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Abstract: The aim was to compare pacing, biomechanical and perceptual responses between elite
speed-and endurance-adapted milers during a sprint interval training session (SIT). Twenty elite and
world-class middle-distance runners (male: n = 16, female: n = 4; 24.95 ± 5.18 years; 60.89 ± 7 kg)
were classified as either speed- or endurance-adapted milers according to their recent performances
at 800 m or longer races than 1500 m (10 subjects per group). Participants performed 10 repetitions
of 100 m sprints with 2 min of active recovery between each, and performance, perceptual and
biomechanical responses were collected. The difference between accumulated times of the last
and the first five repetitions was higher in speed-adapted milers (ES = 1.07) displaying a more
positive pacing strategy. A higher coefficient of variation (CV%) was displayed across the session
by speed-adapted milers in average repetition time, contact time, and affective valence (ES ≥ 1.15).
Speed-adapted milers experienced lower rates of valence after the 4th repetition excepting at the 8th
repetition (ES ≥ 0.99). Speed-adapted milers may need to display a more positive pacing profile than
endurance-adapted milers and, therefore, would experience lower levels of affective valence and a
more rapid increase of ground contact time during a SIT.

Keywords: athletics; exercise performance; perceptions; coaching

1. Introduction

The 800 m, 1500 m, and 3000 m events are considered middle-distance running races
and at the elite level are typically completed in between 1.6 and 10 min [1], meaning a
range of physiological and biomechanical qualities, which determines performance in these
events. Although middle-distance running events are characterized by a high relative
contribution from the aerobic energy system [2] and performance in these events is highly
correlated with the speed at which maximal oxygen uptake is achieved (vVO2max) [3],
the high speeds at which elite races are completed demand high levels of biomechani-
cal power output and a well-developed anaerobic capacity [4]. However, 1500 m and
mile runners (milers) can approach the event from either the 800 m or 3000 m ends
of the speed-endurance spectrum due to differing physiological adaptations achieved
through specific-distance training or innate characteristics such as the individual’s muscle
fiber [5]. Consequently, they may display different performance-related characteristics (i.e.,
a 800–1500 m runner would be able to produce greater power biomechanical output [6]
whereas a 1500–3000 m runner would display a higher relative contribution of the aerobic
energy system [2]. We can, therefore, classify these runners as either endurance-adapted
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or speed-adapted milers. In a similar vein, Nummela and Rusko [7] found a significantly
greater aerobic contribution for endurance trained subjects compared with sprint trained
participants during the first 30 s of 49 s of exhaustive treadmill running. Conversely, it has
been suggested that 800 m runners are required to display high levels of power output
early in the race, which are not required for success during the 3000 m event, whereas
during the latest stages of the race, the relative contribution of the aerobic energy system
increases [6].

Due to differing demands of the events, pacing strategies observed during 800 m
world record races are mostly positive (the second half of the race is covered slower than the
first) whereas in longer races such as 5000 m, runners display a fast end spurt [8,9]. From a
biomechanical perspective, in middle-distance running races, high ground reaction forces
are generated but they are lower than in sprint races [10]. Furthermore, a longer stride and
a shorter contact time has been observed in middle-distance runners when compared to
long-distance runners [11]. Whilst these biomechanical variables have not been found to
discriminate across performance level in runners [12], it has been observed that during a
repeated sprint ability (RSA) session, contact time and step length increased with fatigue
and lower speed whereas step frequency decreased [13]. Accordingly, speed-adapted
milers may be expected to display a more positive pacing profile when conducting a short
interval training (SIT) session than endurance-adapted milers and, although changes in
the biomechanical responses are to be expected throughout the session, these might also
differ between the two groups. Furthermore, any difference in pacing profile displayed
by the two types of milers may also result in differences in the progression of change
of perceptual responses during the SIT session. For example, a greater change in rating
of perceived exertion (RPE) across the session in the speed than in endurance-adapted
runners might be expected. However, a recently proposed three-dimensional framework
of centrally regulated and goal directed exercise behavior emphasizes the dynamic and
complex interplay of sensory, affective, and cognitive processes that underpin perceived
fatigability [14]. This framework more comprehensively accounted for perception–thinking–
action coupling in response to psychophysiological distress than the traditional Gestalt
concept of perceived exertion [14]. Therefore, another psychological variable that has
been demonstrated to be implicated in the awareness of achievement of performance
is core affect. Specifically, a more negative affective state or valence is associated with
low performance [14,15]. Accordingly, speed-adapted milers may also display a greater
change in affective valence than endurance-adapted runners across a SIT session due to
their presumably more positive pacing strategy. The analysis of these variables in elite
middle-distance runners may help coaches to make correct training decisions regarding the
optimal approach that should be used for each type of runner. Therefore, the aim of this
study was to compare the different performance, biomechanical and perceptual responses
among elite speed- and endurance-adapted milers during a SIT session.

2. Materials and Methods
2.1. Participants

Twenty elite middle-distance runners (male: n = 16, female: n = 4; age = 24.95 ±
5.18 years old; body mass = 60.89 ± 7 kg; height = 174.7 ± 6.48 cm) were recruited from
a professional middle-distance running group. All participants are currently active at
national or international level by the time of writing the present article and 15 of them
have been selected by their national federation to compete at international events. Two
of the participants competed at two final races of the 2019 World Championships of
Athletics. Runners competed at the 1500 m event regularly. Mean of their 1500 m best
performance during the year preceding the study was 230.56 ± 10.88 s for males, and
266.76 ± 6.3 s for females. Participants completed 7.2 ± 1.4 training sessions per week.
They had been systematically training for 7.7 ± 3.2 years. Neither physical limitations nor
musculoskeletal injuries that could affect testing for at least six months prior to the test
were reported. All participants provided written informed consent prior to participation in
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the experimental procedures. The study protocol adhered to the tenets of the Declaration
of Helsinki and was approved by the Institutional Review Board of Pablo de Olavide
University (935/CEIH/2019).

2.2. Experimental Design

An independent measures experimental design was employed involving assessment
of performance, biomechanical and psychological variables during one session of high-
intensity repetition running. Participants were divided in two groups of ten athletes
according to their coach’s perceptions. The coach based this decision on the target event
for the season, and the type of training being conducting (i.e., lower volume and higher
intensity in the training of the milers who also were training for 800 m and higher volume
and lower intensity in the training of the milers who also were training for either the 3000 m,
3000 m steeplechase, or 5000 m). Furthermore, this decision was further checked through
an analysis of the difference in recent competitive performances in both shorter (i.e., 800 m)
and longer (i.e., 3000 m, 3000 m steeplechase, and 5000 m) events than 1500 m. Fastest
performance times achieved by participants during competition in the 12 months prior to
testing were collected from the World Athletics open access website (www.worldathletics.
org (accessed on 5 February 2021)) and transformed into International Association of
Athletics Federations (IAAF) scores [16]. Participants were allocated to groups (speed- or
endurance-adapted) depending on whether they achieved a “better” recent performance
in either the shorter or longer events than 1500 m event.

Participants were requested to arrive for testing in a rested state, thereby having
avoided intense exercise during the previous 48 h. They also were instructed to be in a
fully hydrated state and having fasted for at least 3 h. These conditions were confirmed by
athletes prior to the test. They were asked to prepare their training and diet for 48 h prior to
the session, thereby simulating their typical routine before a high-intensity running session
or competition. This session was completed at 11 a. m. on a synthetic indoor athletics
running track. Temperature and humidity were constantly between 20 ◦C and 22 ◦C and
between 35 and 40%. A standardized warm-up protocol was used by all participants,
consisting of 15 min of running at a self-selected easy pace, 5 min of joint mobilization
exercises, and two 30 m running accelerations. Subsequently, athletes performed 10 bouts of
100 m sprints at the highest possible speed with an active recovery period of 2 min between
attempts in which they walked back to the starting point. Performance, biomechanical
and perceptual responses were collected from participants across the session. Coefficient
of variation for every measure collected from athletes during each repetition (CV%) was
calculated using the mean and standard deviation (SD) in order to assess the variability
in each variable across the SIT session. Specific distance length, number of repetitions,
and recovery times between repetitions were set in order to induce a demand for high
biomechanical outputs without a very high anaerobic glycolytic energy contribution, which
also may allow for a sufficient contribution of the aerobic system by means of a high muscle
O2 demand and greater reliance on oxidative metabolism [17,18].

2.3. Measures
2.3.1. 100 m Sprint Time and Maximal Speed

Sprint times were recorded for both 100 m and 30–40 m distances using photocell
timing gates (Polifemo Radio Light Racetime, Microgate, Bolzano, Italy). This intermediate
distance was chosen because it has been reported that top speed during a maximal sprint
is reached at this point [19]. Participants used a standing start, placing the leadoff foot
1 m behind the first timing gate. A standard crouched start position was adopted by
participants. They placed the toes of their preferred leg just behind the start line. Once
in position participants were asked to start the sprint when they would be ready for it.
Athletes were instructed to accelerate maximally, thereby attempting to complete the sprint
distance as fast as possible. Athletes wore spike shoes during the SIT.

www.worldathletics.org
www.worldathletics.org
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2.3.2. Biomechanical Variables

Ten meters of optoelectronic system (Optojump Next Microgate, Bolzano, Italy) were
installed on the lane of the indoor track from 30 to 40 m to analyze running stride patterns
during the maximum velocity phase. Ground contact time, flight time, step frequency, and
stride length were measured during this section, which represented the maximal speed
phase [19].

2.3.3. Ratings of Perceived Exertion (RPE)

The 15-point (6–20) Borg scale [20] was used to record RPE. Participants were encour-
aged to use decimals, and the scale was “anchored” in a way that a previous memory
of maximum exhaustion should equate to a score of 20. They were directly requested to
report “how hard, heavy, and strenuous this repetition was” [21]. In this way, they were
instructed to report the mental sense of effort generated by the task after each repetition.

2.3.4. Core Affect

Dynamic changes in core affective state in participants were analyzed through the use
of three different psychometric variables [14]. In this way, they were requested to indicate
dynamic changes in valence from −5 (“very bad”) to 0 (“neutral”) to +5 (“very good”) after
each 100 m repetition using the 11-point Feeling Scale (FS [22]). Participants also had to
indicate felt arousal just before the first 100 m repetition and after each 100 m repetition
through the 6-point Felt Arousal Scale (FAS [23]) from 1 (“low activation”) to 6 (“high
activation”). Using decimals was recommended in order to rate felt arousal.

2.4. Statistical Analyses

Statistical analyses were performed using the Statistical Package for the Social Sciences
24.0 (IBM, Armonk, NY, USA). Data were checked for normality of distribution, equality
of variances, and assumption of sphericity as appropriate. Greenhouse–Geisser correc-
tions were used if the sphericity assumption was violated. Two-way (group × repetitions)
repeated measures analysis of variance (ANOVA) was conducted on performance, biome-
chanical and perceptual variables with repeated contrast tests and Bonferroni’s post hoc
tests conducted to identify changes between successive repetitions and between groups
for each repetition, respectively. Means and CV% of performance, biomechanical and
perceptual variables, recent performance in 1500 m, and recent performance achieved
at respective events of each group were compared between groups using independent
t-tests, Cohen’s d [24] effect sizes (ES), and 95% confidence intervals (95% CI). The same
comparisons were conducted with performance, biomechanical and perceptual variables
for each repetition between groups and between successive segments for each group where
appropriate. Statistical significance was accepted at p < 0.05. Cohen’s d was considered
to be either trivial (d < 0.20), small (0.21–0.60), moderate (0.61–1.20), large (1.21–2.00), or
very large (2.01–4.00) [25]. Effect sizes of the ANOVA were calculated using eta partial
squared (ηp

2). In both figures, differences between successive repetitions and between
groups at each repetition have been indicated only when the effect size was moderate or
larger (d ≥ 0.61) and the 95% CI did not cross zero.

3. Results

In Table 1, means and SD of performance, pacing, biomechanical and perceptual
variables collected from both speed- and endurance-adapted milers and ES and 95% CI
from comparison of these variables between groups are displayed. Both groups displayed
similar recent performances in the 1500 m event (Table 1) and the only significant difference
between groups was found between accumulated times achieved in the first five and last
five 100 m repetitions. Therefore, although both groups displayed a positive pacing profile,
it was more pronounced in the speed- than endurance-adapted milers (Table 1). However,
despite displaying no significant differences, the rest of the variables showed either small
or moderate ES. Speed-adapted milers performed faster repetitions and displayed a faster
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maximal speed, a lower flight time, contact time, and valence, and a higher step frequency,
stride length RPE, and felt arousal than endurance-adapted milers (Table 1).

Table 1. Means and standard deviations (SD) of performance, biomechanical and perceptual variables collected to speed-
and endurance-adapted milers. Effect sizes (ES), p-value and confidence intervals (95% CI) calculated from the comparison
of these variables between groups.

Performance, Biomechanical
and Perceptual Variables

Mean ± SD
ES p 95% CI

Speed-Adapted Endurance-
Adapted

Performance (IAAF) 977.8 ± 132.65 980.9 ± 110.68 0.03 0.86 −118.14–111.94
Other perform (IAAF) 944.4 ± 164.98 1003.5 ± 127.6 0.4 0.38 −197.67–79.47
Times of 100 m rep (s) 12.97 ± 1.03 13.26 ± 0.72 0.33 0.47 −1.12–0.54
Maximal speed (m/s) 8.53 ± 0.62 8.28 ± 0.45 0.45 0.32 −0.27–0.76

Flight time (s) 0.126 ± 0.006 0.129 ± 0.01 0.31 0.49 −0.01–0.005
Contact time (s) 0.12 ± 0.007 0.13 ± 0.008 0.21 0.64 −0.09–0.005

Frequency (steps/s) 4.02 ± 0.13 3.95 ± 0.14 0.45 0.32 −0.07–0.19
Stride length (m) 212.28 ± 11.54 209.75 ± 11.79 0.22 0.63 −8.43–13.48

RPE 16.14 ± 1.86 15.48 ± 1.85 0.36 0.44 −1.08–2.4
Valence −1.12 ± 1.7 0.29 ± 1.96 0.77 0.09 −3.13–0.31

Felt arousal 3.64 ± 0.87 3.37 ± 0.98 0.29 0.53 −0.61–1.13
Halves difference (s) 2.36 ± 0.93 1.03 ± 1.48 1.07 0.03 0.17–2.49

Performance (IAAF): International Association of Athletics Federations (IAAF) performance scores at 1500 m event; other perform: IAAF
performance scores of each group at either shorter or longer events than 1500 m event, respectively. rep: repetition; frequency: step
frequency; RPE: rate of perceived exertion; halves difference: difference between accumulated times registered from the first 5 and last 5
100 m repetitions; SD: standard deviations; ES: Cohen’s d effect size; p: p-value; CI: confidence intervals.

In Table 2, means and SD of CV% of performance, biomechanical and perceptual
variables are displayed and comparisons between groups of these variables are shown. No
significant differences were found between groups in either 1500 m performance or longer
and shorter distances. A higher CV% in the speed- than in endurance-adapted milers with
moderate ES was shown in the average of repetition times and with large ES in contact
time and valence (Table 2).

Table 2. Means and standard deviations (SD) of the coefficient of variation (CV%) of performance, biomechanical and
perceptual variables collected to speed- and endurance-adapted milers. Effect sizes (ES), p-values and confidence intervals
(95% CI) calculated from the comparison of these variables between groups.

Performance, Biomechanical and
Perceptual Variables

Mean ± SD
ES p 95% CI

Speed-Adapted Endurance-
Adapted

Times of 100 m rep (%) 2.47 ± 0.74 1.64 ± 0.7 1.15 0.02 0.15–1.5
Maximal speed (%) 2.66 ± 0.44 2.45 ± 0.63 0.39 0.4 −0.3–0.72

Flight time (%) 0.13 ± 0.006 0.13 ± 0.009 0.4 0.38 −0.79–1.97
Contact time (%) 3.79 ± 0.82 2.66 ± 0.93 1.29 0.01 0.31–1.95

Step frequency (%) 3.79 ± 0.97 2.83 ± 1.35 0.82 0.08 −0.14–2.06
Stride length (%) 2.29 ± 0.55 2 ± 0.62 0.5 0.28 −0.26–0.85

RPE (%) 13.32 ± 3.56 12.1 ± 6.32 0.24 0.6 −3.61–6.03
Valence (%) 67.03 ± 35.16 30 ± 20.67 1.28 0.01 9.93–64.13

Felt arousal (%) 28.35 ± 14.04 20.26 ± 14.43 0.57 0.22 −5.29–21.46

Rep: repetitions; RPE: rate of perceived exertion; SD: standard deviations; ES: Cohen’s d effect size; p: p-value; CI: confidence intervals.

Figure 1 shows the means and SD of performance and biomechanical variables mea-
sured following each repetition and Figure 2 shows the perceptual variables collected
following each repetition. Significant time effects of the ANOVAs were found on the
biomechanical and perceptual variables. Times of 100 m repetitions (F2.49, 44.76 = 25.53,
p < 0.001, ηp

2 = 0.586), flight time (F4.73, 85.2 = 3.22, p = 0.012, ηp
2 = 0.152), contact time
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(F5.4, 97.15 = 21.2, p < 0.001, ηp
2 = 0.541), stride length (F9, 172 = 6.71, p < 0.001, ηp

2 = 0.271),
and RPE (F2.21, 39.72 = 21.297.19, p < 0.001, ηp

2 = 0.844) increased across the session despite
showing no significant time × group interaction effect or group effect (Figure 1A–C,E and
Figure 2A, respectively), whereas step frequency (F4.23, 76.06 = 11.02, p < 0.001, ηp

2 = 0.38)
and maximal speed (F3.99, 71.77 = 17.98, p < 0.001, ηp

2 = 0.5) decreased across the session
despite showing no significant time × group interaction effect or group effect (Figure 1D,F,
respectively).
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Figure 1. Mean (± SD) repetitions time (A), flight time (B), contact time (C), step frequency (D), stride length (E), and
maximal speed of each repetition (F). † and § indicate the differences between successive repetitions (p < 0.05, d ≥ 0.61) in
speed- and endurance-adapted milers, respectively. # indicates main time effect.

Furthermore, the group × time interaction effect for valence was significant
(F3.08, 55.38 = 6.07, p = 0.001, ηp

2 = 0.25). Ratings of affective valence decreased during the
session and were higher in the endurance- than in the speed-adapted milers after the 4th
(p = 0.033, d = 1.04, 95% CI = −3.82–−1.85), 5th (p = 0.04, d = 0.99, 95% CI = −4.29–−1.11),
6th (p = 0.022, d = 1.12, 95% CI = −4.41–−0.39), 7th (p = 0.037, d = 1.01, 95% CI = −4.64–−0.16),
9th (p = 0.01, d = 1.28, 95% CI = −3.99–−0.61), and 10th repetition (p = 0.001, d = 1.78,
95% CI = −4.56–−1.42) (Figure 2B).
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Figure 2. Mean (± SD) ratings of perceived exertion (A), valence (B) and felt arousal (C). † indicates
the differences between successive repetitions (p < 0.05, d ≥ 0.61) in speed-adapted milers. * indicates
the differences between groups after each repetition. # and & indicates main time and group effect,
respectively.

4. Discussion

The main findings of this study were that elite speed-adapted milers displayed a more
positive pacing profile, a lower affective valence and a greater change of ground contact
time and average repetition time across a SIT session than endurance-adapted milers.

Whilst differences between groups were not observed in average repetition time, max-
imal speed, or biomechanical and perceptual variables, it is noteworthy that differences
were found in the manner in which some of these variables changed across the session.
Speed-adapted milers displayed both significantly higher variability of repetition time and
difference among the accumulated times between the last and the first five repetitions than
endurance-adapted milers (Table 2), displaying a more positive pacing pattern. Consid-
ering that this training session was designed whereby middle-distance runners should
achieve their fastest speed in the first repetition with a subsequent decrease throughout, this
finding was expected because speed-adapted milers displayed a faster recent performance
in the 800 m event. It has been demonstrated that 800 m races are typically characterized by
a positive pacing profile at both major championships [8,26,27] and during world record
performances [9,28], whereas in 1500 m and longer races such as 5000 m are typically char-
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acterized by either a U-shaped parabolic pacing pattern during record performances [9]
or an even pace with a fast end spurt during championships [8]. Furthermore, although
no significant differences were found between repetition times or maximal speed between
groups, speed-adapted milers displayed both faster times (Figure 1A) and maximal speed
(Figure 1F) in the first three repetitions than endurance-adapted milers, which indicates
their higher ability to generate a higher power output than endurance-adapted milers [10].
Conversely, endurance-adapted runners were able to maintain a more even pace across the
session, which may also be explained by their higher ability to use aerobic metabolism [2].
In agreement with this finding, speed-adapted milers showed a higher variability in ground
contact time during the training session than endurance-adapted milers (Table 2). Although
this biomechanical variable does not differ between runners by level of performance [2],
it does when the same athletes run at different velocities [29] and, therefore, it also may
explain the higher variability of repetition time showed among groups during the session.
In addition, and in agreement with other research [13], flight time (Figure 1B), contact
time (Figure 1C) and stride length (Figure 1E) increased across repetitions whereas step
frequency decreased during the session (Figure 1D). Similar biomechanical changes have
been previously associated to a decrease of root mean square surface electromyography
(EMG) activities of rectus and biceps femoris [30]. In addition, the loss of speed observed
in this study was similarly reported previously in elite sprinters who conducted a sprint
training session and was correlated with an increase in blood lactate and ammonia concen-
tration, along with jump height loss during a countermovement jump [31]. Therefore, the
higher ability of endurance-adapted milers to maintain a given speed might be related to
their supposedly higher values of VO2max and running economy, which may allow them
to produce higher rates of reoxygenation and blood lactate clearance than speed-adapted
milers [32]. It is noticeable that significant biomechanical changes were only found between
the first and second repetition in step frequency in both groups (Figure 1D) and stride
length in speed-adapted milers (Figure 1E). In this sense, these changes might represent the
appearance of fatigue after the first repetition [33,34], and this early fatigue expression po-
tentially resulting from a theoretically expected decrease in neuromuscular activation and
an increase in blood lactate and ammonia concentration [30,31], which was also verified by
rapid changes in perceptual ratings such as RPE and affective valence. Valence decreased
across repetitions and was lower in speed-adapted milers than in endurance-adapted
milers (Figure 2B) whereas RPE increased during the session and did not differ between
groups (Figure 2A). Whilst RPE represents an indication of somatic stress and somatic
strain [20], affective valence comprises the different feeling states that are experienced in
a specific situation and this combination closely approximates to the individual’s eval-
uation and interpretation of these situations [15,35]. In this sense, it has been observed
that responses in valence are related to awareness of performance [15]. The decrease in
valence across the session may also be explained by an increase in peripheral physiological
fatigue [15], however, a limitation of our study is that we have no peripheral physiological
data from our participants. Whatever the mechanisms, this variability did not influence
RPE (Figure 1A), probably because it relates to how the athlete feels rather than what the
athlete feels, which in turn is rated by valence. Therefore, a dissociation of the response
of these perceptual variables was observed. Furthermore, in the speed-adapted milers,
the biggest changes in RPE occurred during the first three repetitions whereas in valence
this occurred between the third and the fourth repetition (Figure 2A,B). Although the un-
derpinning mechanisms involved remains unclear, it may be explained by the decrease of
100 m time between the first and fourth repetition in this group (Figure 1A) that may have
been experienced by these runners, whereas RPE increased earlier due to the appearance
of fatigue after covering the first 100 m repetition. In addition, no significant differences
across repetitions or between groups were observed in felt arousal (Figure 2C), a similar
observation to that made in a previous study also conducted with elite middle-distance
runners comparing the perceptual responses when completing an interval training session
individually and within a group of runners [36]. However, in speed-adapted milers felt
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arousal values were non-significantly higher than in endurance-adapted milers during
the first three repetitions (Figure 2C). In this sense, Kilpatrick et al. [37] found that felt
arousal was related to the intensity of the exercise and it would explain these differences
in our study given that speed-adapted milers displayed a more positive pacing profile
than endurance-adapted milers. A limitation of the present study is that due to the low
number of female participants (i.e., four), we were not able to analyze sex differences in
the variables studied. Unfortunately, only four female athletes belonged to the training
group that was studied and we could not recruit other elite female middle-distance runners.
Further studies could analyze these between-sex differences in biomechanical, perceptual,
and performance responses during SIT in elite distance runners.

5. Conclusions and Practical Applications

The results of this study found that during a SIT, speed-adapted milers displayed a
more positive pacing strategy than endurance-adapted milers. The faster decrease in speed
demonstrated by speed-adapted milers resulted in a higher range of contact times and
lower levels of affective valence throughout the session than those found in endurance-
adapted milers. However, no differences in performance or in other biomechanical and
perceptual measures were found between groups. Categorizing the different types of milers
according to the distance that they either are training for or display higher predisposition to
excel at has also not previously conducted and it represents a more acute approach in order
to understand the underpinning mechanisms, which may explain the differing responses
of athletes to a specific training stimulus. Coaches and athletes should be aware that in
order to achieve the optimal performance during a SIT, middle-distance runners may need
to fully display their own abilities that are related to the type of event they are adapted to.
In this manner, speed-adapted milers may need to display a more positive pacing profile
than endurance-adapted milers and, therefore, would experience lower levels of affective
valence during a SIT.
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