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Esophageal squamous cell carcinoma (ESCC) persists among the most lethal and broad-
spreading malignancies in China. The exosome is a kind of extracellular vesicle (EV) from
about 30 to 200 nm in diameter, contributing to the transfer of specific functional
molecules, such as metabolites, proteins, lipids, and nucleic acids. The paramount role
of exosomes in the formation and development of ESCC, which relies on promoting
intercellular communication in the tumor microenvironment (TME), is manifested with
immense amounts. Tumor-derived exosomes (TDEs) participate in most hallmarks of
ESCC, including tumorigenesis, invasion, angiogenesis, immunologic escape, metastasis,
radioresistance, and chemoresistance. Published reports have delineated that exosome-
encapsulated cargos like miRNAs may have utility in the diagnosis, as prognostic
biomarkers, and in the treatment of ESCC. This review summarizes the function of
exosomes in the neoplasia, progression, and metastasis of ESCC, which improves our
understanding of the etiology and pathogenesis of ESCC, and presents a promising target
for early diagnostics in ESCC. However, recent studies of exosomes in the treatment of
ESCC are sparse. Thus, we introduce the advances in exosome-based methods and
indicate the possible applications for ESCC therapy in the future.

Keywords: esophageal squamous cell carcinoma, exosome, exosomal RNAs, biomarker, diagnosis
INTRODUCTION

Esophageal cancer ranks the seventh most prevalent malignancy and the sixth-highest cancer-
related mortality globally (1). Esophageal cancer is broadly divided into esophageal squamous cell
carcinoma (ESCC) and esophageal adenocarcinoma (2). The incidence of esophageal cancer in men
is approximately three to four times that in women and varies among countries (3). The highest
rates of ESCC are found in Eastern Asia, where ESCC accounts for more than 90% of esophageal
cancers (4). Despite significant progress in diagnosis and treatment, ESCC is often identified late,
which leads to delayed treatment. The reason for this challenge can be attributable to multiple
aspects: in the early stage, ESCC is characterized by a lack of specific symptoms and definitive
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diagnosis; coming to the advanced stage, ESCC can exhibit
considerable metastatic potential and strong resistance to
conventional treatment. Given the above, ESCC is commonly
presented with a poor prognosis, as the 5-year survival rate of
late-stage ESCC is approximately 10–20% (5). Hence, more effort
is urgently needed to reveal the mechanisms of tumorigenesis
and increase the early diagnosis rate of ESCC.

In the last decade, there has been a steep increase in the
investigations focusing on extracellular vesicles’ (EVs’)
physiological and pathological functions, referring to multiple
subtypes of cell-released, membranous structures (6–8). In
particular, exosome is among the most studied and deliberated
population of EVs in the rapidly growing number of
publications. Notably, MISEV2018 guidelines have endorsed
that the term “exosome” should be applied strictly to an EV of
endosomal origin owing to the difficulties to confirm such an
origin after an EV has left the cell (8, 9). According to the
conventional description of exosome (from about 30 to 200 nm
in diameter) (10), it would be more appropriate to nominate
“exosome” as “small extracellular vesicle (sEV)”, as the guidelines
propose. However, considering the number of studies published
before the criteria were issued, we decide to preserve “exosome”,
referring to “small extracellular vesicle of endosomal origin”, in
this review to help readers adapt to the new standard.

With molecular heterogeneity, exosomes encapsulate diverse
bioactive molecules, ranging from nucleic acid (including DNA
andRNA) to proteins, lipids, and othermetabolites (11). Exosomes
have mediated a new paradigm of intercellular communication via
the transfer of bioactive molecules from donor cells to recipient
cells, and they function in both normal physiology and acquired
pathological activities, such as reproduction, immune responses,
metabolic and cardiovascular diseases, ischemic diseases,
neurodegeneration, and malignant tumors (12–17). In the process
of tumorigenesis, exosomes can participate in the formation of the
Frontiers in Oncology | www.frontiersin.org 2
tumor microenvironment (TME), the proliferation of cancer cells,
angiogenesis, metastasis, therapy resistance, and many other
physiological and pathological processes (18). The amounts and
cargos of exosomesderived fromthe samecell candramatically vary
fromdifferent conditions, and the heterogeneity of exosomal cargos
has been recognized among different individuals (19–21).
Considering the homogeneity between exosomes and donor cells,
these cargos of the tumor-derived exosomes (TDEs) carry cancer-
related information and allow them to fulfill diagnostic functions,
serving as tumor biomarkers of ESCC that can be detected in early-
stage cancer (22, 23). Moreover, the specialty of exosomes in
delivering diverse and specific functional cargos into recipient
cells has accelerated their clinical application in the therapy of
patients withmalignant tumors or other diseases (24–26). Ongoing
studies and trials have proven that exosomes can be engineered to
carry specific lipids, proteins, and other chemotherapeutic agents to
targeted cells or organs and facilitate the treatment of several
diseases (27–30).

The primary objectives of this review are to introduce the
biology of exosomes, summarize the function of exosome-carried
cargos in the initiation and development of ESCC, and discuss
the potential clinical applications in both the early diagnosis and
treatment of ESCC (Figure 1).
BIOLOGY OF EXOSOME (sEVs)

Exosomes, which should have been called sEVs following
MISEV2018 guidelines, are a kind of lipid bilayer-encapsulated,
nanosized vesicles that are enriched in specific DNA, RNA, lipids,
proteins, and bioactive compounds (10).

Generally, the biogenesis and releasing of exosomes involve
the double invagination of the plasma membrane and the
sequential generation of multivesicular bodies (MVBs) and
FIGURE 1 | The main objective of this review is to introduce the biology of exosomes, summarize the function of exosomal cargos in the initiation and development
of ESCC, and collect the clinical application of exosomes in the diagnosis and treatment of ESCC.
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intraluminal vesicles (ILVs) (11) (Figure 2). The first
invagination of the plasma membrane forms a cup-shaped
structure, containing cell-surface proteins and soluble proteins
from the extracellular milieu. Then, the cup-shaped plasma
membrane buds in the inner side of the cell, which gives rise
to an early-sorting endosome (ESE) and, sometimes, may
directly fuse with a preexisting ESE. Meanwhile, the
endoplasmic reticulum (ER), mitochondria, and trans-Golgi
network (TGN) also engage with the formation of the ESEs.
Furthermore, the ESEs can also blend into the ER and TGN,
possibly interpreting how the extracellular and cell-surface
ingredients enter them (31–36). Afterward, ESEs form late-
sorting endosomes (LSEs) and subsequently give rise to MVBs
(also named as multivesicular endosomes). MVBs come into
being with the inward invagination of the endosomal limiting
membrane, the double invagination of the plasma membrane
exactly, and they will be released as intraluminal vesicles (ILVs)
after fusion with the plasma membrane. During the process,
cytoplasmic constituents can enter the newly forming ILVs,
Frontiers in Oncology | www.frontiersin.org 3
leading to further changes in the future exosomal cargos (32,
37). Some proteins, including endosomal sorting complexes
required for transport proteins (ESCRT), soluble N-
ethylmaleimide-sensitive factor attachment protein receptors
(SNAREs), apoptosis-linked gene 2-interacting protein X
(ALIX), tumor susceptibility gene 101 (TSG101), Rab GTPases,
CD9, CD63, and CD8 1, play a critical part in the origin and
biogenesis of exosomes, and some are regarded as markers of
exosomes (38, 39). After being secreted into the extracellular
milieu, exosomes are delivered and identified by the targeted
recipient cells. As a result, they alter the phenotype and biological
response of these recipient cells (40). The mechanism of exosome
uptake is complex; the fate of the exosomal contents and the
molecular alterations induced in recipient cells add complexity to
the cell–cell crosstalk (41). When docking the recipient cell,
exosomes can activate signaling pathways by straightly
interacting with the receptors on the cell surface, directly
fusing with the plasma membrane, or getting internalized (42).
Firstly, the interaction between exosomes and extracellular
FIGURE 2 | Formation, secretion, and uptake of exosome. Invagination of the plasma membrane forms the early endosome. Then, inward invagination of
endosomes gives birth to the formation of multivesicular bodies (MVBs) containing intraluminal vesicles (ILVs). Exosomes are eventually released by fusing of MVBs to
the plasma membrane and the exocytosis of ILVs. The mechanism of exosome uptake includes direct fusing with the plasma membrane, macropinocytosis,
phagocytosis, caveolin-mediated, lipid raft-mediated endocytosis, and clathrin-dependent endocytosis.
August 2021 | Volume 11 | Article 732702
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receptors has been reported to exist in mediating
immunomodulatory. For example, Tkach et al. showed that
exosomes secreted by dendritic cells (DCs) could carry MHC–
peptide complexes and bind Toll-like receptor ligands on the
bacterial surface, which induced the activation of bystander DCs
and T lymphocytes (43, 44). Besides, the families of SNAREs and
Rab proteins were reported to mediate the fusion with the plasma
membrane and release exosomal cargos (45). Moreover, as
representative of internalization, the mode of clathrin-
mediated endocytosis has been demonstrated in multiple cell
types, such as gastric epithelial cells, colon tumor cells, and
cardiomyocytes (46–48). Different exosomal uptake modes may
be attributed to the properties of the exosome that shuttles cargos
and the metabolic status of recipient cells, but the precise
regulating mechanism deserves additional in-depth exploration.
ROLES OF EXOSOME IN THE INITIATION
AND DEVELOPMENT OF ESCC

Exosome-related research has focused on the exosome’s ability to
efficiently transfer an array of selected cargos to recipient cells (49).
Frontiers in Oncology | www.frontiersin.org 4
Studies about the function of exosomes in malignant tumors have
developed substantially compared with studies in other fields, and
increasing evidence supports exosome-mediated intercellular
crosstalk in the TME (50, 51). Accumulating evidence has
revealed that exosomes are involved in many features of
malignant tumors, including neoplasia, progression, metastasis,
angiogenesis, and drug resistance (52–55). In recent years,
research involving the correlation between exosomes and ESCC
has increased rapidly and yielded valuable information about the
functionof exosomes inESCCprogression.Here,we summarize the
biological function of exosomes that shuttle cargos in the initiation
and development of ESCC (Figure 3), as shown in Table 1.
Understanding the function of exosomes and how to use
exosomes in ESCC cells to transfer nanoparticles in cell–cell
communication are topics at the forefront of oncobiology and
may open new avenues for ESCC treatment.

Tumor Microenvironment (TME)
The occurrence of ESCC is a result of a continuous accumulation
of mutations in esophageal cells and oncogenic alteration in the
TME (75). The TME involves blood vessels, the extracellular
matrix (ECM), cytokines, and stromal cells and is indispensable
FIGURE 3 | The biological function of exosomal cargos in the development of ESCC.
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in tumorigenesis because it provides necessary conditions for
tumor growth and manipulates the interaction between cancer
cells and their surroundings (76). Exosomes act as an essential
role in the formation and reprogramming of the TME, as has
been widely documented in many cancer types (77–79). In
ESCC, Li et al. found that exosomal FMR1 antisense RNA 1
(FMR1-AS1) could remodel the TME in ESCC (65). The study
confirmed that the FMR1-AS1 exosomes were secreted from
cancer stem-like cells (CSCs) of ESCC, which transferred
stemness phenotypes to recipient non-CSCs in the TME
through the mechanism of activating toll-like receptor 7-
nuclear factor k B (TLR7-NFkB) signaling, upregulating the c-
Myc level in recipient cells. Another example of exosomal cargos
promoting the TME formation involves circ-0048117-rich
exosomes derived from hypoxic ESCC cells, promoting M2
macrophage polarization to alter the components in the
microenvironment (71). Researchers indicated that hypoxic
exosomes modulated the TME in ESCC via the transformation
of endothelial cell phenotypes and transcriptomes, which
enhance angiogenesis and metastasis. Moreover, the exchange
of exosomes in cancer cells and the stroma is bidirectional, and
cancer-associated fibroblasts (CAFs) can also secrete exosomal
Sonic Hedgehog to promote the generation of TME in ESCC
(72). These findings suggest that exosomes can play an essential
role in the formation, remolding, and normal function of the
TME and that novel therapies targeting the TME may be a new
approach to cancer treatment.

Proliferation and Apoptosis
The progression of ESCC results from rapid growth and
expansion of cancer cells, which may incur tumor survival and
defiance to therapy. Exosomes can influence the growth of ESCC
by mediating the apoptosis, cycle, and proliferation rate of ESCC
cells (80). Molecular profiling has indicated that exosomal
miRNA-19b-3p from EC9706 cells targets PTEN, a well-known
tumor suppressor gene, to regulate the apoptosis of ESCC (56).
Frontiers in Oncology | www.frontiersin.org 5
A similar study elucidated that exosomal lncRNA ZNFX1
antisense RNA 1 (ZFAS1) derived from EC109 cells regulates
ESCC proliferation, apoptosis, and migration via targeting the
miRNA-124/STAT3 signaling pathway (66). Cancer cell-derived
exosomes can regulate the ratio of G1-phase cells and influence
the cycle and migration ability of ESCC cells (81). Some
researchers have demonstrated that the proliferation and
apoptosis of ESCC cells are modulated by several other
exosomal cargos, including miRNA-103a-2-5p, miRNA-652-
5p, lncRNA Family with sequence similarity 225 member A
(FAM225A), and lncRNA urothelial cancer-associated 1 (UCA1)
(57, 58, 67, 68). Generally, these exosomal contents can work by
mediating the expression of proliferation- or apoptosis-related
proteins and triggering a subsequent signaling pathway.
Importantly, these studies also indicated that the identified
exosomal RNAs and other exosomal contents can facilitate the
proliferation ability of tumor cells alone and may concurrently
alter the potential for migration, angiogenesis, and metastasis.
Above all, the activation of cell proliferation cannot entirely be
attributed to the expansion and development of ESCC; instead, it
results from several steps, including migration and metastasis,
angiogenesis, immune response, and therapy resistance. The role
of exosomes in these steps of tumor development is explored in
the following sections.

Angiogenesis
Angiogenesis, a critical phase during neoplasia, migration, and
metastasis, is a multistep formation of neovascularization
through which cancer cells obtain sufficient oxygen, nutrition,
and energy (82). Reports have illustrated that some exosomes
could play a role in inducing angiogenesis in many cancer types
(83). Exosomes can deliver numerous pro-angiogenic bioactive
substances, including vascular endothelial growth factor (VEGF),
miRNAs, or other bioactive mediators. Published data suggest
that exosomal cargos accelerate angiogenesis by suppressing the
expression of anti-angiogenesis genes and promoting the
TABLE 1 | Roles of exosome in the initiation and development of ESCC.

Type Molecule Function Signaling/Target Ref.

miRNA miRNA-19b-3p Reduce apoptosis rate, and promote migration and invasion PTEN (56)
miRNA-103a-2-5p Promote proliferation and migration CDH11 gene and NR3C1 gene (57)
miRNA-652-5p Inhibit proliferation and metastasis PARG and VEGF pathways (58)
miRNA-21-5p Promote angiogenesis PDCD4 and PTEN/Akt pathway (59)
miRNA-21 Promote angiogenesis SPRY1 (60)

Promote chemotherapy resistance PDCD4 (61)
miRNA-375 Promote apoptosis, and inhibit proliferation, invasion, migration ENAH (62)
miRNA-193 Promote chemotherapy resistance VEGF and Jak-STAT pathways (63)
miRNA-339-5p Enhance radiosensitivity Cdc25A (64)

lncRNA FMR1-AS1 Maintain TME, promote proliferation, invasion, and inhibit apoptosis TLR7/NFkB/c-Myc pathway (65)
ZFAS1 Promote proliferation, migration, invasion, and inhibit apoptosis miRNA-124/STAT3 axis (66)
FAM225A Promote apoptosis, and inhibit proliferation, migration, and invasion miRNA-206/NETO2/FOXP1 (67)
UCA1 Inhibit proliferation, invasion and migration miRNA-613 (68)
PART1 Promote chemotherapy resistance miRNA-129/Bcl-2 pathway (69)
POU3F3 Promote proliferation and chemotherapy resistance IL-6 (70)

circRNA has_circ_0048117 Promote invasion and migration miRNA-140/M2 macrophage (71)
Others Sonic Hedgehog Promote proliferation and migration Hedgehog pathway (72)

O-GlcNAc transferase Promote the immune escape PD-1 (73)
HMGB1 Promote the immune escape PD-1 positive TAMs (74)
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expression of pro-angiogenic genes (84, 85). For example,
compared with normal exosomes, hypoxic exosomes have
played a unique role in facilitating the aggressive behavior of
human umbilical vein endothelial cells (HUVECs) both in vitro
and in vivo, and HUVECs exposed to hypoxic exosomes induce
enhanced proliferation, metastatic dissemination, and vessel
formation ability in ESCC (86). Consistent with that study,
Zhuang showed that ESCC cell-derived exosomal miRNA-21
potentiates the angiogenesis ability of HUVEC by targeting
sprouty RTK signaling antagonist 1 (SPRY1) in ESCC (60).
Moreover, exosomal miRNA-21-5p has been shown to
significantly promote the angiogenesis of targeted cells via the
activation of programmed cell death 4 and downgrading of the
signaling pathway or the PTEN/Akt signal pathway in ESCC
(59). Similar findings have suggested that exosomal lncRNA
FAM225A accelerates ESCC angiogenesis by binding to miRNA-
206 and promoting NETO2 and FOXP1 expression (67). Given
the pivotal role of angiogenesis in ESCC development and
progression, exosome-related research may provide a new
avenue to counteract these mechanisms of progression in
ESCC, and these discoveries will become even more promising
if they are linked to antitumor vascular drugs.

Epithelial-Mesenchymal Transition
and Metastasis
Metastasis is a critical step in tumor growth, and it remains a
paramount threshold for cancer treatment and the chief cause of
cancer mortality (87). Metastasis is a complicated and intricate
process involving several steps such as epithelial-mesenchymal
transition (EMT) of cancer cells, migration and infiltration into
surrounding tissues, intravascular transport, and recognition and
establishment in distant tissues (88, 89). Intercellular
communication by delivering exosomes from primary tumor
cells to the local microenvironment or distant organs is crucial
for the phenotypic change and biological aggressive behavior of
cancer cells, forming a pre-metastatic niche, and attachment and
implantation to distant organs (90). Esophageal cancer cell-
derived exosomes can modulate gene expression of recipient
cancer cells, leading to an increased risk of invasion and
metastasis. For example, the Sonic Hedgehog (SHH) signaling
pathway, which has played important roles during development
and in cancer (91, 92), can drive tumorigenesis and progression
of ESCC. One study showed that exosomal Sonic Hedgehog
derived from cancer-associated fibroblasts (CAFs) could increase
the activation of N-cadherin and Vimentin in EC109 cell lines
and consequently promoted the growth and migration abilities of
ESCC (72). Similarly, exosomes derived by infiltrating T cells
from irradiated esophageal carcinoma can incur the EMT in
ESCC and facilitate metastasis (93). Conversely, human
umbilical cord mesenchymal stem cells can suppress enabled
homolog (ENAH) expression and decrease the invasion and
migration ability of ESCC via the exosomal delivery of miRNA-
375 (62). Exosomes play a pivotal role in forming a premetastatic
niche in distant organs in ESCC, like in gastric cancer and breast
cancer (94). This role may be attributed partly to the
predisposition of early lymphatic metastasis in ESCC;
Frontiers in Oncology | www.frontiersin.org 6
metastatic dissemination in the liver or lung is relatively rare
(95). In conclusion, exosomal cargos can exert pro-tumorigenic
effects in most steps of ESCC metastasis, thus promoting the
metastatic potential of ESCC. The studies discussed here may
offer new insights that help the researcher understand the
function of exosomes in metastatic ESCC and uncover
exosome-based therapies that may curb cancer metastasis.
Immune Response and Therapy
Resistance
The elimination of tumor cells relies heavily on the immune
system in vivo and exogenous therapies, such as drugs or
irradiation (96). The immune system is an intricate network
that can guard the body by monitoring, recognizing, and
eliminating foreign invaders, such as bacteria, parasites, and
endogenous antigens like cancer cells (97). These days, when
we talk about the relationship between immune response and
tumors, programmed cell death protein 1 (PD-1) is one of the
monumental works that are closely associated with it indeed
(98). A recent study suggested that O-linked b-N-
acetylglucosamine (O-GlcNAc) transferase from stem cells of
ESCC can upregulate PD-1 in CD8+ T cells and promote cancer
immunosuppression (73). Furthermore, exosomes isolated from
serum, plasma, urine, or other body fluids of patients with ESCC,
as well as from ESCC cell lines, can reduce B-cell proliferation
and induce an increase in interleukin-10 positive regulatory B
cells and a high level of PD-1 regulatory B cells (99). Besides,
another research demonstrated that exosomal High Mobility
Group Box 1 (HMGB1) obtained from ESCC could
successfully trigger clonal expansion of PD1 positive tumor-
associated macrophages (TAMs), which thereby created
conditions for the development of ESCC (74). These findings
above contribute to understanding exosomal functions in the
immune response and illustrate exosomes’ therapeutic
application that promotes antitumor immune responses.

Currently, chemotherapy is regarded as the most effective
therapy for ESCC after surgery, and tumor recurrence can be
attributed mainly to chemotherapy resistance (100, 101). Tumors
can achieve drug resistance in many ways, including via
information exchange by exosomes (102). A recent study
indicated that exosomes carrying lncRNA prostate androgen-
regulated transcript 1 (PART1) derived from Gefitinib-resistant
cells confer cisplatin resistance in ESCC (69). Furthermore,
several studies have elucidated that many other exosome-
shuttled cargos, such as lncRNA POU class 3 homeobox 3
(POU3F3), miRNA-21, and miRNA-193, are involved in
Cisplatin resistance in ESCC (61, 63, 70). Apart from roles in
chemoresistance, exosomes reportedly regulate radiation therapy
and induce radiation-induced bystander effect (RIBE) (103).
Exosomal miRNA-339-5p can mediate the radiosensitivity of
ESCC by downregulating cell division cycle 25A (Cdc25A) and
can predict outcomes in preoperative radiotherapy (64). These
discoveries capture the role of exosomes in therapy resistance
and shed light on how engineered exosomes may deliver
therapeutic agents for ESCC treatment in the future.
August 2021 | Volume 11 | Article 732702

https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Zhao et al. ESCC and sEVs
CLINICAL APPLICATION OF EXOSOME
IN ESCC

Diagnostic Potential of Exosomal Cargos
as Biomarkers for ESCC
ESCC is considered silent cancer because it lacks characteristic
manifestations in the early stage. Patients are frequently
diagnosed in middle or late stages, delaying the optimal time
for treatment and causing a high mortality rate (104). Therefore,
it is paramount to find early diagnostic methods to identify
patients with ESCC to benefit from early interventions (105).
Currently, the gold standard for the diagnosis of ESCC is tissue
biopsy under endoscopy, an invasive inspection with
correspondingly high costs (106). A non-invasive diagnostic
method in early-stage ESCC is urgently needed. Researchers
have made great efforts to screen for ESCC biomarkers; possible
candidates include circulating tumor cells (CTCs), serum
miRNAs, small extracellular vesicles (sEVs), as well as
circulating tumor DNA (ctDNA) (107, 108). Exosomal cargos
serve as promising tumor biomarkers because they reflect the
donor cell and their presence in various biological fluids (109–
111). New research into the potential application of exosomes as
tumor biomarkers has emerged and yielded valuable information
for additional in-depth exploration (112, 113). Growing evidence
has confirmed that exosomal RNAs outperform peripheral
blood-free RNAs in cancer diagnosis because of several
advantages: First, exosomes exist in all biological fluids and are
easily accessible compared with plasma. Second, exosomal cargos
can be well protected from degradation by enzymes or
elimination by the biological barrier. Third, the components of
exosomes have high homology with donor cells, which may
encourage a higher specificity of exosome-based detection. Last,
the concentration of exosomal cargos is higher than the
expression of plasma RNAs (114–116). Here, we focus on
state-of-the-art exosomal cargos in ESCC.

The distinct expression of exosome-shuttling contents
between cancer cells and normal cells supports the application
of exosomes as biomarkers for ESCC. Among these exosomal
compounds, exosome-carrying miRNAs are most investigated.
For example, Zeng corroborated that exosome-shuttled miRNA-
19b-3p separated from patients with ESCC is significantly
upregulated compared with healthy controls, suggesting that
serum exosome-encapsulated miRNA-19b-3p highlights the
potential utility of exosomal RNAs in the early detection of
ESCC (56). A study from 51 patients with ESCC and 41 with
benign diseases showed that plasma exosomal miRNA-21 levels
were significantly elevated in ESCC versus benign diseases so that
they were suitable to be biomarkers for early diagnosis of ESCC
(117). Except for the effect of exosomes on the differential
diagnosis of ESCC, lymph node metastasis and TNM grade
have been associated with the expression of some exosomal
cargos that may serve as independent prognostic factors of
ESCC. Lu et al. suggested that tumor cells-derived exosomes
markedly upregulated the expression of hsa-circ-0048117 under
the condition of hypoxia—a change that may be positively
correlated with advanced T and N stages serves as a biomarker
Frontiers in Oncology | www.frontiersin.org 7
for progression (71). Similar studies have revealed that
downregulated exosomal miRNA-339-5p and miRNA-652-5p
in the serum are related to advanced TNM stages and a higher
lymph node metastasis rate (58, 64). Moreover, several studies
have indicated that higher serum exosomal miRNA-182,
miRNA-766-3p, lncRNA POU3F3, and has-circ-0026611 levels
in patients with ESCC are positively related to poor prognosis
(70, 118–120). Except for exosomal RNAs, a small amount of
exosome-carrying protein has been reported previously. The
over-expression of Stathmin-1, regarded as microtubule
depolymerization protein, is related to the process of tumor
spread, adverse clinical outcomes, and chemoresistance in many
types of cancer, especially squamous cell carcinoma, by
controlling cell division, proliferation, and migration (121–
124). In ESCC, Yan et al. corroborated that the average
expression of stathmin-1 elevated in oncogenic exosomes, and
the serum stathmin-1 level in patients with ESCC was obviously
higher than that of healthy individuals (125). In addition,
elevated concentration of stathmin-1 was related to lymphatic
metastasis and late staged cancer.

Thus, several exosomal cargos have been identified as
biomarkers for ESCC in applying possible diagnosis and
potential prognosis, as described in Table 2. It is noteworthy
that few literature reports address the diagnostic value of these
molecules; the diagnostic efficacy of most candidates, apart from
few miRNAs like miRNA-21, deserve additional validation.
Much work remains before exosomal cargos can be applied as
ideal biomarkers of ESCC. In addition, readers should note that
some of the articles we referenced were published before the
MISEV2018 guidelines were issued, which means the research
methods they applied might not meet the standard of the
guidelines. For example, few works failed to further validate
sEV-specific markers, which is not recognized by the standards
of EV isolation protocols in MISEV2018. Therefore, we hope
readers accommodate the term “small extracellular vesicle” to
replace “exosome”,

Potential Application of Exosomes in
Treatment of ESCC
In addition to having a diagnostic role in cancer, exosomes have
potential use in disease therapy. The characteristic property in
transferring selected payloads to recipient cells has translated
into potential applications for treating many diseases, including
cancer and cardiovascular diseases (134–136). However, recent
articles published on the potential application of exosomes in the
treatment of ESCC are sparse. Thus, this section mainly
summarizes exosome-based therapy in other cancers and
introduces the exosomes that may be potential targets for
ESCC therapy in the future. Researchers harness engineered
exosomes to deliver chemotherapeutic agents, achieving better
performance than traditional vectors like liposomes (49).
Theoretically, exosomes have the following advantages: First,
the membrane structure of an exosome can protect
pharmacological agents from degradation. Second, exosomes
naturally exist in all biological fluids, and thus they can be well
tolerated when introduced into the body. They can efficiently
August 2021 | Volume 11 | Article 732702
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penetrate biological barriers and deliver targeted cargo with
minimal immune clearance. Third, some exosomes have
receptor-targeting features resulting from the heterogeneity of
exosomal surface proteins, enabling targeted delivery of
therapeutic agents for cancer. Last, because they are shed by all
cells as part of their normal physiology, exosomes may induce
less toxicity and minimize other adverse reactions even with
repeated injection (137–140). Therefore, exosomes may have a
bright future as nanocarriers for cancer treatment.

Currently, researchers are committed to designing exosomes to
encapsulate therapeutic agents and conducting studies that yield
valuable information about the application of exosomes for the
administration of diseases. For example, gene-engineered
exosome-thermosensitive liposomes can block the CD47
immune checkpoint and improve the macrophage-mediated
elimination of cancer cells (30). Pan et al. indicated that urinary
exosome-based engineered nanovectors could help deliver
targeted homologous treatment in prostate cancer and may
exemplify a novel, efficient, and facile therapy strategy (29). So
far, evidence about the function of engineered exosomes in cancer
therapy is primarily from cancers like gastric cancer or prostate
cancer, not from ESCC; relevant data in ESCC are, at best, sparse.
However, despite the many unanswered questions about their
clinical application, exosomes show great potential to facilitate
ESCC therapy. In addition, accumulating research has suggested
that engineered exosomes in vitro can play a paramount role in
Frontiers in Oncology | www.frontiersin.org 8
different experimental settings, but more exploration is needed
before these findings translate into clinical practice (141). Also,
research must guarantee the homogeneity of exosomes by
standardizing protocols for exosome isolation, preparation, and
route of administration (8). Currently, inefficient isolation
methods of exosomes cannot provide sufficient exosomes to
meet cancer therapy requirements (142). Identifying ways
to prevent exosomes from being taken up by other cells and to
drive the engineered vehicles to targeted cells or organs remains a
considerable challenge (143–145). Overall, engineered exosomes
provide a promising therapeutic option for cancer treatment,
although the utility of this strategy in clinical practice requires
additional exploration.
CONCLUSIONS AND PERSPECTIVES

As referred to above, substantial evidence has delineated that
exosomes and their inclusion, such as DNA, RNA, proteins,
lipids, and other biological complexes, significantly affect cellular
pathways and mediate pathophysiology behaviors, involving cell
growth oncogenesis and tumor differentiation. EVs may act as
biomarkers for early ESCC diagnosis, therapeutic monitoring, or
prognosis evaluation. The association with exosomal cargos and
disease state could be used in diagnostic and prognostic
biomarkers for early ESCC, such as miRNA-21 was recognized
TABLE 2 | Exosomal cargos as biomarkers for ESCC.

Type Molecules Origin Potential Functions Ref.

miRNA miRNA -19b-3p Serum Distinguish ESCC patients from healthy individuals (56)
miRNA -21 Serum Predict TNM stage (117)
miRNA -652-5p Serum Predict TNM stage, lymph node metastasis, and survival rate (58)
miRNA -339-5p Serum Predict radiotherapy sensitivity and survival rate (64)
miRNA -182 Serum Distinguish ESCC patients from healthy individuals, predict TNM stage and survival rate (118)
miRNA -766-3p Serum Predict TNM stage and survival rate (119)
miRNA -103a-2-5p Serum Predict survival rate (57)
miRNA -93-5p Serum Predict survival rate (126)
chr 8-23234-3p, Serum Predict lymph node metastasis (127)
chr 1-17695-5p,
chr 8-2743-5p,
miRNA-432-5p

lncRNA POU3F3 Serum Predict chemotherapy sensitivity and survival rate (70)
RP5-1092A11.2 Serum Distinguish ESCC patients from esophagitis patients and from healthy individuals (128)
NR_039819 Serum Distinguish ESCC patients from healthy individuals (129)
NR_036133
NR_003353
ENST00000442416.1
ENST00000416100.1
UCA1 Serum Early diagnosis (68)
FMR1-AS1 Serum Predict survival rate, especially in female ESCC patients (65)
POU3F3 Serum Predict survival rate (130)

circRNA hsa-circ-0048117 Serum Predict TNM stage (71)
hsa_circ_0026611 Serum Predicted lymph node metastasis and survival rate (120)
hsa_circ_0001946 Serum Predict recurrence and survival rate (131)
hsa_circ_0001946

Other
biomarkers

G-NchiRNA Salivary Reflect tumor burden, evaluate therapeutic response and predict survival rate (132)

uc.189 Serum Evaluate lymph node metastasis (133)
Stathmin-1 Serum Differentiate patients with ESCC from healthy individuals, and be associated with lymph node metastasis and

advanced cancer stage
(125)
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as an exosome-derived small RNA superior to traditional tumor
markers for early diagnosis of ESCC (117). It should be noted
that a panel of miRNAs has delineated a higher sensitivity and
specificity compared with a single miRNA, but researchers have
to make a considerable effort to screen for miRNA panels that
can be used in early diagnosis for ESCC (129, 130). In addition,
there are some limitations in the clinical application of
circulating exosome-related analysis. The separation and
purification technology is mainly used in scientific research but
rarely applied in clinical practice. Exosome-testing kits are
developing, and some laboratory investigations and clinical
studies on ESCC exosomes are ongoing or are forthcoming.
For example, a newly developed commercial kit (ExoLutE®)
utilizing the principle of size-exclusion spun column improves
the efficiency and purity of circulating exosome separation
compared to conventional kits (146).

Exosomes have been widely regarded as a promising carrier of
anticancer drugs, which were proved in animal studies. If
engineering exosomes that carried anticancer agents could be
realized, the delivery of therapeutic agents by exosomes would
make exosomes ideal vectors for cancer therapy (147). To date,
evidence on the function of engineered exosomes in cancer
therapy has mainly come from other cancers, such as
pancreatic or prostate cancer (29, 148), and data on ESCC
have been sparse at best. With the development of science and
technology, large-scale clinical studies or trials on ESCC
exosomes will undoubtedly be carried out. It is believed that
Frontiers in Oncology | www.frontiersin.org 9
more and more achievements on exosomes will be made and
applied in ESCC clinical diagnosis and therapy soon.
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