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Metformin is a first-line drug for type 2 diabetes, and its anticancer effects have

also been widely studied in recent years. The Sonic hedgehog (Shh) signaling

pathway is involved in the initiation and progression of medulloblastoma. In

order to develop a new treatment strategy for medulloblastoma (MB), this study

investigated the inhibitory effect of metformin on MB and the underlying

mechanism of metformin on the Shh signaling pathway. The effect of

metformin on proliferation was evaluated by the cell counting kit-8 (CCK-8)

test and colony formation experiment. The effect of metformin on metastasis

was assessed by the scratch-wound assay and transwell invasion assay. Cell

cycle and apoptosis were evaluated by flow cytometry, and the associated

proteins were examined by western blotting. ThemRNA and protein expression

levels related to the Shh pathway were measured by quantitative PCR, western

blotting, and immunofluorescence staining. The xenograft murine model was

carried out to evaluate the anticancer effect of metformin on medulloblastoma

in vivo. Metformin inhibited proliferation and metastasis of the Shh subgroup

MB cell line, and the inhibitory effect on proliferation was related to apoptosis

and the block of the cell cycle at the G0/G1 phase. Animal experiments showed

that metformin inhibits medulloblastoma growth in vivo. Moreover, metformin

decreased mRNA and protein expression levels of the Shh pathway, and this

effect was reversed by the AMP-activated protein kinase (AMPK) siRNA.

Furthermore, the pro-apoptotic and cell cycle arrest effects of metformin on

Daoy cells could be reversed by the Shh pathway activators. Our findings

demonstrated that metformin could inhibit medulloblastoma progression

in vitro and in vivo, and this effect was associated with AMPK-mediated

inhibition of the Shh signaling pathway in vitro studies.
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Introduction

MB is the most common malignant brain tumor in children,

accounting for about 20% of all brain tumors in children under

15 years of age (Patel et al., 2014). MB has the characteristics of

high malignancy, rapid growth, easy metastasis, and easy

recurrence, and the 5-year survival rate is only 50%–75%

(Northcott et al., 2019). The comprehensive treatment of MB

patients with surgery, radiotherapy, and chemotherapy is

effective for most patients with medulloblastoma. Still, most

survivors endure the adverse effects of radiotherapy and

chemotherapy for a long time, including developmental,

neurological, and endocrine misalignment (Yeole et al., 2021).

With the development of molecular diagnostics, MB has been

divided into four subgroups (Wnt, Shh, Group 3, and Group 4)

(Chatterjee et al., 2022). The Shh subtype accounts for about

30%, which is more common in infants and adults and has a poor

prognosis. In most cases, the Shh subgroup involves somatic

mutations in one or more genes of the Shh pathway (such as Ptc,

Sufu, or Smo, etc.), leading to abnormal activation of the pathway

and further leading to the occurrence of MB((Amayiri et al.,

2021), (Skowron et al., 2021)).

Metformin is an oral hypoglycemic drug for treating type

2 diabetes, which mainly acts through AMPK (de Marañón

et al., 2022). Previous clinical observational studies have found

that taking metformin can significantly reduce the incidence

and mortality of various cancers, including gastric cancer,

thyroid cancer, and prostate cancer (Kim et al., 2014;

Heckman-Stoddard et al., 2017; Park et al., 2018). In the

study of prostate cancer and breast cancer, it was also found

that activation of AMPK mediates the anticancer effects of

metformin (Fan et al., 2015; Chen et al., 2021). In recent years,

studies have found that AMPK has a direct and indirect

regulatory impact on the Shh pathway. In this study, we

selected the Daoy and ONS-76 cell lines (Shh pathway-

activated medulloblastoma) as the research object (Azatyan

et al., 2021). We examined the inhibitory effect of metformin

on MB and identified its association with the AMPK/Shh

signaling pathway.

Methods

Chemicals

Metformin was ordered from Sigma-Aldrich (St. Louis, MO,

United States). Fetal calf serum (FBS), RPMI 1640 medium, and

0.25% Trypsin-EDTA were purchased from Gibco (Grand

Island, NY, United States). Smoothened Agonist SAG was

purchased from Abcam (Cambridge, MA, United States). The

small interfering RNA (siRNA) specific to AMPK (sc-45312) and

normal control (sc-37007) came from Santa Cruz (CA,

United States). The CCK-8 was purchased from Dojindo

Chemical Research Institute (Tokyo, Japan). 0.5% crystal

violet was ordered from Sigma-Aldrich (St. Louis, MO,

United States). The primary antibody of Caspase-3 (AF6311),

Cleaved-caspase-3 (Asp175) (AF7022), Bax (AF0120), Bcl-2

(AF6139), Cyclin B1 (AF6168), Cyclin D1 (AF0931), Cdk4

(DF6102), Shh (DF7747), Ptc (AF5202), Smo (DF5152), Sufu

(DF7687), Gli-1 (DF7523), AMPK alpha (AF6423), Phospho-

AMPK alpha (Thr172) (AF3423), and β-actin (AF7018) for

western blot was obtained from Affinity Biosciences

(Cincinnati, OH, United States). All primary antibodies were

used at a ratio of 1:1,000 in western blot assays.

Cell culture

The Daoy and ONS-76 cell lines were obtained from

American Type Culture Collection (ATCC, Manassas, VA,

United States). The Daoy and ONS-76 cells were maintained

in RPMI 1640 medium supplemented with 10% FBS and 1%

penicillin–streptomycin (HyClone, Logan, UT, United States).

The cells were maintained at 37°C with 5% CO2 under the

condition of a humidified atmosphere.

RNA interference

To transfect Daoy cells, the AMPKα1 siRNA or control

siRNA was used with Lipofectamine 3,000 Transfection

Reagent (Invitrogen, Carlsbad, CA, United States), according

to the manufacturer’s protocol. The cells were treated in a serum-

free medium for 48 h after transfection, then used in the

following experiments.

Cell proliferation analysis

The CCK-8 assay was performed to detect cell

proliferation according to the instructions of the kit. The

Daoy and ONS-76 cells were seeded into a 96-well plate at

a density of 8 × 103 cells/well and treated separately with

different concentrations of metformin and SAG (100 nm)

after cell attachment. Subsequently, 10 μL CCK-8 and

100 μL fresh RPMI 1640 medium solution were added to

each well and incubated for 1 h. The absorbance at 450 nm

was measured with a microplate reader (Thermo Fisher

Scientific, Waltham, MA, United States). For the colony

formation experiment, Daoy and ONS-76 cells were

trypsinized, and 500 viable cells were seeded into 6-well

plates. After 24 h, the cells were treated with metformin at

a concentration of 0, 1, 3, and 9 mm. After 7 days, the cells

were fixed and dyed with 0.5% crystal violet staining (Sigma-

Aldrich, St. Louis, MO, United States). Finally, the number of

visible colonies was counted.
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Scratch assay

A scratch was made on the top center of cells using a sterile

plastic 200-μL micropipette tip. And the medium was replaced

with a serum-free medium. Cell migration at 0, 12, 24, and 48 h

after scratching was recorded with a microscope. We used Adobe

Photoshop (Adobe Systems, San Jose, CA, United States) to

measure the scratch with to calculate the migration rate.

Cell invasion assay

Daoy cells were seeded into the 6.5 mm Matrigel-coated (BD

Biosciences, San Jose, CA, United States) Transwell inserts (Corning

Costar Corp, Cambridge, MA, United States) at a density of 3 × 105

cells per insert. RPMI 1640 medium with 20% FBS and pure RPMI

1640 medium without FBS were respectively placed in the lower and

upper chambers. Following 24 h of treatment with different

concentrations of metformin, the cells in the lower chamber were

fixed with 4% paraformaldehyde and stained with 0.5% crystal violet.

Then the cell images were captured and counted

at ×200 magnification using a Nikon Eclipse E 400 microscope

(Nikon, Fukuoka, Japan). Finally, we used ImageJ (National Institutes

of Health, Bethesda, MD, United States) to measure the cell number.

Apoptosis analysis

Daoy cells were seeded into a 6-well plate (1 × 106 cells/well)

and treated separately with different metformin concentrations

and SAG (100 nm) for 24 h. The cells were trypsinized, then

washed with phosphate-buffered saline (PBS). We used the

Annexin V-fluorescein isothiocyanate (FITC) kit (Beyotime

Institute of Biotechnology) to quantify apoptosis, according to

the instructions. The cells were resuspended in a binding buffer

and stained with Annexin V-FITC/propidium iodide (PI). Cell

apoptosis was examined by flow cytometry (Thermo Fisher

Scientific, Waltham, MA, United States). Data analysis was

analyzed using the FlowJo software (Tree Star Inc, Ashland, OR).

Cell cycle analysis

Daoy cells were seeded into a 6-well plate (1 × 106 cells/well)

and treated separately with different metformin concentrations

and SAG (100 nm) for 24 h. The cells were trypsinized, then

washed with PBS. The cells were centrifuged and fixed with ice-

cold 70% ethanol at 4°C overnight. The cells were incubated with

RNase (Dojindo, Kumamoto, Japan) and PI in an incubator at

37°C for 30 min (min) on the second day. The cell cycle

distribution was examined by flow cytometry (Thermo Fisher

Scientific, Waltham, MA, United States). Data analysis was

analyzed using the FlowJo software.

Quantitative PCR

Daoy cells were seeded into a 6-well plate (1 × 106 cells/well)

and treated with different metformin concentrations for 24 h.

Total cellular RNA was extracted with TRIzol reagent

(Invitrogen) according to the manufacturer’s instructions. The

total RNA extracted was then reverse-transcribed into cDNA

with the PrimeScript RT Master Mix. The primers specific for

each molecule were designed to generate the PCR products. The

following primers were used: Shh-Forward: 5′-CGCACGGGG
ACAGCTCGGAAGT-3’; Shh-Reverse: 5′-CTGCGCGGCCCT
CGTAGTGC-3’; Smo-Forward: 5′-TTACCTTCAGCTGCC
ACTTCTACG-3’; Smo-Reverse: 5′-GCCTTGGCAATCATC
TTGCTCTTC-3’; Ptc-Forward: 5′-TCT GCAGCAACTATA

CGAGC-3’; Ptc-Reverse: 5′-GAACAGCTCGACC GTCATCA-

3’; Gli-1-Forward: 5′-GGACAACCGCCATCCAGACT-3’; Gli-
1-Reverse: 5′-GCCAGGGACACCTCCATCTC-3’; GAPDH-

Forward: 5′-TCACCATCTTCCCAGGAGCGAG-3’; GAPDH-

Reverse: 5′-TGTCGCTGTTGAAGTCAGAG-3’. The samples

were examined with a PCR array (Takara, Japan). Data were

analyzed by the 2−ΔΔCT method.

Western blot analysis

The cells are properly treated and placed on ice before adding

RIPA buffer containing protease inhibitor cocktail (ratio, 100:1)

(Roche Diagnostics Corp. Indianapolis, IN, United States). The

protein concentration was examined by the BCA method

(ab102536; Abcam), separated by 8%–12% sodium dodecyl

sulfate–polyacrylamide gel electrophoresis, then transferred to

a polyvinylidene difluoride membrane (Abcam, Cambridge, MA,

United States). Subsequently, the membrane was blocked with

5% non-fat milk in Tris-buffered saline containing Tween-20

(TBST) for 90 min at room temperature. Then the membrane

was washed with TBST and incubated at 4°C overnight with the

primary antibody in a ratio of 1:1,000. The next day, the

membrane was washed with TBST and followed by incubation

with horseradish peroxidase-coupling secondary antibody (goat

anti-rabbit) at room temperature for 2 h. At last, the membrane

was washed with TBST and detected with BeyoECL Plus

developer (Beyotime, Shanghai, China) using the Bio-Rad

Molecular Imager FX.

Immunofluorescence staining

Daoy cells were treated separately with metformin (3 mm)

and SAG (100 nm) for 24 h, fixed in 4% paraformaldehyde for

15 min at room temperature and then permeabilized with 0.2%

Triton X-100 for 20 min. After blocking for 30 min in 10% goat

serum, the cells were incubated with the primary antibodies Gli-1

(1:200 dilution) overnight at 4°C. Then, the cells were washed
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three times with PBS and incubated with AlexaFluor 488 (goat

anti-rabbit IgG, Abcam, Cambridge, UK, 1:1,000 dilution) for 1 h

at room temperature. Finally, the cells were stained with Dapi

(1 μg/ml) for 10 min and imaged using an inverted

IX71 microscope system (Olympus, Tokyo, Japan). The mean

intensity was measured by ImageJ software.

Tumor xenografts in nude mice

Daoy cells (5 × 106) were resuspended in PBS and injected

subcutaneously into 6-week-old BALB/c nude mice (Shanghai

Laboratory Animal Center, Shanghai, China). About 10 days

later, the mice were randomly assigned to two groups (control

group andmetformin group). Themice in the control group were

orally administrated with 300 μL PBS daily, while the mice in the

metformin group were orally administrated with 300 μL

metformin (200 mg/kg) daily. The mice were measured for

body weight and tumor volume every 3 days. The tumor

volumes were measured using a vernier caliper and calculated

as 0.5 × length × width2. After 24 days of treatment, the tumors

were removed from the mice, weighed, and photographed. All

mouse studies were carried out according to the institutional

guidelines for the use of animals, and all procedures were

approved by the Ethics Committee of the Second Affiliated

Hospital of Wenzhou Medical University.

Statistical analysis

Statistical results were analyzed with GraphPad Prism 8.00

(GraphPad Software, Version X; La Jolla, CA, United States). All

experimental data were shown as mean ± standard deviation.

Data were statistically analyzed by Student’s t-test, one-way

analysis of variance (ANOVA), or two-way ANOVA. p <
0.5 was considered statistically significant.

Results

Metformin inhibited the growth,
migration, and invasion of the Shh
subgroup MB cell line

To examine the anticancer effect of metformin in Shh

subgroup MB, cell viability was detected by the CCK-8 assay.

After treating Daoy cells with metformin (0, 1, 3, and 9 mm) for

12 h, 24 h, 48 h, and 72 h, we found the cell viability decreased

with the increase in metformin concentration and treatment time

(Figure 1A). The results of the colony formation experiment

showed that the number and size of the colonies decreased with

the increase in metformin concentration (Figures 1B and C).

Similar results were obtained in ONS-76 cells (Supplementary

Figure S1). Scratch-wound assay (for migration) and transwell

invasion assay (for invasion) were used to investigate the effect of

metformin on the Daoy cell migration and invasion. Compared

with the control group, the cellular migration and invasive

capacity decreased with the increased metformin

concentration and prolonged treatment time (Figures 2A–D).

Metformin promoted apoptosis of the Shh
subgroup MB cell line

To determine the apoptosis effect of metformin on Daoy

cells, cell apoptosis was detected by flow cytometry. After treating

Daoy cells with metformin (0, 1, 3, and 9 mm) for 24 h, the

percentage of apoptotic Daoy cells elevated with the increase of

metformin concentration (Figures 3A and B). In western blot,

metformin inhibited the expression level of Bcl-2 and promoted

the levels of Bax and Cleaved-caspase-3 in Daoy cells but had no

significant effect on Caspase-3 (Figures 3C and D). These results

indicated that metformin induced the apoptosis of Daoy cells.

Metformin arrested cell cycle of the Shh
subgroup MB cell line

To investigate the effect of metformin on the Daoy cell

cycle, the cell cycle was detected by flow cytometry. After

treating Daoy cells with metformin (0, 1, 3, and 9 mm) for

24 h, the percentage of cells in the G0/G1 phase was increased,

and the rate of cells in the S and G2/M phase was decreased

(Figures 4A and B). In addition, the expression of key G1-phase

proteins Cyclin D1, CDK4, and the mitosis-related protein

Cyclin B1 decreased (Figures 4C and D). These results

indicated that metformin arrested the cell cycle of Daoy cells

in the G0/G1 phase.

Metformin suppressed the Shh signaling
pathway through AMPK in the Shh
subgroup MB cell line

To determine the effects of metformin on Shh signaling and

whether this effect is exerted by activating AMPK. After treating

Daoy cells with metformin (0, 1, 3, and 9 mm) for 24 h, the

mRNA and protein levels of Shh, Smo, Ptc, and Gli-1 decreased

in a dose-dependent manner following treatment with

metformin (Figures 5A–C). To verify the role of AMPK in

regulating the expressions of Shh signaling pathway proteins,

we treated Daoy cells with AMPK siRNA for 24 h and then

treated them with metformin (3 mm) for another 24 h. The

results showed that metformin upregulated the

phosphorylation level of AMPK (Thr172) (p-AMPK). In

addition, the effect of metformin on reducing Gli-1 expression
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FIGURE 1
Metformin inhibited the proliferation of Daoy cells. (A) CCK-8 assay was used to investigate the effects of metformin treatment on cell viability
(n = 6). (B,C) Colony formation assay was used to detected the effects of metformin treatment on clone ability of cells (n = 3). Data are presented as
the mean ± SD, t-tests were used to determine the significance. *p < 0.05; ***p < 0.001 compared with the control group.

FIGURE 2
Metformin suppressed the migration and invasion of Daoy cells. (A,B) Scratch assay was used to assess the migration ability of Daoy cells after
metformin treatment (n= 4). (C,D) Transwell assay was used to assess the invasion ability of Daoy cells after 24 h ofmetformin treatment (n= 3). Data
are presented as the mean ± SD, t-tests were used to determine the significance. *p < 0.05; **p < 0.01; ***p < 0.001 compared with the control
group.
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could be reversed by AMPK siRNA (Figure 5D). These results

indicated that the molecular mechanism by which metformin

suppressed Shh signaling pathway might involve the activation

of AMPK.

The antitumor effect of metformin on MB
partly depended on the Shh pathway

To explore whether the Shh pathway mediates the antitumor

effect of metformin on medulloblastoma, after the treatment of

Daoy cells with SAG (100 nm) and metformin (3 mm), we found

that the SAG can attenuate the inhibitory effect of metformin on

Gli-1 (Figures 6A and B). In the detection of cell proliferation

viability, SAG also reduced the inhibitory effect of metformin on

cell viability (Figure 6C). This effect may be related to apoptosis

and cell cycle arrest. We found that SAG can reduce the pro-

apoptotic and cell cycle arrest effects of metformin on Daoy cells

(Figures 6D–G). These results suggested that the Shh signaling

pathway mediated the anti-proliferation effect of metformin on

the Daoy cells by participating in apoptosis and cell cycle

(Figure 7).

Metformin resisted Shh subgroup MB
growth in vivo

We conducted animal experiments to explore the anticancer

effect of metformin on Shh subgroup MB in vivo. Oral

administration of 300 μL metformin (200 mg/kg) or an

equivalent volume of PBS was adopted after the subcutaneous

formation of the tumor using Daoy cells. After treatment for

24 days, the mice in the metformin group demonstrated reduced

tumor volumes and reduction in excised tumor weights when

compared to the mice in the control group (Figures 8A–D).

During the experiment, there was no significant difference in

body weight between the two groups of mice (Figure 8E).

Discussion

Most Shh subgroup MBs contain germline or somatic

mutations in Shh signaling pathway-related genes, resulting in

the activation of Shh signaling and promoting tumor progression

(Cotter and Hawkins, 2022). Commonly mutated or deleted

genes included Ptc (43%) and Sufu (10%); in addition, Smo

FIGURE 3
Cell apoptosis was induced bymetformin treatment on Daoy cells. (A,B) Flow cytometry was used to analyze apoptosis on Daoy cells after 24 h
of metformin treatment (n = 3), Annexin V-FITC-positive cells (Q2 + Q4) were considered as apoptotic. (C,D) Apoptosis-associated proteins were
analyzed using western blot analysis. The relative Bcl-2, Bax, Caspase-3, and Cleaved-caspase-3 were normalized to that of β-actin (n = 4). Data are
presented as the mean ± SD, t-tests were used to determine the significance. *p < 0.05; **p < 0.01; ***p < 0.001 compared with the control
group.
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FIGURE 4
Cell cycle was blocked at the G0/G1 phase by metformin treatment on Daoy cells. (A,B) Flow cytometry was used to detect cell cycle
distribution on Daoy cells after 24 h of metformin treatment (n = 3). (C,D) The proteins associated with the cell cycle were analyzed using western
blot analysis. The relative Cyclin B1, Cyclin D1, andCdk4 levels were normalized to that of β-actin (n= 4). Data are presented as themean ± SD, t-tests
were used to determine the significance. *p < 0.05; **p < 0.01; ***p < 0.001 compared with the control group.

FIGURE 5
Metformin inhibited the expression of the Shh signaling pathway in Daoy cells. (A) The mRNA levels of Shh, Smo, Ptc, and Gli-1 were analyzed
using quantitative PCR after 24 h of metformin treatment; GAPDH served as a control (n = 3, t-tests were used to determine the significance). (B,C)
The protein levels of Shh, Smo, Ptc, Sufu, and Gli-1 were analyzed using western blot analysis after metformin treatment, β-actin served as a control
(n= 4, t-tests were used to determine the significance). (D–F) The protein levels of AMPK, p-AMPK (Thr172), and Gli-1 were analyzed bywestern
blot after AMPK siRNA andmetformin (3 mM) treatment for 24 h, β-actin served as a control (n= 3, one-way ANOVAmultiple comparisons were used
to determine the significance). Data are presented as themean ± SD. *p < 0.05; **p < 0.01; ***p < 0.001 compared with the control group. #p < 0.05;
##p < 0.01 compared with the met + nc-siRNA group. P < 0.05; and p < 0.01 compared with the met + AMPK-siRNA group.
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(9%) mutations, Gli-1/2 (9%), and N-myc (7%) amplifications

were sometimes observed (Northcott et al., 2017). Early studies

on Smo antagonists showed a good inhibitory effect on the Shh

pathway. Unfortunately, drug resistance occurs due to mutations

in SMO and its downstream genes (Yauch et al., 2009; Ocasio

et al., 2019). Therefore, multi-target combination therapy may be

a necessary means to effectively control the disease. Metformin is

a biguanide semi-synthetic oral hypoglycemic drug, mainly used

for the treatment of type 2 diabetes. In 2005, Evans JM et al. first

found that metformin reduces the incidence of tumors in patients

with type 2 diabetes, and a series of related basic and clinical

studies have been carried out since then (Evans et al., 2005;

Higurashi et al., 2016; Munoz et al., 2021). In the present study,

we found that metformin exhibited anticancer activity in MB by

inhibiting cell proliferation, migration, and invasion in a dose-

and-time-dependent manner in vitro. Moreover, metformin also

showed an inhibitory effect on MB growth in vivo experiments.

Among them, metformin inhibited cell proliferation by

regulating cell cycle and apoptosis. Crucially, we found that

metformin inhibited Shh signaling pathway in MB, and

AMPK mediated part of this effect.

FIGURE 6
Metformin exerted antitumor effect on Daoy cells through the Shh signaling pathway. (A,B) The cells were treated with SAG (100 nm) for and
metformin (3 mm) for 24 h and assessed by immunofluorescence assay with an anti-Gli-1 antibody (scale bar, 50 μm). (C) The cells were treated with
SAG (100 nm) and metformin (3 mm) for 24 h, and the viability of cells were tested by CCK-8 assay. (D–G) Flow cytometry was used to analyze
apoptosis and cell cycle distribution on Daoy cells after SAG (100 nm) for andmetformin (3 mm) for 24 h. Data are presented as themean ± SD,
one-way ANOVA multiple comparisons were used to determine the significance. *p < 0.05; **p < 0.01; ***p < 0.001 compared with the control
group. #p < 0.05; ##p < 0.01; ###p < 0.001 compared with the met group.

FIGURE 7
Schematic diagram of the proposed molecular mechanism
by which metformin exerts anticancer effects via AMPK-mediated
inhibition of the Shh signaling pathway in medulloblastoma.
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As a programmed cell death, apoptosis plays a key role in

cancer therapy. Caspase-3 is an important protease in the process

of apoptosis, and its activated form is involved in DNA repair and

cell proliferation (Sergeeva et al., 2017). Previous studies have

shown that metformin has a dual effect on apoptosis in different

diseases, both promoting and inhibiting apoptosis. In studies

related to cardiomyopathy, metformin inhibits apoptosis by

reducing the expression of Cleaved-caspase-3, thereby

attenuating hyperhomocysteinemia-induced cardiac

hypertrophy and cardiac fibrosis (Zhao et al., 2021). However,

metformin can reduce mitochondrial oxidative phosphorylation

and intracellular ATP content, activate AMPK, and increase

apoptosis in breast cancer cells (Haugrud et al., 2014). In

related studies of the Shh signaling pathway, Ptc can activate

caspase-mediated apoptosis when thhe Shh signaling pathway is

inhibited (Brennan et al., 2012; Sigafoos et al., 2021). This study

shows that metformin induces apoptosis in Daoy cells. The

results showed that Daoy cells treated with metformin showed

a significant downregulation of the anti-apoptotic protein Bcl-2,

while the pro-apoptotic protein Bax and Cleaved-caspase-

3 increased. The results also showed that the mRNA and

protein expression levels of the Shh pathway were significantly

decreased in metformin-treated Daoy cells in a dose-dependent

manner. To further investigate the correlation between the

apoptotic effect of metformin and its inhibitory effect on the

Shh signaling pathway, we treated cells with SAG (a specific

activator of the Shh signaling pathway). We observed that SAG

could reverse part of the apoptosis-promoting effects of

metformin. These findings support a significant role in the

inhibition of the Shh signaling pathway in metformin-induced

apoptosis in Daoy cells.

Disorders of cell cycle regulation exist in the occurrence and

development of most malignant tumors. Previous studies have

shown that G0/G1 cell cycle arrest is a mechanism of metformin’s

antitumor effect, which has been demonstrated in lung and kidney

cancer cells (Jin et al., 2017; Xie et al., 2017). Regulation of the cell

cycle is dependent on the action of a series of Cyclin-Cdk-CD

inhibitors (Knudsen et al., 2022). These special complexes regulate

each phase of the cell cycle. Cyclin D1/Cdk1-4 are vital proteins

regulating the G1/S transition, while Cyclin B1 initiates mitosis by

promoting the cell G2/M transition (Khan et al., 2022). The

dysregulated expression of the cell cycle-related proteins plays

an important role in the growth, differentiation, apoptosis, and

metastasis of various tumor cells (Montalto and De Amicis, 2020).

Western blot results of this study showed that Daoy cells treated

with metformin showed a significant downregulation of the

decreased Cyclin D1, Cdk4, and Cyclin B1 expression. This is

consistent with our observation in flow cytometry that the cell

cycle was arrested in the G0/G1 phase. The Shh pathway also plays

an important role in regulating the cell cycle. Gli-1 can promote

the transcription of Cyclin D1, and Ptc can phosphorylate Cyclin

B1 to promote cell proliferation (Barnes et al., 2001; Sigafoos et al.,

2021). In our study, SAG was able to partially reverse the cycle

arrest effect of metformin on Daoy cells. These results suggested

that the Shh signaling pathway is involved in metformin-mediated

cell cycle arrest in Daoy cells.

Tumor invasion and metastasis are closely related to

epithelial to mesenchymal transition (EMT). The occurrence

FIGURE 8
Metformin resisted Shh subgroup MB growth in vivo. (A) Photo of the nude mice bearing subcutaneous xenograft tumor. (B) Photo of tumors
removed from mice after 24 days of metformin (200 mg/kg) or PBS treatment. (C) Tumor volume was recorded every 3 days (D)The weight of the
excised tumor tissue. (E) Body weight of mice was recorded every 3 days (n = 6). Data are presented as the mean ± SD, two-way ANOVA multiple
comparisons were used to determine the significance. *p < 0.05; **p < 0.01; ***p < 0.001 compared with the control group.
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of EMT results in the weakening of tight junctions between epithelial

cells and the loss of epithelial cell polarity, thereby enhancing the

motility of epithelial cells (Jinesh and Brohl, 2022). The Shh

signaling pathway also played a role in promoting the occurrence

of EMT. In pancreatic cancer studies, it was found that the Shh

signaling pathway promotes the process of EMT by affecting the

components of various signaling pathways, including TGFβ, Ras,
Wnt, PI3K/AKT, Integrin, and S100A4 (Xu et al., 2012). The study

of gastric cancer also found that the increase in tumor lung

metastasis was related to the activation of EMT by the Shh

signaling pathway (Yoo et al., 2011). This is consistent with our

observation that metformin inhibited the migration and invasion of

Daoy cells, and inhibition of the Shh signaling pathwaymaymediate

this effect by reducing EMT activity.

AMPK is the most important downstream effector of

metformin and has been found to mediate the anticancer

effects of metformin in multiple tumor cell lines (Chen et al.,

2021; Lu et al., 2021). However, the relationship between AMPK

and the Shh pathway is not clear, some studies pointed out that

activated AMPK inhibits SHH signaling by phosphorylating Gli-1

and degrading it (Li et al., 2015). In addition, AMPK has indirect

regulatory effects on the Shh pathwaymediated by mTOR, FoxO1,

and GSK3β (Asha et al., 2020) (Sun et al., 2016). In the present

study, we found that metformin reduced the expression levels of

the Shh signaling pathway and increased the ratio of p-AMPK/

AMPK in Daoy cells. Gli-1 is an important downstream effector of

the Shh pathway, and its expression level was partially reversed by

AMPK siRNA under the inhibitory effect of metformin.Moreover,

with the reduction of Gli-1 expression, the expression of upstream

molecules in the pathway was also suppressed. Interestingly, the

expression of the pathway negative regulator Sufu was upregulated,

which may be related to the NEK2A-mediated indirect inhibition

of Sufu degradation by Gli-1. These results suggest that AMPK is

involved in regulating the non-canonical Shh pathway in Daoy

cells by metformin.

Our study showed that metformin inhibited the proliferation,

migration, and invasion of Shh subtype MB and promoted

apoptosis and cell cycle arrest. The AMPK/Shh signaling

pathway mediates part of this tumor suppressor effect.

However, the concentration of metformin in cell culture

(1–9 mm) is much higher than the plasma drug concentration

(5–25 µm) of patients (Dowling et al., 2016). In order to explore

the rationality of metformin as an anticancer drug, we established

a medulloblastoma xenograft mouse model and administered it

metformin orally at 200 mg/kg/day. According to the

Reagan–Shaw formula (Reagan-Shaw et al., 2008), the human

equivalent of the murine dose of 200 mg/kg is 973 mg in an

average-sized human (60 kg), while the standard human

therapeutic concentration of metformin is 1,000–2,500 mg/

day. Satisfyingly, this dose of metformin effectively inhibited

medulloblastoma growth and had no significant effect on growth

in mice. These results suggest that metformin may be a potential

chemotherapeutic agent for Shh-type medulloblastoma.

Nevertheless, the anticancer activity of such doses in mice and

the possibility of achieving comparable levels in humans by

rationally increasing the dose suggest a reassessment of

metformin dosing regimens in anticancer treatment to

optimize plasma drug levels and delivery to the tumor. In

future studies, we need to fully characterize the mechanism of

action of metformin at effective antitumor concentrations and

evaluate its efficacy as a viable anticancer therapy.
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