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Abstract

Background

Obesity is associated with a hypercoagulable state and increased risk for thrombotic cardio-

vascular events.

Objective

Establish the onset and reversibility of the hypercoagulable state during the development

and regression of nutritionally-induced obesity in mice, and its relation to transcriptional

changes and clearance rates of coagulation factors as well as its relation to changes in met-

abolic and inflammatory parameters.

Methods

Male C57BL/6J mice were fed a low fat (10% kcal as fat; LFD) or high fat diet (45% kcal as

fat; HFD) for 2, 4, 8 or 16 weeks. To study the effects of weight loss, mice were fed the HFD

for 16 weeks and switched to the LFD for 1, 2 or 4 weeks. For each time point analyses of

plasma and hepatic mRNA levels of coagulation factors were performed after overnight fast-

ing, as well as measurements of circulating metabolic and inflammatory parameters. Fur-

thermore, in vivo clearance rates of human factor (F) VII, FVIII and FIX proteins were

determined after 2 weeks of HFD-feeding.
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Results

HFD feeding gradually increased the body and liver weight, which was accompanied by a

significant increase in plasma glucose levels from 8 weeks onwards, while insulin levels

were affected after 16 weeks. Besides a transient rise in cytokine levels at 2 weeks after

starting the HFD, no significant effect on inflammation markers was present. Increased

plasma levels of fibrinogen, FII, FVII, FVIII, FIX, FXI and FXII were observed in mice on a

HFD for 2 weeks, which in general persisted throughout the 16 weeks of HFD-feeding. Inter-

estingly, with the exception of FXI the effects on plasma coagulation levels were not paral-

leled by changes in relative transcript levels in the liver, nor by decreased clearance rates.

Switching from HFD to LFD reversed the HFD-induced procoagulant shift in plasma, again

not coinciding with transcriptional modulation.

Conclusions

Changes in dietary fat content rapidly alter the mouse plasma coagulation profile, thereby

preceding plasma metabolic changes, which cannot be explained by changes in relative

expression of coagulation factors or decreased clearance rates.

Introduction
The prevalence of obesity in the Western world is rising, which causes a public health problem
since obesity affects, amongst others, the development of cardiovascular diseases through its
influence on risk factors like hyperlipidemia, hypertension, glucose intolerance and inflamma-
tion. The risk for thrombotic cardiovascular events is even further enhanced by the hypercoag-
ulable state that is associated with obesity, as obese subjects have increased plasma levels of
procoagulant factor (F) VII, VIII, XII and fibrinogen, while fibrinolysis is decreased as reflected
by increased levels of plasminogen activator inhibitor-1 (PAI-1) [1–3]. On the other hand, lev-
els of the anticoagulant factors protein C and protein S are higher, whereas tissue plasminogen
activator (tPA) levels are lower under obese conditions, which might be considered to be a
compensatory response to the hypercoagulable state [4,5].

Previous studies evaluating the effect of weight loss on hemostatic parameters showed that
levels of tissue factor, FVII, and PAI-1 decreased upon weight loss, resulting in a decrease in
thrombin generation [6,7]. In addition, it has been suggested that almost one-third of all
thrombotic events could be prevented by weight loss [8]. Taken together, these data indicate
that plasma coagulation factors, and the subsequent thrombotic risk, may follow both the unfa-
vorable and favorable changes in body weight gain and loss, respectively.

Using an experimental animal approach, we and others have previously shown that obesity
in mice also results in a hypercoagulable state, which is characterized by increased plasma levels
of procoagulant factors and decreased fibrinolysis [9,10]. These results were obtained in mice
that had been on a high fat diet for 4 to 5 months, and during this time many other metabolic
changes may have occurred influencing the coagulation profile indirectly. Therefore, we now
establish the onset and reversibility of the hypercoagulable state during the development and
regression of nutritionaly-induced obesity by combining high fat and subsequent low fat feed-
ing in a mouse model. To further evaluate the potential mechanism leading to the changes in
the plasma coagulation profile, we also determine its relation to transcriptional changes and
clearance rates of a subset of coagulation factors.
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Materials and Methods

Animals
Six week old male C57BL/6J mice (Charles River, Maastricht, the Netherlands) were fed a diet
with 10% kcal as fat content (low fat diet, D12450B; Research Diets, New Brunswick, NJ) for 4
weeks as a run-in period, after which half of the group switched to an iso-caloric diet with 45%
kcal as fat content (high fat diet, D12451; Research Diets), while the other group remained on
the low fat diet (LFD). After 2, 4, 8 or 16 weeks mice (n = 15 per group) were fasted overnight
and subsequently anesthetized with a mixture of ketamine, xylazine and atropine. The abdo-
men was opened and a blood sample on sodium citrate (final concentration of 0.32%) was
directly drawn from the inferior caval vein. Platelet-poor plasma was obtained and stored at
-80°C until use, and part of the left liver lobule was snap-frozen for mRNA analyses.

In order to compare nutritionally-induced obesity with genetically-induced obesity, 6 week
old ob/obmice, and their lean wild-type littermate controls (Charles River) were fed the LFD
for 4 weeks and plasma and tissue samples were obtained for analyses after overnight fasting.

Plasma clearance of the vitamin K-dependent coagulation factors VIII, VII and IX were
determined in a separate experiment in which mice fed a HFD for 2 weeks received a single
intravenous injection (200 μl) of either the human FVIII concentrate (Aafact, Sanquin
Plasma Products, Amsterdam, the Netherlands) or human prothrombinase complex concen-
trate (Cofact, Sanquin Plasma Products, Amsterdam, the Netherlands; both kindly provided
by Dr. K. Mertens, Sanquin). Clearance rates of the human plasma-derived factors from the
individual mouse plasmas were determined by successive blood sampling in EDTA vials via
the tail vein.

To study the effects of weight loss after nutritionally-induced obesity, mice receiving the
HFD for 16 weeks were switched to the LFD (n = 45), while part remained on the HFD
(n = 45). After 1, 2 or 4 weeks, mice were sacrificed after overnight fasting for plasma and tissue
analyses.

All experimental animal procedures were approved by the animal welfare committee of the
Leiden University.

Plasma analyses
Plasma triglyceride and insulin levels were measured using commercially available kits (Roche
Molecular Biochemicals, Indianapolis, IN, and Crystal Chem Inc., Downers Grove, IL, USA)
and glucose levels were determined according to the hexokinase method (Instruchemie).
Plasma levels of multiple cytokines were evaluated simultaneously by using pre-coated multi-
sport plates in an ELISA-based electrochemiluminescence assay (Meso Scale Discovery, Gai-
thersburg, MD).

Coagulation factor levels were measured as previously described [11] and pooled mouse
plasma was used to generate standard curves. Global coagulability of the plasma was deter-
mined by measuring the prothrombin time (PT) and activated partial thromboplastin time
(aPTT) on the STart 4 analyzer (Diagnostica Stago, Leiden, The Netherlands) using the STA
Neoplastine Plus (Diagnostica Stago) and the TriniCLOT Automated APTT reagent (TCoag,
Ireland), respectively.

The in vivo clearance rates of human coagulation factors VII, VIII and IX were analyzed
with home-made ELISAs specific for human proteins which did not cross-react with mouse
plasma proteins. Standard curves were generated by adding Cofact or Aafact to pooled mouse
plasma (final concentration 20%) to calculate human antigen levels, and the level measured
directly after injection (1 minute) was set as a reference (100%).
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RNA isolation and real-time RT-PCR
Individual liver samples (15–20 mg) of 10 animals per group were homogenized in RNAzol
(Bio-Connect, Huissen, the Netherlands), and RNA isolation and cDNA synthesis was exe-
cuted as previously reported [11]. Quantitative real-time PCR was performed using SybrGreen
(Life Technologies, Bleiswijk, the Netherlands) and gene-specific primers [11]. The compara-
tive threshold cycle method with ß-actin as internal control was used for quantification and
normalization. To evaluate the effects of weight gain on transcript levels, LFD-fed mice were
set as a reference, whereas the HFD-fed mice were set as a reference to determine the effects of
weight loss. The ΔCt values of individual samples were related to the mean ΔCt of the reference
group.

Statistical analyses
Normally distributed data are expressed as mean ± standard error of the mean (SEM) and are
evaluated using a Student’s t-test. Data that does not follow a normal distribution, i.e. inflam-
matory markers, are presented as the median including the range and are analyzed using a
Mann-Whitney test. Gene expression data are presented as mean together with the minimum
and maximum expression levels. Data analyses were performed with the GraphPad Instat soft-
ware (San Diego, CA) and differences between the LFD and HFD groups were considered sta-
tistically significant at a p-value<0.05, which after the Bonferroni correction for multiple
testing equals an adjusted p-value<0.0025.

Results

Induction of obesity
Two-week HFD-feeding resulted in a significantly increased fasted body weight as compared
to the LFD-fed mice (25.0±0.6 g vs. 22.3±0.3 g, p<0.001), which gradually increased further
over time (Table 1, S1 Fig). From 8 week onwards, liver weights of HFD-fed mice were also sig-
nificantly higher than those of LFD-fed mice (at 8 weeks, 0.77±0.01 g vs. 0.95±0.02 g, p<0.001,
S2 Fig). Triglycerides and insulin levels were increased after 16 week high fat diet, whereas
plasma glucose values were significantly increased at 8 weeks with 5.7±0.2 mmol/L for LFD
and 7.7±0.4 mmol/L for HFD (p<0.001; Table 1, S3–S5 Figs).

Plasma cytokine levels showed a transient rise in interleukin (IL) 1ß, IL-6, IL-12 and kerati-
nocyte chemoattractant (KC) levels after 2 weeks of HFD-feeding (2.7 (0.7–20.7) pg/mL vs. 6.0
(1.1–88.9) pg/mL for IL-1β, p<0.05; 113.5 (33.5–2318.2) pg/mL vs. 398.3 (86.0–2282.2) pg/mL
for IL-6, p<0.05; 82.0 (35.2–2886.7) pg/mL vs. 247.7 (112.7–2166.6) pg/mL for IL-12, p<0.05;
34.6 (19.1–246.8) pg/mL vs. 55.9 (28.7–233.6) pg/mL for KC, p<0.05). The levels of IL-10,
interferon-γ (IFN-γ) and tumor necrosis factor α (TNFα) were not affected (data not shown).

The high fat feeding-related changes in metabolic parameters after 16 weeks largely resem-
bled the observations in the LFD-fed ob/obmice, which had a comparable body weight and
plasma insulin levels (Table 1, S1–S5 Figs). As compared to the diet-induced obese mice, the
ob/obmice had more pronounced increases in liver weight and glucose levels, although they
displayed a surprisingly lower fasted plasma triglyceride level (Table 1). KC and IFN-γ levels
were higher in ob/obmice (KC 40.4 (16.5–229.1) pg/mL vs. 100.1 (17.6–268.9) pg/mL, p<0.05;
IFN-γ 7.3 (2.0–53.9) pg/mL vs. 45.9 (1.2–125.0) pg/mL, p<0.05) than in their wild-type litter-
mate controls.

Already within 2 weeks of high fat feeding, a clear procoagulant shift of the plasma coagula-
tion profile was observed with significant increases in FII, FVII, FVIII, FIX and FXI (p<0.001)
and higher FXII and fibrinogen levels (p<0.05) while FX and antithrombin levels remained
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unaffected (Fig 1A). Continuation of the HFD resulted in sustained increased levels of fibrino-
gen, FII and FVII whereas the effects on plasma FVIII, FIX, FXI and FXII levels disappeared
after 16 weeks HFD-feeding, and FX and antithrombin levels were only significantly higher
after 16 weeks of HFD-feeding (Fig 1B). These effects on the individual coagulation factor activ-
ity levels were also reflected in the overall coagulability of the plasma as the HFD-fed mice had
shorter times to clot in the PT and aPTT assays, indicating a procoagulant shift of the plasma
coagulation profile (2 weeks: PT 13.8±0.3 vs 14.5±0.1 s, p<0.05, aPTT 33.9±0.5 vs 40.3±1.2 s,
p<0.001; 16 weeks: PT 13.6±0.1 vs 14.1±0.1 s, p<0.05, aPTT 37.1±0.6 vs 42.1±0.7 s, p<0.001).
Compared to the 16 week HFD-fed animals, the ob/obmice showed a similar procoagulant shift
in individual coagulation factors which were again more prominent (Fig 1C). Remarkably, fac-
tor VII levels, similar to the triglycerides, were lower in ob/obmice than in the wild-type con-
trols and plasma levels of fibrinogen and FXI were not significantly affected. Like the 16 week
HFD-fed animals, the ob/obmice also showed shorter clotting times in the overall PT and aPTT
analyses (PT 14.1±0.1 vs 16.1±0.5 s, p<0.001, aPTT 31.5±0.7 vs 34.6±0.7 s, p<0.01).

Since the liver is the main site of production of plasma coagulation factors, we determined
whether the changes in the plasma coagulation profile due to the high fat diet were related to
changes in hepatic transcript levels, as we have previously shown that changes in plasma levels
can coincide with transcriptional effects [11]. Although at the 2-week time point the liver
weight between diet treatment groups are comparable (0.72±0.02 g for LFD and 0.74±0.01 g
for HFD), and a clear increase in plasma levels of coagulation factors was observed, relative
mRNA levels of coagulation genes were not affected, with the exception of F11 which was sig-
nificantly increased (Table 2). Surprisingly, whereas the FVIII plasma levels were significantly
increased, its transcript levels were significantly lower following HFD feeding (Fig 1A). Despite
the differences in liver weight after 16 weeks of high fat-feeding, we evaluated whether pro-
longed exposure to dietary fat was able to affect transcription. However, besides the significant
decrease in F12mRNA (LFD: 1 (0.93–1.07), HFD: 0.72 (0.69–0.76); p = 0.001), long-term
HFD-feeding also did not result in significant changes in relative mRNA levels of hepatically
expressed coagulation factors (S1 Table).

As the changes in the plasma coagulation profile were not paralleled by changes in relative
expression levels, we determined whether HFD-feeding for 2 weeks affected plasma protein
turnover by decreasing clearance rate. A bolus injection of either the human FVIII concentrate
or human prothrombin complex concentrate resulted in both the HFD and LFD group in sin-
gle-phase clearance curves with comparable half-lives between LFD-fed and HFD-fed mice
(FVIII 18.6±1.8 min vs. 15.3±1.7 min, FVII 112.6±7.1 min vs. 99.4±5.9 min and FIX 79.0±9.5
vs. 76.5±5.7 min; Fig 2).

Table 1. Metabolic parameters of mice on a low fat diet (LFD) or high fat diet (HFD) for 16 weeks as compared to genetically obese ob/obmice with
their littermate wild-type controls after 4 weeks of LFD feeding.

LFD (n = 15) HFD (n = 15) WT (n = 15) ob/ob (n = 15)

Body weight (g) 27.4±0.5 41.6±0.9‡ 22.1±0.6 40.3±0.6‡

Liver weight (g) 0.79±0.01 1.08±0.06‡ 0.78±0.04 2.14±0.06‡

Triglycerides (mmol/L) 0.54±0.03 0.65±0.04* 0.62±0.05 0.39±0.02‡

Insulin (pg/mL) 97.4±1.0 105.0±2.8* 94.1±0.9 105.4±1.8‡

Glucose (mmol/L) 5.7±0.2 8.0±0.6‡ 5.8±0.6 11.6±0.9‡

Data are expressed as mean±SEM.

*p<0.05 and
‡p<0.001 as compared to LFD-fed mice or wild-type controls as appropriate.

doi:10.1371/journal.pone.0131859.t001
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Regression of obesity
Since the dietary fat intake resulted in a rapid procoagulant shift of the plasma coagulation pro-
file, we determined whether regression of the nutritionally-induced obesity also altered coagu-
lation. Therefore, part of the mice receiving the HFD for 16 weeks switched to the LFD
(n = 45) while the remaining mice continued on the HFD (n = 45). Switching to the LFD

Fig 1. Effects low fat diet (LFD) and high fat diet (HFD) on plasma coagulation parameters. Effects on
plasma coagulation parameters after 2 (panel A) and 16 (panel B) weeks of low fat diet (white) or high fat diet
(black) feeding. Panel C shows the plasma coagulation profile of genetically obese ob/obmice (striped) and
their wild-type littermates (white) after 4 weeks on a low fat diet. Data are presented as mean±SEM. *p<0.05
and ‡p<0.001 as compared to the LFD-fed mice or wild-type controls as appropriate.

doi:10.1371/journal.pone.0131859.g001
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resulted in a decrease in body weight within a week (37.3±1.5 g vs. 42.9±1.1 g, p<0.01, S1 Fig),
while effects on the liver weight were apparent after 2 weeks (1.05±0.06 g vs. 1.22±0.08 g,
p<0.05, S2 Fig). Fasted plasma glucose levels were also rapidly affected (6.4±0.4 mmol/L vs. 8.7
±0.7 mmol/L, p<0.01, S5 Fig), whereas insulin levels went down after 4 weeks being switched
to the LFD (103.5±1.0 pg/mL for LFD switch vs. 109.3±2.4 pg/mL for the HFD mice, p<0.05,
S4 Fig) and triglyceride levels remained comparable between the 2 groups (S3 Fig). With the
exception of a transient increase in KC levels (58.2 (36.1–168.2) pg/mL for HFD vs. 90.8 (36.3–
542.6) pg/mL after switch, p<0.05), none of the inflammatory cytokines levels were affected as
a result of the diet switch.

The plasma coagulation profile showed a remarkably rapid shift after switching to a LFD,
with significantly reduced activity levels of FII, FVII and FXI, and additional decreased levels
of FIX and FX after only 1 week (Fig 3A), which all persisted throughout the remaining for 4
weeks after switching to the LFD. The initial changes in individual factors after 1 week resulted
a prolonging of the PT (13.1±0.1 vs 14.1±0.4 s, p<0.05), while the aPTT was not affected (38.5
±0.7 vs 38.4±1.0 s). In addition, factor VIII and antithrombin levels were altered after 2 weeks
of switching diets (100±9.8% for mice remaining on the HFD vs. 72.4±5.0%, p<0.01 and 100
±2.3% vs. 86.6±4.4, p<0.05 respectively), whereas FXII levels were lower after 4 weeks (100
±1.5% vs. 92.1±1.5, p<0.01). As one week after switching diets was able to induce alterations in
the plasma coagulation profile, while liver weights were not significantly affected (1.22±0.08 g
for HFD vs 1.05±0.06 g for HFD switched to LFD), hepatic mRNA analyses were performed to
determine whether relative transcript levels of coagulation genes were modulated by the diet
switch. While similar trends between plasma and hepatic transcript levels were observed for
several coagulation factors, the significant decrease in plasma FXI activity was the only value
paralleled by a significant reduction in transcript level (Fig 3).

Discussion
Obesity is an increasing public problem and is associated with numerous health issues, includ-
ing a hypercoagulable state. In order to gain more insight in the relation between obesity and
hypercoagulability we used an in vivo approach to study the onset and potential reversibility of
the hypercoagulable state during the development and regression of nutritionally-induced obe-
sity. In addition, we determined the mechanisms leading to this hypercoagulable state by

Table 2. Hepatic mRNA levels of coagulation genes of mice on a low fat diet (LFD) or high fat diet
(HFD) for 2 weeks.

LFD (n = 10) HFD (n = 10)

Fibrinogen 1 (0.93–1.08) 0.87 (0.83–0.90)

Factor II 1 (0.93–1.08) 1.05 (0.97–1.13)

Factor VII 1 (0.95–1.05) 1.07 (1.01–1.13)

Factor VIII 1 (0.94–1.06) 0.64 (0.54–0.77)*

Factor IX 1 (0.95–1.05) 1.08 (1.03–1.13)

Factor X 1 (0.96–1.04) 1.01 (0.96–1.07)

Factor XI 1 (0.92–1.09) 1.51 (1.44–1.58)‡

Factor XII 1 (0.95–1.05) 1.06 (1.01–1.12)

Antithrombin 1 (0.95–1.05) 1.05 (1.00–1.10)

Data are expressed as mean (minimum-maximum expression level).

*p<0.05 and
‡p<0.001 as compared to LFD mice.

doi:10.1371/journal.pone.0131859.t002
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Fig 2. Effect of low fat diet (LFD) and high fat diet (HFD) on plasma clearance of FVIII and the vitamin
K-dependent coagulation factors VII and IX. Plasma clearance of FVIII (panel A) and the vitamin K-
dependent coagulation factors VII (panel B) and IX (panel C) were determined in a separate experiment in
which mice that were on a LFD (closed symbols) or HFD (open symbols) for 2 weeks received a single
intravenous injection (200 μl) of either human FVIII concentrate (Aafact) or the human prothrombinase
complex concentrate (Cofact). Clearance rates of the human plasma-derived factors from the mouse plasma
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evaluating transcription and clearance of several coagulation factors, as well as determining
metabolic and inflammatory parameters since they may aggravate the hypercoagulable state
associated with obesity.

We have shown that nutritionally-induced obesity coincides with an early-onset procoagu-
lant shift of the plasma coagulation profile, which was already apparent within 2 weeks after
the start of the HFD. This appeared to be independent of changes in relative transcript levels

were determined by successive blood sampling in EDTA vials via the tail vein and factor levels determination
by ELISA. Values are the mean±SEM of six mice and expressed as the percentage of factor remaining in the
circulation, with the amount of factor present at 1 minute after injection considered as 100%. Curves were
calculated from the mean data using a one-exponential curve fit model.

doi:10.1371/journal.pone.0131859.g002

Fig 3. Effects on plasma and relative transcript levels of mice on a high fat diet (HFD) for 17 weeks and
mice that were switched after 16 weeks of HFD-feeding to the low fat diet (LFD) for 1 week. Plasma (A)
and relative transcript levels (B) of mice on a high fat diet for 17 weeks (black) and mice that were switched
after 16 weeks of HFD-feeding to the LFD for 1 week (white). Data are presented as mean±SEM for the
plasma data and as mean with the error bar representing the calculated maximum expression level of n = 10
mice per group for the expression levels. Relative expression levels were compared using the comparative
threshold cycle method with ß-actin as internal control and the HFD-fed mice were set as a reference.
*p<0.05, †p<0.01 and ‡p<0.001 as compared to the LFD-fed mice or wild-type controls as appropriate.

doi:10.1371/journal.pone.0131859.g003
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and clearance rates of coagulation factors as measured for a limited subset. Furthermore, these
changes in the plasma coagulation profile largely persisted during the continuation of the HFD
for 16 weeks, thereby preceding the effects in metabolic parameters like glucose and insulin lev-
els since these were only affected in overt obese mice. Switching from a high fat to a low fat diet
to induce weight loss resulted in a rapid reversal of the HFD-induced procoagulant shift of the
plasma coagulation profile, as observed within 1 week after switching diets.

A remarkable finding in this study is that the changes present in plasma activity levels after
2 weeks of HFD feeding could not be explained by changes in relative transcript levels of hepa-
tically expressed coagulation factors, nor by changes in clearance rates as measured for several
individual factors. This difference between mRNA levels and clearance rates on the one hand,
and plasma levels on the other, may have several reasons. First of all, human proteins were
used to study potential changes in clearance, but these may be differently cleared than the
endogenous murine proteins. The use of mouse recombinant or plasma derived proteins
would have been more physiologic to study clearance. However, purified mouse proteins were
not available and the instability of these proteins ex vivo preclude isolation and (radio)labeling
for autologous injections and thus the use in plasma clearance studies. Regarding the mRNA
levels, high fat feeding may affect liver physiology. Therefore we were interested whether the
RNA recovery (μg RNA/mg liver) in liver samples of LFD and HFD mice differed. Although
the liver weights after 2 weeks of HFD feeding were comparable, the total amount of RNA
recovered per mg liver weight of HFD mice was approximately 20% higher as compared to
that of the LFD-fed mice. One can speculate that although the relative levels compared to ß-
actin remain similar, the overall increase in total mRNA may result in an absolute increase in
transcript levels and therefore still contribute to the increased plasma activity levels. In addi-
tion, post-transcriptional or post-translational mechanisms may affect the activity of the
resulting protein as well. For example, phosphoenolpyruvate carboxykinase (PEPCK), an
enzyme associated with hepatic glycogen storage, is transcriptionally down-regulated under
nutritionally-induced obesity while the protein activity is increased [12]. Finally, for several
coagulation factors it is known that they are influenced by circadian rhythms [13]. In order to
prevent a potential bias, for each time point LFD and HFD mice were sacrificed for blood and
liver isolation within the same time frame in an alternating manner. Nevertheless, we cannot
exclude a potential (circadian driven) discrepancy between transcript levels and actual protein
activity levels in the plasma. Although we were not able to pinpoint the exact mechanisms by
which the effects on the plasma coagulation profile under nutritionally-induced obesity and
regression occur, we were able to show that these results happen independently of metabolic
and inflammatory changes.

Another remarkable observation was the contradicting result on FVIII, where the plasma
FVIII increased while the relative mRNA levels decreased. In this respect it is interesting that
FVIII, unlike the majority of the circulating coagulation factors, is produced not by hepatocytes
but by endothelial cells [14,15]. In addition, it was shown that the liver is not the only site of
FVIII production as the endothelial cells in the kidney are also capable of generating FVIII
[14]. Although at this point we can only speculate on the potential differences in FVIII produc-
tion at other sites than the liver; it might be possible that FVIII under HFD conditions is differ-
entially expressed (i.e. increased) in endothelial cells in other organs as a compensatory
mechanism for the reduction observed in the liver, thereby causing an increased FVIII activity
in plasma.

As shown in Fig 1A and 1B the coagulation factors seem to be categorized into 2 distinct
groups based on their changes in the plasma levels after 2 and 16 weeks of HFD. The first cate-
gory, consisting of fibrinogen, FII and FVIII are increased after 2 weeks of HFD feeding and
remain increased throughout the 16 week diet. These are all associated with obesity and insulin
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resistance or elevated triglycerides (2), which make them likely targets to remain increased
throughout the induction of obesity and the accompanying metabolic changes. On the other
hand, the intrinsic coagulation factors VIII, IX, XI and XII only show a transient increase at 2
weeks. The elevation in FVIII might be explained by its role as acute phase protein and is in
line with the temporary rises seen in cytokine levels. However, the associations between these
intrinsic factors and obesity seem to be less defined, potentially explaining the lack of responses
after established obesity on our mouse model.

The transient rise in plasma cytokine levels when mice switch to the HFD suggests that the
system has to adapt to the new diet in order to maintain homeostasis. These data are in concor-
dance with the metabolic stress response that occurs during short-term high fat feeding [16].
Furthermore, a previous genome-wide mRNA expression study which focused on changes in
hepatic gene expression during high fat feeding, also showed that exposure to dietary fat first
results in inflammation which under long-term high fat feeding causes a switch to a steatotic
transcriptional program [17].

Besides nutritionally-induced obesity, we included genetically obese ob/obmice and their
wild-type littermate controls in our experiments, mainly as a control for determining the effects
of HFD on metabolic parameters like insulin resistance. The ob/obmice have been predomi-
nantly used to study metabolic disorders leading to type 2 diabetes, and although they have
been used in studies focusing on tissue factor and PAI-1 [18,19] in general little is known about
their overall plasma coagulation profile. Here we show that ob/obmice have more pronounced
increases in plasma procoagulant factor levels as compared to diet-induced obese mice that
have been on a HFD for 16 weeks, with the exception of FVII levels. These metabolic abnor-
malities in ob/obmice may aggravate the hypercoagulable state, for example via an increased
transcriptional activity of nuclear factor (NF)-κB which can induce expression of coagulation
genes. Because of the underlying pathologies that can potentially affect coagulation, the ob/ob
mouse seems to be less suitable to study obesity with respect to coagulation and a nutritionally-
induced obesity model seems warranted.

By studying coagulation during the development and regression of nutritionally-induced
obesity, we were able to show that the dietary fat content plays and important role in affecting
the plasma coagulation profile. It was recently shown that the endogenous thrombin potential
(ETP) was increased in rats on a high fat diet, and the PT and aPTT shortened in diet-induced
obese mice [20,21]. This is in line with our data showing a hypercoagulable state in mice on a
HFD based on individual coagulation factors as well as the functional measurements of coagu-
lation by PT and aPTT analyses. Although the study by Sanchez et al. did not observe a rapid
decrease in ETP after switching the rats back to a low fat diet but instead saw an immediate
positive effect on insulin levels, these studies show that dietary fat and obesity are important
modulators of the coagulation profile. Thus, dietary intervention could improve the coagula-
tion profile and therefore be beneficial in the primary prevention of thrombosis.

In summary, this in vivo study shows that the plasma coagulation profile is able to rapidly
respond to changes in dietary fat content, as an increase in weight is associated with a procoa-
gulant shift, whereas subsequent weight loss results in a reversal of the HFD-induced hyperco-
agulability. These changes in the plasma coagulation profile appear to be independent of
changes in relative transcript levels of coagulation genes and changes in clearance as evaluated
by measuring in vivo clearance rates of human proteins. In addition, the effects on coagulation
precede alterations in metabolic parameters like insulin and glucose levels. The fact that weight
loss is associated with rapid beneficial effects on coagulation may eventually translate in a risk
reduction for thrombotic cardiovascular events.
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Supporting Information
S1 Table. Hepatic mRNA levels of coagulation genes of mice on a low fat diet (LFD) or
high fat diet (HFD) for 16 weeks.
(DOCX)

S1 Fig. Body weight of mice. Left panel, left of vertical solid line: Body weight of mice on a
low fat diet (LFD, open symbols) or high fat diet (HFD, filled symbols) for 0, 2, 4, 8, 16
weeks. Left panel, right of vertical solid line: Body weight of mice on a high fat diet for 17, 18,
19 or 20 weeks (HFD, filled symbols) and mice that were switched after 16 weeks of HFD-
feeding to the LFD for 1, 2, or 4 weeks (LFD, open symbols). Right panel: Body weight of
genetically obese ob/obmice (filled symbols) with their littermate wild-type controls (open
symbols) after 4 weeks of LFD feeding. Horizontal line indicates the mean for the body
weight data.
(TIF)

S2 Fig. Liver weight of mice. Left panel, left of vertical solid line: Liver weight of mice on a low
fat diet (LFD, open symbols) or high fat diet (HFD, filled symbols) for 0, 2, 4, 8, 16 weeks. Left
panel, right of vertical solid line: Liver weight of mice on a high fat diet for 17, 18, 19 or 20
weeks (HFD, filled symbols) and mice that were switched after 16 weeks of HFD-feeding to the
LFD for 1, 2, or 4 weeks (LFD, open symbols). Right panel: Liver weight of genetically obese
ob/obmice (filled symbols) with their littermate wild-type controls (open symbols) after 4
weeks of LFD feeding. Horizontal line indicates the mean for the liver weight data.
(TIF)

S3 Fig. Plasma triglyceride levels of mice. Left panel, left of vertical solid line: plasma triglyc-
eride levels of mice on a low fat diet (LFD, open symbols) or high fat diet (HFD, filled symbols)
for 0, 2, 4, 8, 16 weeks. Left panel, right of vertical solid line: plasma triglyceride levels of mice
on a high fat diet for 17, 18, 19 or 20 weeks (HFD, filled symbols) and mice that were switched
after 16 weeks of HFD-feeding to the LFD for 1, 2, or 4 weeks (LFD, open symbols). Right
panel: plasma triglyceride levels of genetically obese ob/obmice (filled symbols) with their lit-
termate wild-type controls (open symbols) after 4 weeks of LFD feeding. Horizontal line indi-
cates the mean for the plasma triglyceride levels.
(TIF)

S4 Fig. Plasma insulin levels of mice. Left panel, left of vertical solid line: plasma insulin levels
of mice on a low fat diet (LFD, open symbols) or high fat diet (HFD, filled symbols) for 0, 2, 4,
8, 16 weeks. Left panel, right of vertical solid line: plasma insulin levels of mice on a high fat
diet for 17, 18, 19 or 20 weeks (HFD, filled symbols) and mice that were switched after 16
weeks of HFD-feeding to the LFD for 1, 2, or 4 weeks (LFD, open symbols). Right panel:
plasma insulin levels of genetically obese ob/obmice (filled symbols) with their littermate wild-
type controls (open symbols) after 4 weeks of LFD feeding. Horizontal line indicates the mean
for the plasma insulin levels.
(TIF)

S5 Fig. Plasma glucose levels of mice. Left panel, left of vertical solid line: plasma glucose lev-
els of mice on a low fat diet (LFD, open symbols) or high fat diet (HFD, filled symbols) for 0, 2,
4, 8, 16 weeks. Left panel, right of vertical solid line: plasma glucose levels of mice on a high fat
diet for 17, 18, 19 or 20 weeks (HFD, filled symbols) and mice that were switched after 16
weeks of HFD-feeding to the LFD for 1, 2, or 4 weeks (LFD, open symbols). Right panel:
plasma glucose levels of genetically obese ob/obmice (filled symbols) with their littermate
wild-type controls (open symbols) after 4 weeks of LFD feeding. Horizontal line indicates the
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mean for the plasma glucose levels.
(TIF)
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