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Abstract

Motivation: Phylogenetic tree optimization is necessary for precise analysis of evolutionary and transmission
dynamics, but existing tools are inadequate for handling the scale and pace of data produced during the coronavirus
disease 2019 (COVID-19) pandemic. One transformative approach, online phylogenetics, aims to incrementally add
samples to an ever-growing phylogeny, but there are no previously existing approaches that can efficiently optimize
this vast phylogeny under the time constraints of the pandemic.

Results: Here, we present matOptimize, a fast and memory-efficient phylogenetic tree optimization tool based on
parsimony that can be parallelized across multiple CPU threads and nodes, and provides orders of magnitude
improvement in runtime and peak memory usage compared to existing state-of-the-art methods. We have
developed this method particularly to address the pressing need during the COVID-19 pandemic for daily
maintenance and optimization of a comprehensive SARS-CoV-2 phylogeny. matOptimize is currently helping refine
on a daily basis possibly the largest-ever phylogenetic tree, containing millions of SARS-CoV-2 sequences.

Availability and implementation: The matOptimize code is freely available as part of the UShER package (https://
github.com/yatisht/usher) and can also be installed via bioconda (https://bioconda.github.io/recipes/usher/README.
html). All scripts we used to perform the experiments in this manuscript are available at https://github.com/yceh/
matOptimize-experiments.

Contact: yturakhia@ucsd.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

With over 10 million genome sequences now available on online data-
bases, SARS-CoV-2 is the most sequenced pathogen in history by far
(Shu and McCauley, 2017). Phylogenetics has been a foundational
tool in analyzing this vast volume of genomic data for a public health
response during the coronavirus disease 2019 (COVID-19) pandemic
(Hodcroft et al., 2021). For example, phylogenetics has been instru-
mental in genomic surveillance, i.e. for identifying and naming its new
variants (Rambaut et al., 2020) and for tracking the different SARS-
CoV-2 variants circulating in a given geographic region (da Silva
Filipe et al., 2021; Deng et al., 2020). Phylogenetic trees have
also helped in establishing transmission links between infections

(Lam-Hine, 2021), in disambiguating community transmission from
outside introductions (Komissarov et al., 2021; McBroome et al.,
2022), in identifying the mutations that might have conferred
increased transmissibility to the virus (Korber et al., 2020; Richard
et al., 2021), and for estimating the reproduction number (R0) of the
virus and its variants (Lai et al., 2020; Volz et al., 2021).

Many of these far-reaching applications benefit from having a
comprehensive phylogenetic tree—one produced without subsam-
pling the available sequences. For example, when all available
SARS-CoV-2 sequences are not represented in a single phylogenetic
tree, transmission links between isolates may be lost. Likewise, sub-
sampled phylogenetic trees could omit important lineages or
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sublineages corresponding to different variants of the virus. This can
have adverse consequences on the downstream evolutionary and epi-
demiological studies. A comprehensive and up-to-date phylogenetic
tree is therefore an essential goal for the global health response to
the SARS-CoV-2 pandemic.

Online phylogenetics is a potentially transformative solution for
the massive computational challenges imposed by continual genome
sequence collection during the pandemic (Gill et al., 2020;
Thornlow et al., 2021). It involves incorporating new sequences as
they become available onto an existing phylogeny and periodically
refining the updated phylogeny. The recent development of UShER
(Turakhia et al., 2021b), which uses stepwise addition of new
sequences onto an existing phylogenetic tree, helped overcome an
important computational barrier for the maintenance of a compre-
hensive SARS-CoV-2 phylogenetic tree (McBroome et al., 2021).
For large SARS-CoV-2 phylogenies, UShER’s maximum parsimony
(MP) approach has been demonstrated to perform well, even when
compared to the far more computationally expensive maximum
likelihood approaches available currently (Thornlow et al., 2021).
However, since UShER is based on the greedy approach of stepwise
addition of new sequences, it sometimes places new sequences sub-
optimally in the tree (Turakhia et al., 2021b; Takahashi and Nei,
2000). Tree optimization tools, which use tree rearrangement to
find more optimal tree configurations, can help ameliorate this issue.
However, in the recent 6 months (December 2021 to May 2022),
the UShER-derived comprehensive SARS-CoV-2 phylogenetic tree
size grew by 1.6-fold, with an average of approximately 21 000 add-
itional sequences being incorporated each day. Approaches capable
of daily tree optimization of the massive SARS-CoV-2 phylogeny are
therefore an urgent necessity for emerging online phylogenetic
toolkits.

Phylogenetic tree optimization has been extensively studied in
the context of MP, and tools such as TNT (Goloboff and Catalano,
2016), PAUP* (Swofford, 2003), MPBoot (Hoang et al., 2018),
PHYLIP (Felsenstein, 2005) and MEGA (Kumar et al., 2018) are al-
ready available. Typically, tree optimization tools take as input an
existing phylogenetic tree in the Newick format and the multiple se-
quence alignment (MSA) of the phylogenetic tips in FASTA format,
then compute the parsimonious state assignments for every node of
the tree for each alignment site, and then use tree rearrangement to
find a more parsimonious tree. They also maintain multiple equally
parsimonious candidate trees and sometimes use tree drifting
(Goloboff and Catalano, 2016) during the optimization to avoid
getting stuck in local optima. TNT also provides additional heuris-
tics, such as sectorial search (Goloboff, 1999), to speed up tree
search. Though these tools are remarkably efficient for the typical
applications that they were developed for (such as for one-time spe-
cies tree inference), they are inadequate for handling the scale and
pace of the rapidly expanding SARS-CoV-2 data due to their pro-
hibitive runtime and memory requirements.

Here, we developed matOptimize, a novel MP-based tree opti-
mization tool that uses several domain-specific optimization techni-
ques to greatly speed up, and reduce the cost of, optimizing the
comprehensive SARS-CoV-2 phylogeny. Compared to previous
approaches, matOptimize uses novel memory-efficient data struc-
tures and algorithmic techniques to handle the vast scale of SARS-
CoV-2 data, and it is more efficiently parallelized for multicore
CPUs as well as high-performance computing (HPC) clusters. As a
result, the resources allocated to matOptimize can be scaled to meet
the computational requirements of the ever-expanding comprehen-
sive SARS-CoV-2 phylogeny. matOptimize also effectively uses pre-
processing and algorithmic strategies better suited for ‘online
phylogenetics’, which for example enable it to achieve rapid
improvements in parsimony score in early stages of the optimiza-
tion. Our analysis on real data suggests that matOptimize indeed
qualitatively improves the comprehensive SARS-CoV-2 phylogeny.
Starting from an UShER-derived SARS-CoV-2 phylogeny,
matOptimize provides roughly the same parsimony score improve-
ment (used as a measure of tree quality) as the previous state-of-the-
art for a moderately sized phylogeny, and is the only tool that meets

the constraints of daily-optimization for the current scale of compre-
hensive SARS-CoV-2 phylogeny.

2 Materials and methods

2.1 matOptimize: algorithm description
matOptimize is a parallel algorithm (Fig. 1) for parsimony-based op-
timization of large SARS-CoV-2 phylogenies, where the parsimony
score is derived based on characters in nucleotide space.
matOptimize takes as input a starting phylogeny, such as the
UShER-derived mutation-annotated tree [MAT; which is a file for-
mat that stores a phylogenetic tree in which the branches are anno-
tated with the mutations that are inferred to have occurred on them
(Turakhia et al., 2021b)] or a Newick file, and an optional VCF file
specifying the genotypes at the tips of the phylogeny. When a VCF
input is provided, matOptimize uses a parallel implementation of
the Fitch–Sankoff algorithm (Fitch, 1971; Sankoff, 1975) to infer
the most parsimonious state for every VCF site at every branch of
the tree. Otherwise, the algorithm accepts the states annotated in the
MAT and skips to the next step. matOptimize allows the VCF file to
specify ambiguous bases using the International Union of Pure and
Applied Chemistry (IUPAC) format (https://www.bioinformatics.
org/sms/iupac.html). matOptimize uses an MAT format that has
been modified to maintain ambiguous bases at tree leaves, entire
Fitch sets at internal nodes and a few additional data fields to aid
the optimization process (Fig. 1C).

The matOptimize algorithm (Fig. 1) performs several iterations
of optimization consisting of two phases: (i) the parallel search
phase, which searches for parsimony-reducing subtree pruning and
regrafting (SPR) moves from multiple starting nodes in parallel
while holding the starting tree constant and (ii) the non-conflicting
moves application phase, in which a subset of the profitable moves
that were discovered during the parallel search are applied to the
starting tree. These phases are described in more detail below. The
iterations continue until the percent parsimony score improvement
in the last iteration is less than the user-specified threshold (d in
Fig. 1A, default: 0.5%), or the wall-clock time limit specified by the
user (default: unlimited) is exceeded (Fig. 1A). Only one tree is
maintained throughout the optimization in matOptimize. We use
the following terminologies for the remaining description of the
algorithm:

• Child node: A direct descendant of a node in the tree.
• Tree depth: The distance from root to a node.
• Allele: The nucleotide found or inferred at a particular genomic

position.
• Fitch set: The most common allele(s) among the Fitch sets of the

children of the current node. On leaf nodes, Fitch sets are

observed alleles.
• Least common ancestor (LCA) nodes: The node furthest from

the root that is the ancestor of both source node and destination

node.
• DFS: Pre-order depth first search.
• Allele frequency: The number of children of the node that con-

tains the allele in its Fitch set. On leaf nodes, zero for alleles not

observed, 1 for observed alleles.
• Major allele frequency: Allele frequency of an allele in the Fitch

set (the same for all alleles in the Fitch set).
• Boundary allele set: Alleles whose frequency is exactly one less

than the major allele frequency. This set is updated once before

every parallel search phase in every iteration.
• Final state: A single allele inside the major allele set obtained by

arbitrary tie-breaking strategy among multiple equally parsimo-

nious alleles.
• An allele is incremented: An allele is added to the Fitch set.
• An allele is decremented: An allele is removed from the Fitch set.
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• Sensitive allele: An allele that will improve the parsimony score

of the tree when incremented alone, excluding parent alleles.

Parent alleles are excluded because they do not contribute to par-

simony scores.

2.1.1 Parallel search phase

In this phase, multiple nodes are searched in parallel for SPR moves
within a fixed radius that may reduce the parsimony score. In the
first iteration, all nodes in the tree are considered for SPR moves. In
subsequent iterations, SPR moves starting from only those nodes
that are within a fixed radius of nodes that were modified through
pruning or regrafting of an SPR move in the previous iteration are
considered. The SPR radius in the first iteration is limited to 2, and
this limit doubles at the end of every iteration. To calculate the par-
simony score change of a single move, matOptimize uses a modified
version of Gladstein’s incremental update method (Gladstein, 1997)
that can also handle polytomies. When sample genotypes are speci-
fied through an input VCF file, matOptimize first pre-processes the
tree to calculate the Fitch set, boundary allele set and final state for
every site at every node of the tree using a reverse breadth-first
traversal.matOptimize calculates the change in parsimony score
from a single move by tracking the change in major allele frequency
as the effect of the move propagates toward the root (i.e. in a reverse
pre-order traversal order). Figure 1B illustrates this with an example
SPR move. An allele can be incremented (i.e. added to the Fitch set
from the boundary allele set) at a node if: (i) it is incremented in any
of its children nodes (e.g. in Fig. 1B, allele A is incremented at node
1 after an increment of A at its child node 9) or (ii) all alleles in the

Fitch set are decremented in any of its children nodes (e.g. in
Fig. 1B, allele A is decremented at node 9 after a decrement of the
single allele C in the Fitch set of its child node 12). Similarly, an al-
lele is decremented when it has been decremented in any of its chil-
dren nodes, or if some other alleles in the Fitch set have been
incremented in any of its children nodes (e.g. in Fig. 1B, allele A at
node 4 is decremented from an increment of C at 12). Finally, the
parsimony score is calculated as the sum of change in children count
minus change in major allele count at each node on the path from
source or destination node to root. The starting tree remains immut-
able and shared among all threads throughout the parallel search
phase, so the memory consumption only increases negligibly with
the number of threads.

2.1.2 Parallelization of the parallel search phase

In matOptimize, different source nodes are evaluated in parallel to
find profitable SPR moves during the parallel search phase.
Parallelism across different instances of a CPU cluster is achieved
through multiprocessing that is implemented using the message pass-
ing interface (Gropp et al., 1999). At the start of a new iteration, the
main process broadcasts the intermediate MAT to all worker proc-
esses, assigns unique source nodes to each process to evaluate and col-
lects the profitable moves found by worker processes. For load
balancing, each worker process maintains its own running estimate of
the throughput of the number of source nodes processed per minute
and requests source nodes corresponding to a maximum of 1 min of
workload from the main process at a time. matOptimize also parallel-
izes source node evaluation on multiple threads of a single instance
using Intel’s TBB library (https://github.com/oneapi-src/oneTBB).

Fig. 1. An illustration of the matOptimize algorithm. (A) A flowchart of the different algorithmic stages in matOptimize. (B) An example of how matOptimize estimates the

parsimony score improvement achievable from a single SPR move using a small number of steps without redoing the entire Fitch algorithm (Fitch, 1971). Each node of this

tree has an integer label (1–12) and is annotated with its Fitch and boundary allele sets (Section 2). This example evaluates a move in which the subtree rooted at node 12 is

pruned from node 9 and regrafted at node 4. For this move, the alleles in the Fitch set of node 12 (i.e. the single allele C) must be decremented at node 9 (during pruning) and

incremented at node 4 (during regrafting). Since C is the only allele in the Fitch set of node 9, the alleles from the boundary allele set of node 9 get added to its Fitch set, result-

ing in an updated Fitch set fA, Cg, with a lower major allele count. The change in Fitch set of node 9 is propagated upwards to its parent, i.e. to root node 1. During the prun-

ing step, the decrement of the major allele count at node 9 has no effect on the parsimony score since it is offset by the decrement in the children count. During regrafting, since

allele C, which is already present in the Fitch set of node 4, is incremented, its major allele count is now higher than the remaining alleles in the Fitch set, i.e. allele A, which is

decremented. This change is propagated upwards, i.e. to parent node 2, but has no effect on it since allele A is not present in its Fitch set. Since the regrafting step also does not

change the parsimony, the net parsimony score change of this move is 0. (C) Storage requirements for a mutation in the MAT data structure of matOptimize. This is a modified

version of the original MAT proposed in UShER (Turakhia et al., 2021b) in order to maintain auxiliary information (such as Fitch and boundary allele sets) for performing op-

timization. Each mutation in matOptimize is stored compactly using only 8 bytes, which helps it maintain a small memory footprint overall. (D) An example phylogenetic tree

(left) and its corresponding index tree (right). The index tree is used to speed up the search for promising destination nodes for SPR moves from a single source node via search

space pruning (Section 2). Each node in the phylogenetic tree is annotated with (i) a pre-order traversal index, (ii) the depth of the node, (iii) the final allele assignment and (iv)

the sensitive allele (Section 2). The index tree uses a B-Tree (Cormen, 2009; Knuth, 2011) to store the nodes at which the sensitive alleles are found (Section 2). Each node in

the index tree corresponds to one node in the phylogenetic tree and stores the DFS index range of the subtree that the node covers and the minimum depth within the subtree at

which a sensitive allele may be encountered. ‘N/A’ implies that the allele is not present in the subtree
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Here, source nodes assigned to a process are uniformly partitioned
on each available thread, which then evaluates all the SPR moves
originating within the specified radius from its corresponding
source node. By default, matOptimize not only creates CPU
threads to utilize all available cores on a CPU instance but also
allows the number of threads to be specified by the user as a
command-line argument.

2.1.3 Search space pruning

To minimize the number of non-profitable moves explored from a
source node in the parallel search phase, matOptimize quickly calcu-
lates a lower bound of parsimony score change of moving the
pruned subtree to other nodes within a specified radius. It does this
by first pre-computing the sensitive alleles for each site at each node
using a dynamic programming algorithm. The sensitive allele sets
are then organized into a B-Tree (Cormen, 2009; Knuth, 2011),
called index tree (Fig. 1D), using the DFS index of the nodes. The in-
ternal nodes of the index tree are also annotated with the minimum
depth at which each allele will be encountered and corresponding
the DFS indices of phylogenetic tree nodes it covers (Fig. 1D). The
parsimony score change lower bound is initialized with the parsi-
mony score change that would result from removing the source
node alone. Then, matOptimize queries the index tree for the min-
imum depth at which the allele that source node carries may be
encountered. If it is larger than the maximum radius minus the dis-
tance between the source node and the node being examined, the
lower bound of parsimony score change is incremented. In this step,
the DFS index range in the index tree is queried to find the minimum
depth of the node in the subtree of the currently examined node at
which the sensitive allele may be encountered. All destination nodes
in a subtree rooted at the node being examined are skipped if the
parsimony score change lower bound at this node is higher than that
of the most profitable move from the source node found so far
(Fig. 1D).

2.1.4 Non-conflicting moves application phase

Moves that share nodes on the paths from source nodes to destin-
ation nodes are defined to be conflicting as they cannot be simultan-
eously applied. Empirically, most profitable moves found in the
parallel search phase have one or more conflicts. Among conflicting
moves, matOptimize accepts the most profitable move and defers
the remaining to the next iteration. Then, all non-conflicting moves
are applied in a batch. matOptimize recomputes the Fitch and
boundary allele sets of the altered nodes and their ancestors serially
in post-order traversal order. If the parsimony score is found to in-
crease during the application of a non-conflicting move,
matOptimize terminates the current iteration and begins a new one.
Sensitive alleles are recomputed from scratch at the beginning of
every new iteration. Profitable source nodes in the last iteration are
searched again, until there is no parsimony improvement, after
which a new round of iterations is started with doubled SPR radius
and all possible source nodes.

2.2 Tree evaluation
To calculate the likelihood scores of our trees, we used IQ-TREE2
(Minh et al., 2020) COVID-19 release 2.1.3, with Jukes-Cantor (JC)
model and a minimum branch length of 1e-11. Trees were visualized
with Taxonium (https://cov2tree.org/). Pango lineages for sequences
were assigned using the Pangolin software (O’Toole et al., 2021)
and parsimony scores for the lineage assignments were computed
using TNT (Goloboff and Catalano, 2016), taking clade assignment
as binary characters.

2.3 Datasets
We collected SARS-CoV-2 genome sequence data from major online
databases: GISAID (Shu and McCauley, 2017), COG-UK (Nicholls
et al., 2020), GenBank (Clark et al., 2016) and CNCB (https://bigd.
big.ac.cn/ncov/release_genome) until August 25, 2021 and used it to
build a comprehensive SARS-CoV-2 phylogeny based on the

methodology described in McBroome et al. (2021). We used the
GenBank MN908947.3 (RefSeq NC_045512.2) sequence as the ref-
erence for rooting the tree and used the sampling date metadata to
derive from our comprehensive tree three subtrees containing the
earliest 100K, 1M and 3M samples, referred to as 100K-sample
tree, 1M-sample tree and 3M-sample tree, respectively. The GISAID
Data Access Agreement prohibits the sharing of these datasets, but
allows us to communicate it to GISAID members on request.

To test generalizability of matOptimize, we also collected a
Mycobacterium tuberculosis dataset consisting of 10 248
M.tuberculosis samples from the NCBI Sequence Read Archive
(Leinonen et al., 2011) and generated a multisample VCF with a
GATK-based pipeline (https://github.com/cademirch/ccgp_work
flow). The multisample VCF was then compressed with GENOZIP
(Lan et al., 2021) and is made available at https://doi.org/10.6084/
m9.figshare.19799374. We then removed all samples for which
fewer than 95% of polymorphic sites contained a genotype. The
resulting multisample VCF was then used to infer a de novo phylo-
genetic tree using UShER (Turakhia et al., 2021b). To do this, we
seeded UShER with a “tree” that contained just the reference se-
quence and then we added each sample sequentially until each had
been added and we saved the final mutation-annotated tree file.

2.4 Baseline comparison
2.4.1 Performance benchmarking

Among the available tree optimization programs, we found TNT
(Goloboff and Catalano, 2016) (June 2021 version) to be the only
suitable baseline for comparison with matOptimize on large SARS-
CoV-2 datasets. We could not compare with PAUP* (Swofford,
2003), as it limits the tree size to only 16K taxa. Similarly, we found
that MPBoot (Hoang et al., 2018) fails due to the prevalence of iden-
tical sequences in SARS-CoV-2 datasets. Other tools, such as
PHYLIP (Felsenstein, 2005) and MEGA (Kumar et al., 2018), infer
a de novo tree from the input alignment on every run, and therefore
cannot be used in the online phylogenetics framework.

Given its high peak memory requirements, we used a single m1-
ultramem-40 instance (40 vCPUs, 961 GB, $6.30/h) for TNT. For
matOptimize, we used seven e2-highcpu-32 instances for
matOptimize that cumulatively have an hourly cost ($5.54/h) com-
parable to the m1-ultramem-40 instance. The peak memory require-
ments were estimated by reading the resident set size of each process
every 2 min. The parsimony scores were computed after rerooting
the trees to GenBank MN908947.3 (RefSeq NC_045512.2).

2.4.2 Parallelization of TNT

TNT does not natively include a multithreaded optimization mode,
so in order to parallelize it, we used multiple processes performing
exclusive sectorial search (XSS), which had better performance com-
pared to parsimony ratchet, tree drifting or direct branch swapping
modes in TNT (Goloboff and Catalano, 2016). In the XSS mode,
TNT splits the tree into non-overlapping sectors of roughly equal
size and optimizes each sector separately using tree bisection and re-
connection (TBR) moves. If the parsimony score improves within
the sector, TNT uses it to replace the corresponding sector in the
starting tree. We parallelized XSS by splitting the starting tree into
10 non-overlapping sectors, which offered the best runtime and par-
simony score tradeoff. During global TBR moves, we let each TNT
process optimize the entire tree independently and broadcast the
tree to other processes. We parallelized TNT with the highest num-
ber of processes possible within the available memory of the instan-
ces. This corresponded to 40, 8 and 1 processes for 100K-sample,
1M-sample and 3M-sample SARS-CoV-2 trees, respectively.

3 Results

3.1 matOptimize rapidly and efficiently optimizes

massive SARS-CoV-2 phylogenies
We used the database of UShER-based SARS-CoV-2 trees
(McBroome et al., 2021) to pick phylogenies at three different time
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points, containing 100K, 1M and 3M samples, respectively. We
used these as starting phylogenies to compare the performance of
matOptimize with TNT (Goloboff and Catalano, 2016), the fastest
and most efficient MP-based tree optimization tool currently avail-
able (Fig. 2). Since TNT is not multithreaded, it had to be manually
parallelized across multiple processes (Section 2). We also limited
the optimization to 24 h to meet the constraints for enabling daily
tree optimization which is required for comprehensive phylogenetics
during the pandemic. Of the three trees we evaluated, TNT
(Goloboff, 1999) completed its optimization for only one, i.e. the
smallest 100K-sample tree, achieving a parsimony score improve-
ment of 0.63% in 1.13 h. matOptimize completed this tree optimiza-
tion 19� faster and with 37� lower peak memory (Fig. 2A),
achieving a comparable but slightly smaller parsimony improvement
of 0.59%. The smaller parsimony score improvement of
matOptimize could be explained by the fact that it searches from
one starting tree and uses SPR moves only, which have a smaller
search space than the TBR moves and the independent search of
multiple trees used in TNT (Goloboff, 1996). matOptimize achieved
5� improvement over TNT on the 100K-sample tree even when exe-
cuted on the same CPU instance as TNT with an identical number
of threads (Supplementary Fig. S1).

The benefits of matOptimize become apparent when the tree size
gets larger—it completed optimization for the 3M-sample tree in
only 7.7 h (Fig. 2C). On this tree, TNT did not even start applying
profitable moves within the 24-h time limit. This is because, for the
scale of this tree, TNT was still loading the input files and initializ-
ing its internal data structures when the 24-h cutoff was reached.
Since matOptimize also uses SPR radius doubling at each iteration,
and since smaller radii iterations are quick to complete, the largest
improvements in parsimony score are achieved very quickly during
optimization (Fig. 2, Supplementary Fig. S1). Due to its memory-
efficient internal data structures and parallel implementation of the
Fitch–Sankoff algorithm during initialization (Sections 2 and 4),
matOptimize starts optimizing the tree after a small delay, which is
desirable for time-constrained optimization scenarios imposed by
the COVID-19 pandemic. In contrast, TNT incurs a long startup
delay followed by a slow improvement of parsimony. matOptimize
is therefore especially well-suited for SARS-CoV-2 online phyloge-
netics (Thornlow et al., 2021).

Detailed analysis of the resulting tree revealed that matOptimize
indeed improves the tree quality. For example, on the 100K-sample
tree, the 0.59% parsimony score improvement also translated into a
0.48% improvement in the log-likelihood score—from -919354.028
to -914925.186. For the TNT-optimized tree, the log-likelihood is
even higher, -914592.653, i.e. 0.51% higher than the starting tree.
This is consistent with our previous analyses (Thornlow et al., 2021)
in which we observed that parsimony and likelihood scores are
strongly correlated for SARS-CoV-2 phylogenies. We also observed
that in some cases, the PangoLEARN lineage assignments (O’Toole
et al., 2021) appeared a little less dispersed through the tree
(Supplementary Fig. S2), with the Pango lineage parsimony score

decreasing from 17043 to 17014 post-optimization with
matOpimize. Here, the small improvement through optimization
reaffirms the observation that even the stepwise addition of samples
through UShER has high accuracy for lineage assignments (Dudas
et al., 2021; McBroome et al., 2021).

3.2 matOptimize scales well in runtime and memory

requirement with the number of available processors
Efficient parallelism ensures that matOptimize can keep up with the
increasing computational demands for optimizing SARS-CoV-2 phy-
logenies. We designed it to parallelize over all available virtual cores
on a CPU (vCPUs), as well as a large number of CPUs available in
an HPC cluster, which includes cloud platforms. Figure 3A shows
that matOptimize shows a high strong scaling efficiency.
matOptimize requires 109 min to complete one round of optimiza-
tion on the 1M-sample tree with 64 vCPUs over two CPU instances,
which reduces to 11.5 min with 1024 vCPUs over 32 CPU instances
(scaling efficiency of 59%, Fig. 3A). In the latter, the parallel search
for profitable moves required 7.5 min and the sequential step of
applying the moves took 4 min. We therefore expect strong scaling
efficiency to improve as the SARS-CoV-2 tree gets bigger, and the
parallel search phase consumes a larger fraction of the total runtime.

A key reason why matOptimize scales efficiently is its low mem-
ory requirement. This is enabled through its compact MAT data
structure derived from UShER, which we use in lieu of the tradition-
al matrix representation of the MSA in existing frameworks
(Figs. 1C and 3B, Section 2). When the number of CPU threads used
by matOptimize is increased from 4 to 32, the memory requirement
for the 1M-sample SARS-CoV-2 tree increases only marginally,
from 9.38 to 9.84 GB (Fig. 3B). In contrast, the large and linear
memory requirement of TNT limits the amount of parallelism it can
exploit (Fig. 3C). For example, with the 1M-sample SARS-CoV-2
tree, we could only parallelize TNT to utilize 8 of the 40 available
vCPUs on the m1-ultramem-40 instance that we used on the Google
Cloud Platform (GCP), since eight TNT processes consumed nearly
all of 961 GB available memory on this instance. It is therefore un-
likely that TNT would scale to the much larger SARS-CoV-2 phy-
logenies anticipated in the future due to its prohibitive memory
requirement.

3.3 Larger SPR radii provide smaller, but measurable

improvements in parsimony score
We explored the contribution of different SPR radii to the improve-
ment in parsimony score on the 100K-sample tree, 1M-sample tree
and the 3M-sample tree (Supplementary Fig. S3). On the 100K-sam-
ple tree, a small SPR radius of 2 alone could achieve 70% of the
total parsimony score improvement. For the 3M-sample tree, SPR
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moves of radius 2 could achieve only 20% of the total possible par-
simony score improvement. However, even for larger trees, the par-
simony score still improves most rapidly with small radii (Fig. 2)—
90% of parsimony improvement is achieved with less than 25% of
the total runtime for both the 1M-sample and 3M-sample trees.
Therefore, matOptimize doubles the search radius after each round
in order to provide the largest parsimony improvement at the early
stages of optimization. The difference between radius doubling and
fixed large radius strategy is negligible (Supplementary Table S1).
Combined with the small preprocessing time, this radius doubling
strategy makes matOptimize particularly suitable for ‘online’ opti-
mization of large SARS-CoV-2 phylogenies. The reason is that it
may be necessary to halt optimization if the runtime exceeds the
time allowed until additional sample additions are necessary.

3.4 matOptimize also performs well on a M.tuberculosis

dataset
To investigate whether matOptimize generalizes well to other data-
sets for which online phylogenetics may be useful, we used
matOptimize to optimize an UShER-derived starting tree of ap-
proximately 10K M.tuberculosis genomes and compared it to TNT
(Section 2). We found matOptimize to provide over an order of
magnitude improvement in runtime (15�) and peak memory (51�)
relative to TNT on this dataset as well (Supplementary Fig. S4).
Notably, matOptimize completed the entire optimization in only
6 min, whereas it took TNT 1 h 22 min to even begin the optimiza-
tion process and an additional 8 min to complete it. Though the par-
simony improvement in the TNT tree was noticeably higher than
matOptimize (0.61% versus 0.48%), the log-likelihood score of the
two trees differed only by 0.012%. Our results seem to indicate that
matOptimize may generalize well to large datasets beyond SARS-
CoV-2.

4 Discussion

Several evolutionary studies, such as inferring SARS-CoV-2 recom-
bination (Turakhia et al., 2021a) or characterizing the transmissibil-
ity of different mutations (Richard et al., 2021), rely on, or can
benefit from, the knowledge of a comprehensive SARS-CoV-2
phylogenetic tree. Currently, the UCSC Genome Browser uses a
comprehensive SARS-CoV-2 phylogenetic tree which is updated
daily through phylogenetic placements of new sequences performed
by UShER (Lee et al., 2022). This tree is being used widely by health
officials and researchers worldwide through UShER’s command line
(https://github.com/yatisht/usher) and web interface (https://gen
ome.ucsc.edu/cgi-bin/hgPhyloPlace) to perform genomic surveil-
lance (Abe and Arita, 2021; Dudas et al., 2021; Foster et al., 2022;
Garushyants et al., 2021) and contact tracing (Lam-Hine, 2021) of
the COVID-19 pathogen. This tree has also been applied for SARS-
CoV-2 lineage assignment in the optional mode of Pangolin (https://
github.com/cov-lineages/pangolin/), the most widely used scientific
nomenclature system for SARS-CoV-2 lineages (Rambaut et al.,
2020), as well as in several recently developed phylogenetic toolkits
(Chen et al., 2021; McBroome et al., 2022; Sanderson, 2021).
GISAID’s Audacity tree (Shu and McCauley, 2017) is also based on
the UShER package. Maintaining a high-quality comprehensive
SARS-CoV-2 phylogeny consisting of all available SARS-CoV-2
sequences has emerged as a problem of utmost importance during
the COVID-19 pandemic.

Currently, matOptimize appears to be the only viable tree opti-
mization tool for SARS-CoV-2 online phylogenetics. matOptimize’s
performance is the result of several optimization and parallelization
techniques that it incorporates. For example, matOptimize benefits
from the recently developed, space-efficient data structure of an
MAT—an uncompressed MAT file of 3 million SARS-CoV-2 se-
quence requires only 136 MB to encode basically the same informa-
tion that is contained in an 88 GB MSA FASTA file. By using a
modified MAT, matOptimize can compactly store all the informa-
tion necessary for optimization and avoid the high cost of maintain-
ing the entire alignment in memory. Widely used phylogenetic

programs, such as TNT (Goloboff and Catalano, 2016), MPBoot
(Hoang et al., 2018) and MEGA (Kumar et al., 2018), use strategies
for parsimony score optimization that are far too expensive at
SARS-CoV-2-scale. As a result of its scale up (more vCPUs per
node) and scale out (more CPU nodes) capability, matOptimize is
the only parsimony-based tree optimization software that is current-
ly able to meet the computational demands for optimizing the ever-
increasing SARS-CoV-2 phylogeny. Overall, matOptimize is 1–2
orders of magnitude more cost and memory efficient than the state-
of-the-art, and we expect that matOptimize would help maintain a
high-quality comprehensive SARS-CoV-2 phylogeny for several
months to come. It also appears to generalize well to large datasets
beyond SARS-CoV-2 (Supplementary Fig. S4) and could be applic-
able to other densely sampled pathogens in the future.
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