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ABSTRACT
The adaptive response of the mandible and temporomandibular joint (TMJ) to altered occlusion in juvenile patients is presently
unclear. To address this question, we established amousemodel in which all molars were extracted from themaxillary right quadrant
in prepubertal, 3-week-old mice and analyzed morphological, tissue, cellular, and molecular changes in the mandible and condyle
3 weeks later. Unilateral loss of maxillary molars led to significant, robust, bilateral changes, primarily in condylar morphology, includ-
ing anteroposterior narrowing of the condylar head and neck and increased convexity at the condylar surface, as determined by geo-
metric morphometric analysis. Furthermore, both condyles in experimental mice exhibited a degenerative phenotype, which
included decreased bone volume and increased mineral density near the condylar head surface compared to control mice. Changes
in condylar morphology and mineralized tissue composition were associated with alterations in the cellular architecture of the man-
dibular condylar cartilage, including increased expression of markers for mature (Col2a1) and hypertrophic (Col10a1) chondrocytes,
suggesting a shift toward differentiating chondrocytes. Our results show significant bilateral condylar morphological changes, alter-
ations in tissue composition, cellular organization, and molecular expression, as well as degenerative disease, in response to the uni-
lateral loss of teeth. Our study provides a relatively simple, tractablemouse tooth extraction system that will be of utility in uncovering
the cellular andmolecular mechanisms of condylar andmandibular adaptation in response to altered occlusion. © 2022 The Authors.
JBMR Plus published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research.
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Introduction

The temporomandibular joint (TMJ) is a complex structure
that includes the articular surface of the temporal bone, joint

capsule, articular disc, mandibular condyle, temporomandibular

ligament, and lateral pterygoid muscle. TMJ disorders (TMDs)
are a group of conditions that involve dysfunction in the jaw joint
and associated muscles/ligaments and are often associated with
acute/chronic pain which can severely affect quality of life.(1–3)

The prevalence of TMDs is unclear, although 10.6% to 68.1% in
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males and 21.1% to 72.4% in females has been reported.(4) The
wide prevalence ranges underscore the difficulty in defining
and diagnosing TMDs whose etiology is multifactorial and not
fully understood. And if diagnosed with TMD, treatments are
largely limited to palliative care or surgery for severe cases, and
all have mixed outcomes. To improve upon current diagnostic
and treatment methods, a better understanding of the etio-
pathogenesis of TMDs at the tissue, cellular, and molecular levels
is necessary.

Numerous animal models have been developed to induce
and study TMDs by altering the four known etiological factors:
(i) inflammatory factors such as chemicals, enzymes, and hor-
mones injected in and around the TMJ; (ii) trauma and mechan-
ical factors such as the surgical induction of anterior disc
displacement (commonly associated with the beginning of
TMD) or disc perforation and prolonged mouth opening;
(iii) psychological factors such as stress and anxiety that play piv-
otal roles in the occurrence and progression of TMDs; and
(iv) occlusal factors such as missing or extra teeth that can alter
the “bite.”(5) Current evidence suggests that altered occlusion,
including premature tooth interferences and missing/extra/
ectopic teeth are associated with TMDs, but confounding results
have impeded clear understanding of the etiopathogenesis of
occlusion-associated TMDs.

Rodent models, specifically anterior crossbite,(6–8) posterior-
lateral shift,(9–11) and occlusal interference,(12,13) have been uti-
lized to better understand mandibular and condylar adaptation
in response to altered occlusion. These models rely on the fabri-
cation and delivery of various appliances to the teeth, which are
technically challenging and have been proven to lead to variabil-
ity between samples. Indeed, studies using various appliances
have produced confounding data, such as thickening(14) or thin-
ning(12,15) of the mandibular condylar cartilage (MCC) in
response to altered occlusion. Another approach utilized to
model occlusion-associated TMD, specifically due to tooth loss,
is tooth extraction. Unilateral and bilateral tooth extractions have
been performed in rhesus monkey,(16) sheep,(17) rabbit,(18) and
rat(19,20); however, a tooth extraction model, to our knowledge,
has surprisingly not yet been developed in mouse, which serves
as an economical and easily genetically manipulated model
organism.

The mandibular condyle, and specifically the MCC, is unique
because it serves a hybrid role as an articular surface as well as
a site of rapid growth.(21) This rapid growth is made possible by
the MCC, a secondary cartilage covering the condyle, which
resembles the growth plate in the epiphysis of long bones. How-
ever, unlike long bones in which the growth plate eventually
mineralizes and disappears, theMCC remains throughout the life
of the animal, including in humans.(22) The potential and capacity
for condylar growth and adaptation in response to occlusal
changes are unclear. In humans, remodeling of the condylar sub-
chondral bone(23) and MCC(24–26) has been shown during the
progression of TMDs, and many animal studies have shown
changes in the condyle and MCC in response to altered occlu-
sion.(6,8,18) The superficial layer of theMCC contains fibrocartilage
stem cells(27) that undergo a proliferative phase, expressing
Col1a1, Sox9, and Runx2, differentiate further into maturation
stage chondrocytes, expressing Col2a1, and then hypertrophic
chondrocytes, expressing Col10a1. In the deeper layers of the
MCC, the tissue is calcified by osteoblasts that migrate into the
tissue or transdifferentiate from chondrocytes.(28)

The aim of this study was to establish amousemodel to repro-
ducibly study the growth and adaptation of the mandibular

condyle in response to altered occlusion. Toward this end, we
unilaterally extracted upper posterior teeth in rapidly growing
mice and characterized the morphological, tissue, cellular, and
molecular changes as measures of adaptability, growth, and dis-
ease in the mandible and condyle. We extracted teeth at postna-
tal day 21 (P21) (or prepuberty) and collected 3 weeks later at
6 weeks (postpuberty, sexual maturation) in order to alter occlu-
sion during a significant growth period (ie, prepubertal growth
spurt). Three weeks following unilateral extraction of all maxillary
right molars in mice at P21, significant bilateral changes in con-
dylar morphology, alterations in bone volume and density, and
differences in MCC cellular phenotype, including an increase in
mature and hypertrophic chondrocytes, were noted. Addition-
ally, both joints of experimental mice showed increased mea-
sures of degenerative disease. Our tooth extraction mouse
model provides a simple, tractable, and reproducible model to
advance understanding of the adaptive response of the mandi-
ble and condyle to altered occlusion.

Materials and Methods

Animals

FVB/NJ mice (The Jackson Laboratory, Bar Harbor, ME, USA) were
selected for these experiments as an outbred strain with large lit-
ters. Mice were anesthetized with ketamine (80–100 mg/kg) and
xylazine (5–10 mg/kg) at P21 (3 weeks of age). Mice were stabi-
lized in a plaster cast, and a mouth prop and cheek retractors
were utilized (bent in 0.03600 stainless steel wire) to access the
maxillary molars (Supplemental Fig. SS1). All maxillary right
molars were surgically removed (right = extraction side) using
fine-tipped tweezers with slightly rounded tips while retaining
the maxillary left molars (left = non-extraction side) in experi-
mental mice (n = 17; nine females, eight males for all experi-
ments; Fig. 1A). Control mice were exposed to the same
conditions (anesthesia and cheek retraction); however, no teeth
were extracted (n= 17; nine females, eight males collected for all
experiments). Food and water were available ad libitum. Mice
were housed under a 12-hours:12-hours light:dark cycle at a con-
stant temperature of 22 � 1�C and humidity of 50% � 5%. The
mice were euthanized 3 weeks later at P42 or 6 weeks of age
using CO2 inhalation and cervical dislocation, and mouse heads
were fixed in 4% paraformaldehyde (PFA) for 48 hours at 4�C.
All aspects of animal care and experiments were approved by
the Institutional Animal Care and Use Committee (IACUC) at
UCSF and performed under animal research protocol number
AN182286.

Micro-computed tomography

Micro-computed tomography (μCT) was performed on the entire
skull of n = 11 (five females, six males) experimental and n = 10
(four females, six males) control mice using a MicroCT50
(SCANCO Medical AG, Brüttisellen, Switzerland), 55 kVp,
109 μA, 6 W at 20 μm voxel size, with a 500 ms integration time
and a 20.5 mm field of view. The scanner was calibrated for bone
using an aluminum 0.5 mm filter calibrated to 1200 mg hydroxy-
apatite (HA)/cm3, scaling 4096. Sample numbers were selected
based on our power calculation that 11 samples were required
to detect a 0.1 mm difference at a power of 90%. We unfortu-
nately lost a control female skull due to fracture during proces-
sing, and so n = 10 for control.
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Geometric morphometric analysis

μCT data were imported into Avizo Lite software (version 9.1.1;
Thermo Fisher Scientific, Waltham, MA, USA). The cranium and
mandibles were segmented using consistent thresholds, and
isosurfaces were generated for each anatomical region. The con-
dylar region for bone volume and density measurements and
semi-landmarking was defined by a line between the coronoid
and angular processes (Fig. 2A,A’). Isosurfaces were imported
into Landmark software and landmarked. Cranium/midface was
landmarked with 44 points (Supplemental Fig. SS2),(29) 13 land-
marks for the hemi-mandible (26 for the entire mandible;
Fig. 1B),(30) and 80 sliding semi-landmarks for each condyle
(40 lateral and 40 medial) designed to recapitulate the structure

of the condylar processes (Fig. 2A’). For semi-landmarking, each
array included nine landmarks that bound the equidistantly
placed semi-landmarks (Fig. 2A’), as established by our labora-
tory.(30,31) Intraobserver and interobserver reliability tests were
performed to analyze the reproducibility of landmarking (details
in Supplemental Materials and Methods).

Landmark coordinates were exported as text files and imported
into MorphoJ (V2, Apache License; https://morphometrics.uk/
MorphoJ_page.html) for statistical evaluation of shape differ-
ences.(32,33) Centroid size, defined as the square root of the sum
of squared deviations of landmarks from their centroid, was exam-
ined between control and experimental groups for each anatom-
ical region using a Student’s t test; no significant differences were
found, and so there was no need to account for size difference in

Fig. 1. Extraction of maxillary right molars results in significant changes in mandibular shape. (A) Schematic of experimental design. All threemolars were
extracted from themaxillary right quadrant at P21, andmicewere euthanized for analysis at P42. (B) Isosurface of a hemi-mandible with landmarks utilized
in the study (green dots). (C) PCA comparing right extractionmandibles shows that the control (in blue) and experimental (in red) samples separated along
PC1 and PC2. (D) Wireframes showing average (in gray), PC1Minimum (Min; in blue), and PC1Maximum (Max; in red) show increased alveolar bone height
(point 3), increased height at the lower border of the mandible (points 2 and 13), decreased length of the coronoid process (point 5), narrowing of the
angular process (point 11), and increased posterior-inferior tip of the condylar process (points 7 and 8) in the right (extraction) mandible in the experimen-
tal mice compared to control. (D0) Representative isosurfaces of experimental (PC1 max in red) and control (PC1 min in blue) mandibles. PCA (E), wire-
frames (F), and isosurfaces (F0) of left (non-extraction) mandibles show similar shape differences in the lower border of the mandible and coronoid,
angular, and condylar processes compared to control. n= 11 experimental and 10 control mice. P= postnatal day; PCA= principal component analysis.
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Fig. 2. Extraction of maxillary right molars alters the shape of the condylar processes significantly. (A) Isosurface of a hemi-mandible showing region of
condylar process measured (demarcated by dashed line connecting the angular and coronoid processes). (A’) Isosurface of condyle showing landmarks
(large green dots) and semi-landmarks (small green dots) utilized on themedial surface (40 landmarks). The same number of landmarks were used on the
lateral surface (not shown) for a total of 80 landmarks. (B) PCA comparing right (extraction) condyles shows that the control (in blue) and experimental
(in red) separate along PC1 and PC2. (C) Wireframes showing average (in gray), PC1 Min (in blue), and PC1 Max (in red) of right condyles show the extrac-
tion condylar head and neck were narrower and condylar surface more convex compared to control. (C0) Representative isosurfaces of control and right
extraction condyles. (D) Linear measurements of right condylar head and neck widths were decreased in experimental compared to control. PCA (E), wir-
eframes (F), isosurfaces (F0), and linear measurements (G) show left non-extraction condyles were also narrower and more convex at the surface in exper-
imental versus control. n = 11 experimental and 10 control mice; *p < 0.05. PCA = principal component analysis.
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the data (Supplemental Table SS1). To eliminate the effects of
orientation, size, and position, Procrustes superimposition was
performed on the landmark data. To examine the major differ-
ences in shape between the control and experimental groups,
principal component analysis (PCA) was conducted. Canonical
variate analysis (CVA) or a linear discriminant analysis was also
performed for each anatomical region. From this analysis, the
Procrustes andMahalanobis distances among groupswere found
and permutation tests (10,000 permutations) were conducted to
generate p values (Supplemental Table SS1). Please find addi-
tional information on data representation for all figures in Supple-
mental Materials and Methods.

Bone volume and density analysis

To measure bone volume and density of the cranium/midface,
mandible, and condyle after segmentation, the volume and total
voxel intensity was extracted from Avizo using the Material Sta-
tistics package.

Histological analysis and RNAscope

Six-week-old mouse heads fixed in 4% PFA for 2 days were demi-
neralized in 0.5M EDTA for 3 weeks, paraffin processed, embedded
coronally, and sectioned at 7 μm (Leica microtome; Leica, Wetzlar,
Germany). Hematoxylin and eosin (H&E) and Safranin O staining
were performed following standard protocols. RNAscope
(Advanced Cell Diagnostics, Newark, CA, USA), an in situ hybridiza-
tion assay for detection of target RNA within intact cells, was per-
formed following standard manufacturers’ protocols with specific
mouse probes against Col1a1 (catalogue number (Cat No)
319371), Col2a1 (Cat No 407221), and Col10a1 (Cat No 426181).
Experimental and control mice (n= 5 and n= 6, respectively) were
analyzed for H&E, n = 9 experimental and n = 9 control for
Safranin O, and n= 5 experimental and n= 4 controlmice for RNA-
scope experiments. Sections were imaged using an Olympus cam-
era (Model DP74-CU; Olympus,Waltham,MA, USA; SN 9M97049) on
a light microscope (Nikon Eclipse E800; Nikon, Tokyo, Japan). The
fibrocartilage (FC) and calcified cartilage (CC) widths were mea-
sured on H&E-stained sections. Modified Mankin scoring(15,34) was
utilized to quantify the cartilage phenotype on Safranin O–stained
sections (Supplemental Table S2). RNAscope expression was quan-
tified in Fiji (Image J software, version 2.0.0-rc-69/1.52p; NIH,
Bethesda, MD, USA; https://imagej.nih.gov/ij/) by selecting the red
color in images of sections at consistent thresholds and measuring
the pixel area in the MCC.

Results

Geometric morphometric analysis reveals bilateral
mandibular morphological changes due to unilateral
maxillary molar extractions

We observed significant changes in the shape of the mandible in
experimental mice with tooth extractions compared to control as
determined by geometric morphometric analysis (GMA)
(Supplemental Table SS1). When we compared the entire mandi-
bles (right and left hemi-mandibles together) of experimental
and control samples, we found the control and experimental man-
dibles clustered distinctly by shape (Supplemental Fig. SS3). Princi-
pal component (PC) 1 and PC2 were associated with 41.8% and
13.4% of the total shape variation observed, respectively
(Supplemental Fig. SS3A). These data suggest the right and left

hemi-mandibles of the experimental mice were more similar in
shape to each other than control.

To further assess the mandibular shape differences in experi-
mental mice compared to control, we compared the right hemi-
mandibles (the sidewith tooth extraction) in experimental and con-
trol and the left (non-extraction side) hemi-mandibles separately
(Fig. 1). Analysis of the right/extraction side hemi-mandibles
showed distinct separation of clusters with PC1 and PC2 associated
with 46.67% and 17.02% of the total variance, respectively (Fig. 1C).
Similarly, the left/non-extraction side hemi-mandibles showed dis-
tinct clusters with PC1 and PC2 associated with 47.01% and
13.24% of the total variation, respectively (Fig. 1E). Wire frames of
the hemi-mandibles showing the position of each landmark for
PC1 Maximum (Max), PC1 Minimum (Min), and the average
(Fig. 1D,F) as well as isosurfaces of the hemi-mandibles of speci-
mens representative of PC1 Max and PC1 Min (Fig. 1D’,F0) show
the mandibular morphology differences observed. Significant
shape differences were noted with experimental hemi-mandibles
showing increased height at the lower border of themandible (cap-
tured by points 2 and 13 in Fig. 1D,F), decreased length of the cor-
onoid process (point 5), narrowing of the angular process (point 11),
and increased posterior-inferior tip of the condylar process (points
7 and 8) on both the right/extraction and left/non-extraction sides
compared to control. Overall, the shape of the right and left hemi-
mandibles in the experimental mice was similar with the exception
of increasedmandibular alveolar height due to the over-eruption of
mandibular molars on the right/extraction side (Fig. 1D, point 3).
Linear measurements also verified the difference in alveolar height
(Supplemental Fig. SS4). Additionally, CVA was performed and con-
firmed distinct clustering between control and experimental hemi-
mandibles (Supplemental Fig. SS5).

GMA reveals robust, bilateral shape changes in the
mandibular condyles

To measure specific shape changes in the mandibular condyles
(head and neck), we included landmarks and semi-landmarks on
the condylar process (Fig. 2A,A’) and performed GMA.(30,31) Semi-
landmarking analysis revealed an increase in convexity at the con-
dylar surface and a narrowing of the condylar head and neck in
both the anteroposterior and mediolateral dimensions in experi-
mental condyles. Specifically, control and experimental right/
extraction side condyles clustered distinctly along PC1 (50.05%)
and PC2 (10.09%; Fig. 2B). The experimental extraction side con-
dyles were narrower in the anteroposterior dimension, and the
head surface was more convex compared to control (Fig. 2C,C’).
Similarly, experimental left/non-extraction side condyles signifi-
cantly separated from control along PC1 (50.05%) and PC2
(11.19%), albeit with increased variability (Fig. 2E). Despite this
increased variability, similar shape changes were observed
between the left/non-extraction side and right/extraction side in
the experimental mice, including narrowed anteroposterior
dimensions and increased convexity of the head surface (Fig. 2F,
F’). Moreover, linearmeasurements confirmed significant and sim-
ilar narrowing of the right/extraction and left/non-extraction side
condylar head and neck widths in experimental compared to con-
trol (Fig. 2D,G).

GMA reveals subtle shape changes in the cranium/
midface

The cranium/midface, which houses the cranial vault, cranial
base, and maxilla, showed significant asymmetric growth and
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shape differences between control and experimental mice
(Supplemental Table SS1). However, these differences were pri-
marily in the alveolar process length (distance between most
mesial point of the first molar (points 30 and 31) and the most
distal point of the third molar (points 32 and 33; Supplemental
Fig. SS2A’). Unfortunately, these points were difficult to reliably
landmark in the maxillary right quadrant of the experimental
mice in which themolars were extracted, and thus, the biological
significance of this finding is unclear. No other landmarking
points showed significant change in experimental skulls com-
pared to control. Notably, PCA and CVA showed no sex-specific
differences between control and experimental skulls (cranium/

midface and mandible; Supplemental Fig. SS6). Thus, both male
and female mice were used for analyses.

Decreased bone volume and increased bone density in
experimental condylar processes

We determined that the total bone volume of experimental
extraction and non-extraction condylar processes was decreased
by 14.86% and 16.17%, respectively, compared to control
(Fig. 3A–D). We then sought to determine whether the bone
quality was similar by assessing the bone mineral density
(BMD). Relative BMD was significantly increased 4.96% and

A B

C D

E F

Bone volume

Bone density

Right condyle (Extraction) Left condyle (Non-extraction)
Control Experimental Control Experimental

Fig. 3. The condylar processes in extraction mice have decreased bone volume and increased bone mineral density compared to control. (A) Renderings
of the condylar processes with the color representing the relative bone mineral density (scale: red, more dense and blue, less dense) show that the exper-
imental condylar processes had decreased bone volume and increased bone density, particularly near the condylar head surface, compared to control on
the right (extraction) side. (B,C) Quantification shows a significant decrease in bone volume (B) of the right (extraction) condylar processes in the exper-
imental samples compared to control and significant increase in bone mineral density (C). There was a decrease in bone volume and increase in relative
bone mineral density of the experimental condylar processes in the experimental compared to control on the left (non-extraction) side as shown in the
renderings (D) and quantified in the graphs of bone volume (E) and bone density (F). n = 11 experimental and 10 control mice; *p < 0.05.
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5.60% in the experimental extraction and non-extraction
condylar processes, respectively, compared to control (Fig. 3E,
F). The increase in BMD appears to be primarily localized to the
condylar head (Fig. 3A,B). Thus, total bone volume decreased,
whereas BMD increased in the experimental condylar processes
near the head surface. There were no significant BMD differences
between experimental and control mice in the remaining skull
(data not shown). Thus, alterations in BMD were specific to the
condylar processes.

The alterations in condylar bone were accompanied by cellu-
lar changes suggesting an osteoarthritic phenotype in experi-
mental mice compared to control as indicated by increased
pericellular and background staining, clustering of cells, and ero-
sion of the cartilage surface in the experimental condyles
(Fig. 4A–D’, Supplemental Table S2). Quantitatively, these
changes contributed to significantly increased Mankin scores in
both condyles of the experimental mice compared to control
(Fig. 4E), indicative of osteoarthritic, degenerative changes in
the experimental condylar cartilage.

Increase in maturation stage and hypertrophic
chondrocytes in the mandibular condylar cartilage of
experimental mice

To further investigate the basis for the adaptive and degenera-
tive changes in the experimental condyles at the cellular and
molecular level, TMJ condyle histomorphometry was performed.
The fibrocartilage (FC) layer, including the superficial fibrous and
proliferative chondrocytes, and the calcified cartilage (CC) layer,
composed of mature and hypertrophic chondrocytes embedded
in extracellular matrix (ECM), weremeasured. These regions were
measured as they had clearly defined boundaries based on cellu-
lar morphology.(35) The width of the FC was significantly
decreased and the CC was significantly increased in the experi-
mental right/extraction and left/non-extraction condyles com-
pared to control (Fig. 5A–E).

Considering the changes in the MCC zonal architecture of
experimental condyles, we assayed for levels of chondrocyte

markers Col2a1 and Col10a1 and osteoblast/fibroblast marker
Col1a1 to determine MCC composition at the molecular level.
Col2a1 (Fig. 5F–I) and Col10a1 (Fig. 5J–M) expression was
increased in experimental extraction and non-extraction con-
dyles compared to control (Fig. 5R). Thus, the increase in marker
expression and expansion of the cell regions suggests there was
expansion of maturation and hypertrophic chondrocytes in
response to altered occlusion. Col1a1 expression was unchanged
in control and experimental condylar subchondral bone (data
not shown) but was decreased in experimental MCCs compared
to control (Fig. 5N–R). Overall, our data show that the unilateral
loss of maxillarymolars resulted in a shift toward further differen-
tiated chondrocytes in the MCC.

Discussion

To test the effects of asymmetric tooth loss and subsequent
altered occlusion on craniofacial skeletal adaptation and disease
in rapidly growing animals, we unilaterally extracted all molars
from the maxillary right quadrant in P21 mice and analyzed the
skulls at P42. We discovered that unilateral tooth loss resulted
in robust, bilateral shape changes in experimental (extraction
and non-extraction side) mandibles, most strikingly in the con-
dyles. Both left and right experimental condyles were narrower
and showed increased convexity of the condylar head surface.
Our studies are the first to exploit GMA to catalog three-
dimensional (3D) morphologic changes in the mandibular con-
dyles.(30,31) Furthermore, both experimental condylar processes
showed an �15% decrease in total bone volume but an �5%
increase in BMD compared to control condyles. Increased degen-
erative changes were noted in both left and right condyles from
experimental mice, and the proliferative and differentiated carti-
lage zones within the MCC were altered with a shift toward
markers of maturation and hypertrophic chondrocytes.

Our tooth extractionmousemodel provides important advan-
tages to prior occlusion-altered animal models. First, prior rodent
models with anterior crossbites,(6–8) posterior-lateral shifts,(9–11)

Right condyle (Extraction) Left condyle (Non-extraction)
Control Experimental Control Experimental
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Fig. 4. The condylar processes in extraction mice have osteoarthritic-like changes. (A–D0) Safranin O staining shows increased staining in the experimen-
tal mice on the right (extraction B,B0) and left (non-extraction D,D0) sides compared to control (A,A’,C,C0). (E) Mankin scoring was performed (Supplemental
Table S2 describes scoring criteria), and the scores for the Ext and Non-ext experimental condyles were significantly increased compared to control. n= 9
experimental and 9 control mice; *p < 0.05; scale bar = 200 μm. Ext = extraction; Non-ext = non-extraction.
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or occlusal interferences,(12,13) are all “additive” models in that
appliances are bonded to induce specific changes in occlusion.
Unfortunately, these “additive” models are heavily dependent
on appliance design/fabrication and operator technique that
are difficult to reproduce. This fact is evidenced in studies using
appliances to induce similar occlusal changes, such as disclusion
of the teeth with buildups/appliances increasing the height of
the molars or incisors, only to generate opposing, confounding
data, such as thickening(14) or thinning(12,15) of the MCC. Con-
versely, tooth extractions are “subtractive,” relatively simple,
tractable, and do not need subsequent appliance checks. Sec-
ond, unilateral and bilateral tooth extractions to induce changes
in the TMJ have been performed on rhesus monkey,(16) sheep,(17)

rabbit,(18) and rat,(19,20) but surprisingly, not in mice. The rela-
tively small size of mice, especially at P21, may have previously

precluded their utilization. We demonstrate here that mouse
molars can be extracted with ease to induce changes in the con-
dyles. Moreover, we will take advantage of the numerous trans-
genic mouse lines with specific gene activations or altered
signaling pathways for in vivo mechanistic studies. Third, we
can readily perform tooth extractions in post-P21 mice to deter-
mine the potential and capacity for growth, adaptation, and
degeneration in the mandibular condyle as mice age.

The MCC has growth and adaptive potential, as shown by
alterations in the MCC during progression of TMJ osteoarthritis
in humans(24–26) and in response to altered occlusion in animal
models(6,8,18); however, the extent of the adaptive potential
and the mechanisms underlying it are not understood. In our
study, there was an increase in the thickness of the MCC, partic-
ularly in the CC layer. Notably, Jung and colleagues(12) observed
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Fig. 5. Extraction results in alterations in the cellular and molecular structure of the mandibular condylar cartilage with an increase in maturation and
hypertrophic chondrocytes (A–D0) H&E staining shows the CC layer (demarcated by black line) of the MCC was thicker and the FC layer (marked by purple
line) was thinner in the experimental compared to control in the right (extraction; A–B0) and left (non-extraction; C–D0) condyles. (E) Graph showing quan-
tification of the CC and FC widths in μm in the control right and left sides (white bar), experimental right/extraction side (dark gray), and experimental left/
non-extraction side (light gray). CC was significantly increased and FC was significantly decreased in extraction and non-extraction experimental condyles
compared to control. (F–Q) RNAscope with probe against Col2a1 (red, counterstain purple) shows increased expression in both the left/non-extraction (I)
and right/extraction (G) side experimental MCC compared to control (F,H). There was increased expression of Col10a1 in theMCC of non-extraction (K) and
extraction (M) condyles in experimental mice compared to control (J,L). Col1a1 expression in the subchondral bone was similar, however, Col1a1 was
decreased in the superficial layer of the MCC in the experimental condyles (O,Q) compared to control (N,P). (R) Graph of quantification of the RNAscope
expression. n = 5 experimental and 6 control mice for H&E and n = 5 experimental and 4 control mice for RNAscope; *p < 0.05; scale bar = 200 μm.
CC = calcified cartilage; FC = fibrocartilage; MCC = mandibular condylar cartilage.
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a decrease in MCC thickness when mouse maxillary left molars
were built up with resin to produce premature occlusal contact.
The increased thickness in the MCC was accompanied by
increased expression of mature (Col2a1) and hypertrophic
(Col10a1) chondrocyte molecular markers. These data show a
shift toward differentiated chondrocytes as part of the adaptive
response in the MCC. Alterations in MCC cellular composition(18)

and expression of collagen proteins(14) have been shown in ani-
mal models; however, here we rely on cellular morphology and
molecular markers of chondrocytes to clearly show the response
of the chondrocytes in the MCC to asymmetric occlusion. These
chondrocytes may then transdifferentiate into osteoblasts, as
has been shown,(36,37) and remodel bone, generating the
changes in condylar shape and BMD observed. Lineage tracing
experiments in our tooth extraction model will provide more
insight into the fate of the MCC cells during the adaptive
response.

The decreased bone volume and increased Mankin scores in
the experimental condylar processes compared to control sug-
gest that an osteoarthritis-like phenotype was induced with uni-
lateral tooth extractions. Although intermediate stages of
change were not assessed, it is possible that there may have
been initial bone loss and degeneration in the first 1 to 2 weeks
after extraction due to decreased function, followed by initiation
of an adaptive response, as suggested by the increased density
of the bone at the condylar surface in experimental mice com-
pared to control and alterations in the MCC. We will analyze
our tooth extraction model at additional stages to better under-
stand the progression of occlusion-associated TMD.

Improved understanding of how the MCC develops, is main-
tained, adapts and/or degenerates at the cellular and molecular
level will help identify therapeutic targets in growth regulation
and inhibition of degeneration of the mandibular condyle in
patients. There is tremendous potential with increased under-
standing of the MCC to improve treatment for skeletal malocclu-
sion, which often includes too much or too little growth of the
condyle, and TMJ degenerative disease, in which improved
adaptation of the MCC may arrest disease progression. Here,
we show the response of the mandibular condyle and MCC to
altered occlusion in a tooth extraction mouse model, which
may be utilized to further our mechanistic understanding of
these adaptive and degenerative processes.
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