comparisons at this
time.

Diffusion Metrics
Whole-Brain Group Differences
After correcting for multiple comparisons, there were no
statistically significant differences observed between the
healthy control participants and those with a history of
mTBI for any of the diffusion metrics at the whole brain
level (a priori α = 0.05). However, there were voxels
with a trend toward greater radial diffusivity in the mTBI
participants than the healthy control participants (FWER
0.064 ≤ p ≤ 0.094; Supplementary Figures 1, 5, top
row).

Correlation Between Diffusion Metrics and

Self-Report Measures
There were no significant correlations within the healthy control
group between any of the DTI metrics and any of the self-
report outcomes. However, a positive trend association between
AD and SWLS scores was observed (0.068 ≤ corrected p ≤

0.099, Supplementary Figures 2, 5, second row). We found
voxels with significant correlations in the mTBI participant
group for the BDI-FA (corrected p < 0.05, Figures 1, 6A), BDI-
MD (corrected p < 0.05, Figures 2, 6B), BDI-RD (corrected
p < 0.05, Figures 3, 6C), PSQI-FA (corrected p < 0.05,
Figures 4, 6D) and PSQI-RD (corrected p < 0.05, Figures 5,
6E) relationships. Finally, trend associations were observed for
RPQ3-AD (0.093≤ corrected p ≤ 0.1, Supplementary Figures 3,
5, third row) and PSQI-MD (0.079 ≤ corrected p ≤ 0.1,
Supplementary Figures 4, 5, bottom row). No statistically
significant correlations were present in the mTBI group between
any diffusion metric and the GOS-E, RPQ13, or SWLS
scores.

Anatomical locations of significant correlations were
automatically determined using FSL’s atlasquery function and
the JHU ICBM-DTI-81 White-Matter Labels atlas (88). These

TABLE 2 | Participant demographics and self-report measures by weeks post-Mtbi.

Uninjured 2 weeks 4 weeks 3 months 6 months 1 year

n n = 18 n = 6 n = 8 n = 7 n = 5 n = 8

DEMOGRAPHICS

Age (years) 23.2 (3.4) 25.1 (10.1) 25.3 (6.7) 26.6 (9.3) 24.9 (8.6) 20.9 (1.4)

Height (in) 67.2 (4.3) 69.3 (6.1) 66.9 (3.5) 65.3 (3.9) 65.2 (2.6) 65.5 (4.3)

Weight (lb) 158.4 (41.5) 169.7 (43.9) 158.9 (36.5) 139.3 (34.6) 157.0 (49.2) 139.0 (32.1)

Total mTBIsa 0.0 [0.0] 2.0 [0.8] 2.0 [1.0] 2.0 [2.0] 2.0 [2.0] 2.0 [1.0]

Sex (n)

Male 9 (50%) 4 (66.7%) 4 (50%) 2 (28.6%) 1 (20%) 2 (25%)

Race/Ethnicity (n)

Asian/Pacific Islander 2 0 0 1 0 2

Black/African American 0 2 0 0 0 0

Hispanic/Latino 1 0 0 0 0 0

Native American/ American Indian 2 0 1 0 1 0

Other 0 0 1 0 0 0

White 12 4 5 6 4 6

SELF-REPORT MEASURES

PSQI Total Score 3.7 (1.8) 6.7 (4.5) 7.0 (1.4) 6.0 (2.8) 7.2 (3.8) 7.1 (5.0)

BDI-II Total Score 2.1 (2.6) 9.3 (7.2) 9.8 (6.5) 12.6 (10.3) 9.2 (9.8) 5.1 (4.4)

RPQ-3 0.2 (0.6) 2.7 (3.7) 3.8 (2.3) 2.0 (2.3) 1.4 (1.9) 1.9 (2.2)

RPQ-13 0.3 (1.0) 11.7 (9.3) 12.4 (10.0) 9.0 (11.0) 13.2 (16.4) 8.1 (9.8)

SWLS Total Score 26.6 (6.0) 28.2 (2.8) 24.1 (6.2) 25.0 (6.5) 25.6 (4.4) 28.1 (2.8)

GOS-E Outcomeb (n)

Upper Good Recovery 2 2 3 1 2

Lower Good Recovery 2 1 2 3 5

Upper Moderate Disability 1 5 2 1 1

Upper Severe Disability 1 0 0 0 0

aData presented as median [interquartile range].
bNo GOS-E data were collected on the healthy control participants. mTBI, mild traumatic brain injury; PSQI, Pittsburgh Sleep Quality Index; BDI-II Beck Depression Inventory – 2; RPQ,

Rivermead Post-concussion Symptom Questionnaire; SWLS, Satisfaction with Life Survey; GOS-E, Glasgow Outcome Scale – Extended.
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FIGURE 1 | Map of voxels with significant correlations between fractional anisotropy (FA) and Beck Depression Inventory – II (BDI) total scores in the mild traumatic

brain injury (mTBI) participants. The average white-matter skeleton is presented in green. Yellow voxels indicate significant, negative correlations between FA and BDI

total score (family-wise error rate corrected p < 0.05). Surrounding voxels are filled in red for visual purposes only. Images are in neurological orientation and

Z-coordinates are presented in MNI standard space.

FIGURE 2 | Map of voxels with significant correlations between radial diffusivity (RD) and Beck Depression Inventory – II (BDI) total scores in the mild traumatic brain

injury (mTBI) participants. The average white-matter skeleton is presented in green. Yellow voxels indicate significant, positive correlations between RD and BDI total

score (family-wise error rate corrected p < 0.05). Surrounding voxels are filled in red for visual purposes only. Images are in neurological orientation and Z-coordinates

are presented in MNI standard space.
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FIGURE 3 | Map of voxels with significant correlations between mean diffusivity (MD) and Beck Depression Inventory – II (BDI) total scores in the mild traumatic brain

injury (mTBI) participants. The average white-matter skeleton is presented in green. Yellow voxels indicate significant, positive correlations between MD and BDI total

score (family-wise error rate corrected p < 0.05). Surrounding voxels are filled in red for visual purposes only. Images are in neurological orientation and Z-coordinates

are presented in MNI standard space.

locations are summarized in Figure 7 and the abbreviations
detailed in Supplementary Table 1. Atlasquery returns the
probability (and, in the case of the JHU ICBM-DTI-81 atlas,
the proportion) of voxels in a mask belonging to a region
identified in a given atlas. The JHU ICBM-DTI-81 atlas
does not encompass all white matter, and consequently some
voxels remain unclassified. Figure 7 has been rescaled to
reflect only the classified voxels (e.g., 25% = 25% of the
classified voxels). Across all five of the significant correlation
pairs (BDI-FA, BDI-MD, BDI-RD, PSQI-FA, and PSQI-RD),
correlations were consistently observed bilaterally within the
internal capsules (anterior and posterior limbs), corona radiata
(anterior and superior), fornix, and superior fronto-occipital
fasciculi.

Confirmatory Post-Hoc Analyses
We performed two additional post-hoc analyses to further
strengthen these findings. To confirm the lack of PSQI-DTI and
BDI-DTI correlation in the healthy controls, we conducted an
ROI analysis. Using the significant voxel masks created for the
mTBI participants, the healthy control participants’ mean DTI-
metric values were extracted in the same manner as for the
mTBI participants. Post-hoc partial correlations for the healthy
controls were computed as described above, controlling for age
and sex. None of these post-hoc correlations were statistically
significant, as anticipated based on the results from randomise.
Additionally, we compared the partial correlation coefficients
between the healthy control and mTBI participants (91). These
analyses confirmed that the observed correlations in the mTBI
participants were significantly different from those in the healthy
controls (see Supplementary Table 2).

Additionally, the BDI-II includes two questions that
specifically address sleep. We observed significant correlations
between sleep quality (PSQI) and DTI metrics, as well as

depressive symptoms (BDI) and the same DTI metrics (FA
and RD). Additionally, there was overlap in the structural
areas exhibiting significance. Consequently, it was important
to examine whether the BDI-DTI correlations for the mTBI
participants depended upon perceived sleep quality. We
computed a modified BDI total score that ignored items 16
(changes in sleeping pattern) and 20 (tiredness or fatigue)
and re-calculated the partial correlations between BDI and
the mean FA, MD, and RD over the previously identified
significant voxels, while controlling for age, sex and time
since injury. We then compared the two sets of correlation
coefficients (91). There were no significant differences
between the original and adjusted BDI correlations (see
Supplementary Table 2), suggesting that the BDI-FA, BDI-MD,
and BDI-RD correlations were not necessarily dependent on
self-reported sleep characteristics.

DISCUSSION

The focus of this study was to identify neural correlates
of clinically-relevant self-report outcomes related to global
outcomes, psychiatric and psychological status, perceived
health-related quality of life, and post-concussive related
symptoms (59) as well as self-reported sleep quality (60).
Specifically, the emphasis here was on metrics related to
white-matter integrity, including FA as well as MD, AD,
and RD. We hypothesized that individuals with a recent
mTBI would exhibit lower FA and greater MD and RD than
individuals with no prior history of mTBI. Additionally, we
hypothesized that within-group correlations would be present
such that poorer outcomes (e.g., poorer sleep quality, more
depression symptoms) would be associated with lower FA
and greater MD and RD. These hypotheses were partially
confirmed.
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FIGURE 4 | Map of voxels with significant correlations between fractional anisotropy (FA) and Pittsburgh Sleep Quality Index (PSQI) total scores in the mild traumatic

brain injury (mTBI) participants. The average white-matter skeleton is presented in green. Yellow voxels indicate significant, negative correlations between FA and PSQI

total score (family-wise error rate corrected p < 0.05). Surrounding voxels are filled in red voxels for visual purposes only. Images are in neurological orientation and

Z-coordinates are presented in MNI standard space.

DTI Sensitivity to mTBI
Contrary to our hypotheses, we did not observe any statistically
significant differences between the healthy control and mTBI
participants for any of the four diffusion metrics. This lack of
difference occurred despite participants with mTBI reporting
statistically greater sleep disturbances, depression symptoms,
and post-concussive symptoms than the healthy controls.
Recent systematic reviews and meta-analyses have generally
highlighted the sensitivity of FA and MD to mTBI (40,
41, 53), however, the directional difference relative to non-
mTBI participants is unclear, with lower, higher, and no
differences reported (31, 43, 46, 48, 50–52). Our findings
here are consistent with those of “no differences” at a whole
brain corrected level, however it is important to note that
generalization across DTI studies in mTBI is limited by cross-
study heterogeneity in sample sizes, participant ages and
populations, imaging protocols, and processingmethods (40, 41).
Please see Exploratory trends for a further discussion of group
differences.

Correlations With Self-Report Outcomes
Consistent with our hypotheses, both sleep quality and depressive
symptoms in the participants with mTBIs in the present study
were correlated with DTI metrics. The relationships with
depressive symptoms remained significant after removing
sleep-related items from the BDI total score, suggesting that

these were not driven by sleep issues per se. These measures
exhibited negative correlations with FA and positive correlations
with RD in projection and association tracts, including the
internal capsule (IC), superior and anterior corona radiata (SCR,
ACR), anterior and posterior thalamic radiations (ATR, PTR),
and superior fronto-occipital fasciculus (SFO). Collectively,
these white-matter tracts are integral aspects of neural circuits
connecting deep brain structures, specifically the thalamus,
parietal, and occipital cortical regions with frontal and prefrontal
cortex areas. These connections not only play a critical role
in sleep-wake regulation (thalamo-cortical circuits; (92–
94), but also facilitate information processing, cognitive control,
attention, executive function, and emotion regulation (95–97), all
of which may be impaired following mTBI. Recent models of the
neural basis of depression have further illustrated how alterations
in the information processing supported by these prefrontal-
posterior cortical/subcortical pathways (e.g., schema-guided
attention, interpretation, and cognitive control processes) may
bi-directionally interact with sleep quality to produce/maintain
depressive symptoms (98). Consequently, damage in these
pathways may precipitate the clinical presentation of
mTBI, especially with respect to the correlated sleep and
depression-related symptoms we observed in our sample.

There is substantial evidence that prior mTBI is associated
with poor sleep quality, both self-reported (8, 12, 99, 100)
as well as when measured via actigraphy (11, 101) and/or
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FIGURE 5 | Map of voxels with significant correlations between radial diffusivity (RD) and Pittsburgh Sleep Quality Index (PSQI) total scores in the mild traumatic brain

injury (mTBI) participants. The average white-matter skeleton is presented in green. Yellow voxels indicate significant, positive correlations between RD and PSQI total

score (family-wise error rate corrected p < 0.05). Surrounding voxels are filled in red for visual purposes only. Images are in neurological orientation and Z-coordinates

are presented in MNI standard space.

polysomnography (102). Poor sleep quality may manifest in
numerous ways, including insomnia (8, 12), hypersomnia
(10), pleiosomnia (11), and increased night-to-night sleep
variability (101). Proposed mechanisms for sleep-wake
disturbances following mTBI include reduced sleep-wake
regulation neurotransmitter availability, specifically low
hypocretin/orexin, and lower counts of wake-promoting
neurons in the hypothalamus (103–105). To our knowledge, the
findings here are the first to link sleep quality with white-matter
integrity following mTBI, and suggest that there are likely
overlapping relationships between these mechanisms.

The results reported here are consistent with findings from
both depression- and sleep-related studies apart from mTBI
[i.e., where sleep disturbance is thought to both promote, and
be promoted by, underlying neural processing abnormalities
in depression; (98)]. Lower FA in the SLF, IC, and corpus
callosum are frequently observed in major depressive disorder
(54). Additionally, individuals with poor sleep quality (57),
increased sleep variability (58), and insomnia (55, 56) all
exhibit lower FA, particularly in the IC, SLF, and thalamic

radiations. Importantly, previous work has indicated that poor
sleep quality is associated with lower FA and increased RD even
in healthy individuals and can cause reduced myelination and
limit oligodendrocyte precursor proliferation (57, 58). In light
of mouse models indicating that mTBI can directly result in
loss of myelination (35–38), it is unclear to what extent post-
mTBI sleep quality leads to white-matter damage vs. trauma-
induced white-matter damage leading to poor sleep. Regardless,
white-matter damage in these pathways may explain overlapping
presentations of poor sleep quality, psychological distress, and
cognitive impairment typically associated with mTBI. Identifying
the independent contributions of traumatic insult vs. sleep loss-
induced alterations in white-matter remains an open area of
investigation in this population.

Exploratory Trends
Surprisingly, and generally contrary to the bulk of the literature
on mTBI and DTI, there were no statistically significant
differences (at a whole brain FWER corrected p < 0.05 level)
between the mTBI participants and healthy controls. We did,
however, observe a trend toward greater RD in the mTBI
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FIGURE 6 | Scatterplots of post-hoc partial correlations between diffusivity measures and self-reported outcomes for participants with a mild traumatic brain injury.

The points in each plot are the average DTI measure over all of the significant voxels. The black line is a regression line predicting the self-report outcomes from the

diffusivity measures, controlling for age, sex, and days post-injury. Correlation coefficients are noted as r. (A) The Beck Depression Inventory – II (BDI) total score vs.

fractional anisotropy (FA); (B) BDI total score vs. radial diffusivity (RD); (C) BDI total score vs. mean diffusivity (MD); (D) Pittsburgh Sleep Quality Index (PSQI) total score

vs. FA; (E) PSQI total score vs. RD.

participants (at a FWER corrected p < 0.1), primarily in the
right hemisphere. While areas did not overlap exactly with the
significant voxels from the mTBI group correlations, they do
exist within the same pathways, particularly the corona radiata,
longitudinal fasciculi, and the corpus callosum. While these
differences do not meet the conventional level of significance,
they do point to the possibility of myelin-related damage
following mTBI.

Similarly, despite the observed relationships between
FA/RD and both sleep quality and depressive symptoms,
there were no statistically significant correlations (at a FWER
corrected p < 0.05 level) between diffusion measures and
post-concussive symptom presentation on the Rivermead
Post-concussion Symptom Questionnaire. However, a negative
trend did exist between AD and post-concussive symptoms
on the RPQ3 (which identifies somatic symptoms; i.e.,
headaches, dizziness, nausea), such that lower AD was
associated with greater symptom presentation. This result
is in line with other recent findings (106), suggesting that
somatic symptom presentation may be related to axonal
damage.

Limitations
The present study indicates an association between diffusion
metrics and self-report outcomes subsequent to mTBI,

particularly with regard to sleep and depressive symptoms.
However, a number of challenges remain. First, our overall
sample was relatively small, which may contribute to the lack
of statistically significant differences observed between healthy
control participants and mTBI participants. Secondly, despite
significant correlations between diffusion metrics and both sleep
quality and depressive symptoms, the findings here present only
a cross-sectional view of post-mTBI outcomes. Consequently,
we cannot make any assertions about causation with respect to
either the white matter integrity or self-report outcomes.

Third, our group had considerable heterogeneity of time
since injury, ranging from 2-weeks to 12-months post injury.
There is reasonable evidence that diffusion-related metrics may
change over the weeks to months following an mTBI (40). Given
the exclusively cross-sectional nature of our data, we addressed
this potential limitation in the following ways. First, both our
between-group and within-group models controlled for days
since injury. Second, a post-hoc mTBI participant within-group
correlation between the mean significant voxel values for PSQI
and BDI-II scores reported earlier and time since injury revealed
a non-significant correlation (r = 0.026, p = 0.146). Therefore,
while intra-individual DTI-metrics may typically change over
the course of mTBI recovery (40), the relationships between
DTI measures, sleep quality, and depression we observed in the
present sample appear independent of time since injury.
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FIGURE 7 | Heatmap showing distribution of labeled, significantly correlated voxels (family-wise error rate corrected p < 0.05) for each correlation pair. Anatomical

labels are drawn from the JHU ICBM-DTI-81 White-Matter Labels atlas and retrieved using the FMRIB Software Library (FSL) atlasquery function. Atlasquery returns

the probability (and, in the case of the JHU ICBM-DTI-81 atlas, the proportion) of voxels in a mask belonging to a region identified in a given atlas. The JHU

ICBM-DTI-81 atlas does not encompass all white matter, and consequently some voxels remain unclassified. Colors reflect the percentage of labeled voxels identified

within each anatomical location ( localized voxels∑
(classified voxels)

. Black boxes indicate no voxels with a significant correlation were present in that anatomical location. BDI, Beck

Depression Inventory; PSQI, Pittsburgh Sleep Quality Index; FA, Fractional Anisotropy; MD, Mean Diffusivity; RD, Radial Diffusivity. Anatomical location abbreviations

are summarized in Supplementary Table 1.

Finally, the white matter skeleton created during TBSS is
based upon FA local maxima, generally near the midline of
the white-matter tract (107). Thus, group differences between
controls and mTBI participants may be present in non-
maxima areas of the tracts, but these potential differences
would not be detectable using the methods employed here.
Finally, there are no established cutoffs, or reliable change
indices, for DTI metrics after mTBI to identify whether the
observed relationships reflect clinically meaningful changes in
diffusion. Future work should address longitudinal outcomes,
ideally with pre-injury DTI (though we recognize the inherent
challenge in that), as well as machine-learning-based modeling
methods (e.g., cross-validated logistic regression, classification
trees) to identify discriminative post-mTBI changes in DTI
metrics.

CONCLUSION

The results of this study contribute to a growing body of
literature indicating that there are correlations between white-
matter structure and clinical measures related to sleep quality
and depression following mTBI. We have identified that the
self-reported presentation of poor sleep quality and depressive
symptoms following mTBI correlates with lower white-matter
integrity in multiple areas of the brain involved in sleep-
wake cycle and emotion regulation, in addition to information
processing, cognitive control, attention, and executive function.
Finally, trends in our data suggest that there may be alterations
in white-matter structure that distinguish individuals with a
history of mTBI from those without. Future work should
emphasize identifying cutoff values in DTI metrics that provide
clinically meaningful distinctions between individuals. Such
findings will help not only to continue to increase what is
known about mTBI pathophysiology and recovery, but will also

help to guide best practices for the diagnosis and treatment of
mTBI.
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Supplementary Figure 1 | Map of voxels with greater radial diffusivity (RD;

family-wise error rate corrected 0.064 ≤ p ≤ 0.094) in mild traumatic brain injury

(mTBI) participants compared to healthy control participants. The average

white-matter skeleton is presented in green. Yellow voxels indicate voxels with a

trend toward statistical significance. Surrounding voxels are filled with red for visual
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purposes only. Images are in neurological orientation and Z-coordinates are

presented in MNI standard space.

Supplementary Figure 2 | Map of voxels indicating a positive trend between

axial diffusivity (AD) and Satisfaction with Life Scale (SWLS) total scores in the

healthy control participants. The average white-matter skeleton is presented in

green. Yellow voxels indicate positive correlations between AD and SWLS total

score (family-wise error rate corrected 0.068 ≤ p ≤ 0.099). Surrounding voxels are

filled in red for visual purposes only. Images are in neurological orientation and

Z-coordinates are presented in MNI standard space.

Supplementary Figure 3 | Map of voxels indicating a positive trend between

mean diffusivity (MD) and Pittsburgh Sleep Quality Index (PSQI) total scores in the

mild traumatic brain injury (mTBI) participants. The average white-matter skeleton

is presented in green. Yellow voxels indicate positive correlations between MD and

PSQI total score (family-wise error rate corrected 0.079 ≤ p ≤ 0.1). Surrounding

voxels are filled in red for visual purposes only. Images are in neurological

orientation and Z-coordinates are presented in MNI standard space.

Supplementary Figure 4 | Map of voxels indicating a positive trend between

axial diffusivity (AD) and Rivermead Post-concussion Symptom Questionnaire − 3

(RPQ3) scores in the mild traumatic brain injury (mTBI) participants. The average

white-matter skeleton is presented in green. Yellow voxels indicate negative

correlations between AD and RPQ3 total score (family-wise error rate corrected

0.093 ≤ p ≤ 0.1). Surrounding voxels are filled in red for visual purposes only.

Images are in neurological orientation and Z-coordinates are presented in MNI

standard space.

Supplementary Figure 5 | Heatmap showing the distribution of labeled voxels

(family-wise error rate corrected 0.05 < p ≤ 0.1). Anatomical labels are drawn

from the JHU ICBM-DTI-81 White-Matter Labels atlas and retrieved using the

FMRIB Software Library (FSL) atlasquery function. Atlasquery returns the

probability (and, in the case of the JHU ICBM-DTI-81 atlas, the proportion) of

voxels in a mask belonging to a region identified in a given atlas. The JHU

ICBM-DTI-81 atlas does not encompass all white matter, and consequently some

voxels remain unclassified. Colors reflect the percentage of labeled voxels

identified within each anatomical location ( localized voxels∑
(classified voxels)

. Black boxes indicate

no voxels with a trend (family-wise error rate corrected 0.05 < p ≤ 0.1) were

present in that anatomical location. BDI, Beck Depression Inventory; PSQI,

Pittsburgh Sleep Quality Index; FA, Fractional Anisotropy; MD, Mean Diffusivity;

RD, Radial Diffusivity. Anatomical location abbreviations are summarized in

Supplementary Table 1.

Supplementary Table 1 | JHU ICBM-DTI-81 White-Matter Labels atlas

abbreviations.

Supplementary Table 2 | Confirmatory post-hoc correlations.
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