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ABSTRACT
There is evidence of blood-borne miRNA signatures for various human diseases. 

To dissect the origin of disease-specific miRNA expression in human blood, we 
separately analyzed the miRNome of different immune cell subtypes, each in lung 
cancer patients and healthy individuals. Each immune cell type revealed a specific 
miRNA expression pattern also dependinging on the cell origin, line of defense, 
and function. The overall expression pattern of each leukocyte subtype showed 
great similarities between patients and controls. However, for each cell subtype 
we identified miRNAs that were deregulated in lung cancer patients including  
hsa-miR-21, a well-known oncomiR associated with poor lung cancer prognosis that was  
up-regulated in all leukocyte subtype comparisons of cancer versus controls. While 
the miRNome of cells of the adaptive immune system allowed only a weak separation 
between patients and controls, cells of the innate immune system allowed perfect or 
nearly perfect classification. Leukocytes of lung cancer patients show a cancer-specific 
miRNA expression profile. Our data also show that cancer specific miRNA expression 
pattern of whole blood samples are not determined by a single cell type. The data 
indicate that additional blood components, like erythrocytes, platelets, or exosomes 
might contribute to the disease specificity of a miRNA signature.

INTRODUCTION

MicroRNAs (miRNAs) are tiny molecules (around 
20 nucleotides) with huge impact on the function of 
the single cell, but also the complete organism, as they 
play an important role in regulation of gene expression 
in physiological and pathophysiological conditions. So 
far, the miRNA Database (miRBase Release 20, http://
www.mirbase.org/, [1, 2]) contains more than 24,500 
miRNA entries, including 2,578 human mature miRNAs. 
The influence of the miRNome becomes clear with 

regard to the huge number of genes that are regulated 
by these miRNAs [3]. Changes in miRNA expression 
can be driven by the onset of a disease or vice versa the 
disease onset is driven by altered miRNA expression 
due to external stimuli [4–7]. The first is a good starting 
point for the identification of disease-related biomarkers. 
There are a vast number of studies identifying disease 
specific miRNAs in tissue but a comparatively lower 
number of studies based on blood. In our previous 
studies we investigated the miRNA expression pattern 
in blood samples from patients suffering from different 
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non-cancer and cancer diseases, including lung cancer 
[8–14]. Lung cancer accounts for more deaths than 
any other cancer in both men and women. In USA 
the estimated number of new lung cancer cases for 
2013 is 228,190 and the number of deaths is 159,480 
for men and women combined [15]. As the minority 
of lung cancer cases is diagnosed at early stages, 
when the disease is still localized, the screening of an 
asymptomatic population at high risk for lung cancer is 
able to reduce the cancer related mortality. Blood based 
analysis methods offer themselves as non-invasive tools 
for screening of high-risk individuals. In our former 
studies, we showed that whole blood samples of lung 
cancer patients can be separated from those of healthy 
control individuals with high accuracies between 87% 
and 95% depending on the set of differentially expressed 
miRNAs used for classification [10, 13]. However, as 
blood is a complex mixture of specialized cell types with 
a multitude of functions it would be interesting which 
type of blood cells is significantly involved in cancer-
specific miRNA expression patterns of whole blood 
samples. In the recent past, cell type specific miRNA 
expression patterns in different immune cell subsets were 
detected for healthy subjects. Allantaz et al. analyzed 
the miRNA content of nine immune cell subsets and 
identified cell type specific miRNAs. Moreover, they 
identified a regulatory relationship between the miRNA 
and the mRNA expression pattern [16]. Merkerova et al. 
investigated the expression of a couple of miRNAs in 
reticulocytes, platelets, granulocytes, monocytes, B-cells, 
and T-cells, and showed that a small number of miRNAs 
is sufficient for a perfect clustering of the different blood 
cell subsets [17]. In a mouse model, Petriv et al. even 
isolated 27 phenotypically distinct cell populations from 
mouse hematopoietic tissues and found similar miRNA 
expression pattern due to cell lineage relations and 
functional similarities [18]. However, to the best of our 
knowledge, there is no study investigating the miRNA 
expression pattern of specific immune cell subsets in 
patients with cancers other than leukemia.

Here, we analyzed the miRNA expression patterns 
of five different blood cell subsets, including eosinophilic 
and neutrophilic granulocytes (CD15+), monocytes 
(CD14+), B-cells (CD19+), T-cells (CD3+), and natural 
killer (NK) cells (CD56+) and compared the respective 
expression patterns between lung cancer patients and 
healthy controls. We have chosen these cell populations 
as NK cells and neutrophilic granulozytes are the first 
cells of the innate immune system invading the cancer 
surrounding, followed by dentritic cells as well as cells 
of the adaptive immune system, including B-cells and 
T-cells. Close interaction of those cells of the innate 
and adaptive immune system is required for effective 
immune reaction as a primary defense against cancer (also 
reviewed by Matejuk et al. [19]). The main goal of our 
study is to contribute to a deeper understanding of miRNA 

expression changes in certain blood cells driven by the 
onset of lung cancer.

RESULTS

Purity of cell sorting

We isolated different leukocyte subpopulations 
either with antibody-coupled non-magnetic or magnetic 
beads depending on the cell type. The purity of the cell 
sorting was examined by flow cytometric measurements. 
With our newly established protocol to minimize the 
amount of blood necessary to isolate enough cells per 
subtype for microarray analyses we reached a median 
purity for the different cell types of 84.90%. In detail, the 
purity was 84.90% for CD3+, 60.82% for CD19+, 87.19% 
for CD15+, 77.62% for CD14+, and 85.97% for CD56+ 
cells.

Overall detected miRNAs in whole blood and 
blood leukocytes

Out of 1,205 investigated miRNAs a total of 671 
were not detected in any of the analyzed leukocyte 
subsets or whole blood samples from healthy controls 
and lung cancer patients. In whole blood samples 319 
and 394 miRNAs were expressed in at least one control 
or lung cancer sample, respectively. Between 268 and 
400 miRNAs were detected in at least one sample per 
cell subset of either lung cancer samples or controls 
with the least miRNAs in CD19+ B-cells and the most 
in CD15+ granulocytes. Between 113 and 284 miRNAs 
were detected in all analyzed samples per cell subset of 
either lung cancer samples or controls with again the 
least miRNAs in CD19+ B-cells and the most in CD15+ 
granulocytes.

However, in general, there seems to be a stable 
miRNA pattern that differentiates between the different 
blood cell types. When using the 50 miRNAs with the 
highest variance over all samples, we can cluster the cell 
fractions perfectly according to their original cell type 
(see Figure 1A).

Comparison of whole blood and 
leukocyte subsets

Regarding only the detected miRNAs, independent 
of the expression values, the majority of miRNAs that 
was found in all leukocyte subpopulations was, with 
minor exceptions, also found in whole blood samples. In 
whole blood samples of healthy controls we found nine 
miRNAs (hsa-miR-130b*, hsa-miR-182, hsa-miR-183, 
hsa-miR-3180-3p, hsa-miR-3200-5p, hsa-miR-409-3p, 
hsa-miR-4318, hsa-miR-501-5p, hsa-miR-942) 
that were detected in all whole blood samples but 
not in any of the separated leukocyte subsets of 
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Figure 1: Heatmap using the 50 miRNAs with the highest variance over all analyzed samples. Figure (A) shows the 
heatmap for all samples analyzed together. The color of the bar under the dendrogram indicates the cells with common myeloid (blue) and 
common lymphoid (red) progenitor. 
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healthy controls. For the lung cancer patients five miRNAs 
(hsa-miR-3180-3p, hsa-miR-3200-5p, hsa-miR-4318,  
hsa-miR-942, hsa-miR-144*) were detected in all whole 
blood samples but not in any of the separated leukocyte 
subsets of lung cancer patients. On the other hand, we 
identified three miRNAs for healthy controls (hsa-miR-
3607-3p, hsa-miR-181d, hsa-miR-21*) and three miRNAs 
for lung cancer patients (hsa-miR-3607-3p, hsa-miR-21*, 
hsa-miR-34a) that were detected in >90% of the leukocyte 
samples but not in any whole blood sample, respectively. 
However, looking at the expression values whole blood 
showed a completely different expression pattern than the 
single cell fractions (Figure 1 B and C). Here, there was a 
clear clustering into the leukocytes and whole blood.

In order to investigate, whether the expression 
pattern of the whole blood sample can be predicted from 
the expression levels of the miRNAs in the leukocyte cell 
subsets by a linear model, we computed the estimates 
for each patient separately using linear regression 
implemented in the R build-in package “stats”. The results 
demonstrated acceptable estimates only for miRNAs with 

relatively low expression levels, while the remaining 
predicted values showed a noticeable bias. However, the 
Pearson’s correlation coefficient computed for each patient 
and all miRNAs for each cell subset compared to whole 
blood, revealed a moderate linear dependence (0.79 <= rho 
<= 0.84) between these features. This suggests, that either 
the dependence between the whole blood samples and the 
subsets cannot be captured by means of a linear model, or 
there are some other factors (e.g. other blood components) 
contributing to the expression pattern of the miRNAs.

Leukocyte subset specific miRNA expression

To identify blood cell type specific miRNAs, we 
investigated the miRNA expression pattern of all samples 
from lung cancer patients and all samples from healthy 
individuals separately. To this end, we computed all 
pairwise comparisons between the leukocyte subtypes for 
samples from healthy individuals and lung cancer patients 
separately and built the intersections of deregulated 
miRNAs according to the adjusted t test (p-value < 0.05) 

Figure (B) shows the heatmap for the healthy individuals and Figure (C) for the lung cancer patients. Here the color of the bar under the 
dendrogram indicates whole blood samples (blue) and the single immune cell subtypes (red). The single cell types are also indicated by the 
coloured bar at the bottom of the figure (blue=whole blood, red=monocytes CD14+, green=granulocytes CD15+, grey= B-cells CD19+, 
yellow=T-cells CD3+, purple=NK-cells CD56+).



Oncotarget9488www.impactjournals.com/oncotarget

to collect the cell subset specific miRNAs. To exclude 
overlaps between the specific miRNAs of each subtype, 
we removed those miRNAs from each leukocyte subtype 
specific set that are contained in any other cell specific 
set. After that, we found in the CD14+ cell population 44 
specific miRNAs for lung cancer patients and 26 specific 
miRNAs for controls. In the CD3+ cell subset we found 
7 lung cancer specific miRNAs and 8 miRNAs specific 
for controls. Only 4 miRNAs were specific for lung 
cancer and 3 specific for controls in the CD19+ cells, and 
for the CD56+ cells 5 miRNAs were specific for lung 
cancer and 11 for controls. For CD15+ cells we found the 
most specific miRNAs with 61 miRNAs for lung cancer 
patients and 58 for healthy controls. An overview of all 
specific miRNAs for lung cancer and controls is shown in 
Supplemental Table 1. Venn diagrams showing the overlap 
between the specific miRNAs in the different groups are 
shown in Figure 2.

Comparison of the entire miRNome of single 
leukocyte subsets between lung cancer patients 
and healthy individuals

We compared the miRNA expression pattern 
of the five different immune cell populations isolated 
either from blood of lung cancer patients or from blood 
of healthy individuals. After quantil normalization 
and Benjamini-Hochberg adjustment for multiple 
testing, we found no significant p-values <0.05 for 
any comparison [20, 21]. However, we filtered out all 
miRNAs with raw p-values <0.05 that were expressed 
in at least all samples of one group, i.e., either in all 
samples from lung cancer patients or in all samples 
from healthy control individuals, to get a first idea if 
the analyzed immune cell subpopulations contribute 
to the lung cancer specific miRNA expression pattern. 
In CD3+ cells we found 13 miRNAs, in CD19+ cells 

Figure 2: Venn diagram showing the leukocyte subset specific miRNAs. The dark grey circle shows the cell subset specific 
miRNAs in lung cancer samples and the light grey circle shows the cell subset specific miRNAs in control samples. The overlap indicates 
the miRNAs that were found to be subtype specific in both sample groups. A list of the miRNAs is given in Supplemental Table 1.
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5 miRNAs, in CD15+ cells 12 miRNAs, in CD14+ 
cells 15 miRNAs, and in CD56+ cells 11 miRNAs with 
raw p-value <0.05. The comparison of total blood of 

the same patients and controls (PAXgene RNA blood 
tubes) revealed 24 deregulated miRNAs (see Table 1). 
Interestingly, we found only slight overlap in the 

Table 1: Union of deregulated miRNAs (raw p-value <0.05) between control and lung cancer 
samples. For each comparison and the deregulated miRNAs of this comparison the raw p-values are listed 
in this Table. Red font means down-regulation in lung cancer and green font means up-regulation in lung 
cancer. The last column gives the number of comparisons were the respective miRNA is deregulated. 
The last line gives the total number of deregulated miRNAs per comparison.

Control 
whole 
blood 
vs lung 
cancer 
whole 
blood

Control 
cd3+ 
vs lung 
cancer 
cd3+

Control 
cd56+ 
vs lung 
cancer 
cd56+

Control 
cd19+ 
vs lung 
cancer 
cd19+

Control 
cd15+ vs 
lung cancer 
cd15+

Control cd14+ vs 
lung cancer cd14+

Overlaps

hsa-miR-21 0.01418 0.01421 0.01244 0.04076 0.02069 0.01396 6

hsa-miR-21* - 0.00313 0.03142 - 0.02400 0.00007 4

hsa-miR-451 - - - - 0.01037 0.02953 2

hsa-miR-132 0.04971 - 0.04312 - - - 2

hsa-miR-22* 0.01423 - - - - 0.02099 2

hsa-miR-30b - 0.03085 - - - 0.00476 2

hsa-miR-194 0.03964 - - - 0.03493 - 2

hsa-miR-342-5p 0.00543 - - - 0.01298 - 2

hsa-miR-3653 - - 0.02964 - - 0.01418 2

hsa-miR-29a - - - 0.03588 - 0.02344 2

hsa-miR-939 - 0.03551 - - 0.03670 - 2

hsa-miR-150 0.04912 - - 0.02248 - - 2

hsa-let-7d - - - - 0.02803 0.01666 2

hsa-miR-30e* 0.03244 - 0.03755 - - - 2

hsa-miR-342-3p - - - - - 0.00137 1

hsa-miR-365 - - - - - 0.00123 1

hsa-miR-4270 0.00388 - - - - - 1

hsa-miR-125b - 0.00925 - - - - 1

hsa-miR-223 0.03646 - - - - - 1

hsa-miR-139-3p 0.02598 - - - - - 1

hsa-miR-769-3p - - - - 0.02682 - 1

hsa-miR-27a 0.04996 - - - - - 1

hsa-miR-24 0.00041 - - - - - 1

hsa-miR-181a-2* - - 0.01788 - - - 1

hsa-miR-30a 0.03166 - - - - - 1
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Control 
whole 
blood 
vs lung 
cancer 
whole 
blood

Control 
cd3+ 
vs lung 
cancer 
cd3+

Control 
cd56+ 
vs lung 
cancer 
cd56+

Control 
cd19+ 
vs lung 
cancer 
cd19+

Control 
cd15+ vs 
lung cancer 
cd15+

Control cd14+ vs 
lung cancer cd14+

Overlaps

hsa-miR-30c - - - - - 0.02503 1

hsa-miR-30d - - - - - 0.01230 1

hsa-miR-1274a - - - 0.04519 - - 1

hsa-miR-3607-3p - - 0.02960 - - - 1

hsa-miR-19b - 0.02934 - - - - 1

hsa-miR-362-5p - - - - - 0.01651 1

hsa-miR-4291 - - - - 0.03070 - 1

hsa-miR-1246 - - - 0.03008 - - 1

hsa-miR-454* 0.02529 - - - - - 1

hsa-miR-126 - - - - 0.03525 - 1

hsa-miR-34a - 0.00469 - - - - 1

hsa-miR-301a - - 0.04892 - - - 1

hsa-miR-3665 0.01287 - - - - - 1

hsa-miR-99a - 0.01726 - - - - 1

hsa-miR-1275 0.03231 - - - - - 1

hsa-miR-130a - - - - 0.00514 - 1

hsa-miR-424 - 0.02316 - - - - 1

hsa-miR-942 0.00262 - - - - - 1

hsa-miR-93* 0.01108 - - - - - 1

hsa-miR-31 - 0.01306 - - - - 1

hsa-miR-16-2* 0.02083 - - - - - 1

hsa-miR-572 0.03918 - - - - - 1

hsa-miR-18a - - - - - 0.01648 1

hsa-miR-361-3p 0.01000 - - - - - 1

hsa-miR-181a - 0.04819 - - - - 1

hsa-miR-181c - - 0.01246 - - - 1

hsa-miR-155 - - - - - 0.02947 1

hsa-miR-550a* 0.04339 - - - - - 1

hsa-miR-326 0.02127 - - - - - 1

hsa-miR-15b - 0.01265 - - - - 1

hsa-miR-28-5p - - 0.04491 - - - 1

hsa-let-7g - - 0.04580 - - - 1

hsa-let-7i 0.00369 - - - - - 1

(Continued )
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deregulated miRNAs between the whole blood samples 
and the single immune cell subsets. Only hsa-miR-21 
was up-regulated in all cell subsets and in whole blood 
of lung cancer patients compared to the healthy controls. 
Four other miRNAs (hsa-miR-342-5p, hsa-miR-194, 
hsa-miR-150, hsa-miR-132) were deregulated in the 
same and two miRNAs (hsa-miR-22*, hsa-miR-30e*) 
were deregulated in the opposite direction in whole 
blood and in one other cell subset.

Leukocyte subpopulations of controls and 
lung cancer patients can be classified by 
their miRNome

We performed classification using Support 
Vector Machine with linear kernel, leave-one-out cross-
validation, 20 repetitions and the above mentioned 
miRNAs with raw p-values <0.05 that were expressed in 
at least all samples of one group per comparison (see also 
Table 1). Classification reached accuracies from 69.23% 
(for CD3+ cells) to 100% (for CD15+ cells). The detailed 
classification results are listed in Table 2.

miRNA expression pattern is indicative for the 
blood cell origin, line of defense, and function

The heatmap of Figure 1 revealed not only a cell 
type specific miRNA expression pattern, but according to 
the dendrogram it is also evident that there is a specific 
miRNA expression pattern indicative for the cellular origin 
and function and the line of defense. To further analyze 
this, we grouped the cell populations of cancer patients 
and controls either according to their origin (myeloid or 
lymphoid progenitors), according to their line of defense 
(innate or adaptive immune system), and according to 
their function (antigen presenting cells or cytotoxic cells). 
We filtered out only those miRNAs that were expressed 
in at least all samples of one group of the respective 
comparison and that showed a significant p-value <0.05 
after Benjamini-Hochberg adjustment. We first compared 
the significant miRNAs identified in the comparison of 
cells derived from myeloid progenitors (CD15+, CD14+) 
versus cells derived from lymphoid progenitors (CD3+, 
CD19+, CD56+) of lung cancer patients and controls. For 
the cancer patients we found 75 significant miRNAs and 

Table 2: Classification results. Classification results for control immune cell subtypes vs lung cancer immune 
cell subtypes with linear kernel, leave-one-out cross-validation, and the deregulated miRNAs per comparison 
with raw p-values <0.05 (listed in Table 2).

Accuracy, mean Specificity, mean Sensitivity, mean

CD3+ normal vs lung cancer 0.6923 0.7143 0.6667

CD19+ normal vs lung cancer 0.7692 0.8571 0.6667

CD15+ normal vs lung cancer 1.0 1.0 1.0

CD14+ normal vs lung cancer 0.9231 0.8571 1.0

CD56+ normal vs lung cancer 0.9231 0.8571 1.0

whole blood normal vs lung cancer 0.9286 1.0 0.8571

Control 
whole 
blood 
vs lung 
cancer 
whole 
blood

Control 
cd3+ 
vs lung 
cancer 
cd3+

Control 
cd56+ 
vs lung 
cancer 
cd56+

Control 
cd19+ 
vs lung 
cancer 
cd19+

Control 
cd15+ vs 
lung cancer 
cd15+

Control cd14+ vs 
lung cancer cd14+

Overlaps

hsa-miR-744 - - - - 0.01262 - 1

hsa-miR-26a - 0.02901 - - - - 1

number of 
deregulated 
miRNAs

24 13 11 5 12 15
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for the controls 64 significant miRNAs. The overlap was 
between 60 miRNAs that were also deregulated in the 
same direction in both groups. Interestingly, 4 miRNAs 
were only deregulatedn in the control group and 15 
miRNAs were exclusively deregulated in the lung cancer 
group between cells derived from myeloid and lymphoid 
progenitors.

The same analysis as mentioned above was done 
for the cell populations from the innate (CD15+, CD14+, 
CD56+) versus adaptive (CD3+, CD19+) immune system. 
Here, we found 130 miRNAs significantly deregulated in 
lung cancer blood samples and 115 miRNAs in blood 
samples from healthy individuals, with an overlap of 106 
identically deregulated miRNAs. A total of 24 miRNAs 
was exclusively found in lung cancer samples, and 9 
miRNAs were only identified in control samples.

Furthermore, the comparison of antigen presenting 
cells (CD19+, CD14+) with cytotoxic cells (CD3+, 
CD56+) revealed 47 miRNAs significantly deregulated 
in lung cancer blood samples and 37 miRNAs in blood 
samples from healthy individuals. Here, the overlap was 
30 miRNAs identically deregulated and 17 and 7 miRNAs 
were specific for lung cancer and control, respectively. 
The results of this analysis are visualized as venn diagram 
in Figure 3.

Pathway analysis of validated target genes

In brief, we performed an over-representation 
analysis using GeneTrail with the validated target genes 
of the leukocyte subtype specific miRNAs for lung cancer 
and control samples, separately, and for the miRNAs 
that were deregulated in the different leukocyte subsets 
between lung cancer samples and normal control samples. 
KEGG pathway analysis for the miRNAs specifc for 
leukocyte subsets of lung cancer paptients revealed the 
majority of significant pathways in CD3+ T-cells. For 
normal controls, the majority of significant pathways were 
found for CD19+ B-cells. For the miRNAs deregulated 
between leukocyte subsets isolated from blood of lung 
cancer patients or healthy controls we found the most 
significant pathways for CD15+ granulocytes and CD19+ 
B-cells. Supplemental Figure 1 gives an overview of the 
significant KEGG pathways.

DISCUSSION

It is already known that the cells of the immune 
system interact with non-immune cells to maintain tissue 
homeostasis [22]. A major task of the immune system is 
to continually recognize and remove malignant cells that 
arise during one’s lifetime – a process called “immune 
surveillance” [23]. Former studies have shown that the 
immune status of healthy individuals differs from that 
of patients bearing malignant lesions. For example, 
T-lymphocytes in tumor patients are functionally impaired 

and fail to control the disease [24]. Also chronically 
activated innate immune cells can promote cancer 
development. The present study aimed to investigate 
the miRNome of different leukocyte subpopulations, 
including eosinophilic and neutrophilic granulocytes 
(CD15+), monocytes (CD14+), B-cells (CD19+), T-cells 
(CD3+), and natural killer (NK) cells (CD56+), to 
investigate the origin of the lung cancer specific miRNA 
expression pattern that is known for whole blood. To the 
best of our knowledge, comparable investigations have 
only been done on blood of healthy individuals or patients 
suffering from hematological diseases, so far. But there 
is no study investigating the effect of non-hematological 
diseases like lung cancer on single immune cell subsets. 
The present study set out to provide an overview of how 
much the immune cell specific miRNome is altered by 
the presence of a non-hematological malignancy and 
which cells contribute to the lung cancer specific miRNA 
expression pattern.

Our data clearly indicate that the different immune 
cell subsets have a highly specific miRNA expression 
pattern that is important for the regulation of the function 
of each immune cell. In detail, we identified immune cell 
type specific miRNAs in the blood of healthy individuals 
and lung cancer patients. Some of those miRNAs were 
already found by others, too [16–18]. As already shown 
by Allantaz et al. for blood samples of healthy individuals, 
the overall miRNA expression pattern was indicative for 
the lineage of the cell types, i.e., lymphoid or myeloid 
cells [16], and also indicative for the line of defense 
(innate or adaptive immune system), and their function 
(antigen presenting cells or cytotoxic cells). For the above 
mentioned comparisons we computed the deregulated 
miRNAs for healthy individuals and lung cancer 
patients, respectively. Here we found a high overlap of 
the deregulated miRNAs for healthy individuals and lung 
cancer samples suggesting that the specific expression 
pattern is not mainly influenced by lung cancer.

In spite of the above mentioned similarities 
between healthy individuals and lung cancer patients, 
we also uncovered miRNAs for each analyzed blood 
cell subset that were deregulated between healthy 
individuals and lung cancer patients. Those miRNAs 
were sufficient to differentiate lung cancer patients 
from controls with accuracies between 69% and 100%. 
Against our expectations, classification results for cells 
of the adaptive immune system, i.e., T-cells and B-cells, 
were worst with accuracies of only 69.23% and 76.92%, 
respectively. It is well known that T-cells can have 
opposite effects on cancer. On the one hand, anticancer 
T-cells can attack malignant cells and, thus, play central 
roles in immunity against malignant diseases. On the 
other hand immune suppressive cells, such as regulatory 
T-cells (Treg) can inhibit anticancer T-cells and, thus, 
are involved in tumor escape from the host immune 
system [24, 25]. As Treg accumulate in the peripheral 
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Figure 3: Venn diagram with the miRNAs indicative for blood cell origin, line of defense, and function. We identified 
the miRNAs deregulated between cells with common myelod progenitor and common lyphoid progenitor (A), cells of the innate immune 
system and the adaptive immune system (B), as well as antigen presenting cells and cytotoxic cells (C) for lung cancer patients (dark grey 
circles) and healthy individuals (light gray circles), respectively. The miRNAs specific in the comparisons for lung cancer sapmles are listed 
in the boxes on the left, miRNAs specific in the comparisons for healthy individuals are listed in the boxes on the right. The number of 
miRNAs that were deregulated in lung cancer samples and healthy individuals are indicated by the overlap of the circles.
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circulation of cancer patients, one would normally expect 
a larger effect on the miRNA expression pattern of the 
CD3+ T-cells in blood of lung cancer patients [26]. But 
regarding the immune cell type specific miRNomes, 
we found only few lymphocyte specific miRNAs with 
the least differences between healthy individuals and 
lung cancer patients. However, KEGG-pathway over-
representation analyses using validated target genes of the 
cell type specific miRNAs revealed the most significant 
KEGG pathways for CD3+ T-cells in lung cancer patient 
samples and for CD19+ B-cells in samples from healthy 
individuals. Perfect or nearly perfect classification results 
were obtained for cells of the innate immune system,  
i.e., CD14+ monocytes, CD15+ granulocytes and CD56+ 
NK-cells. In addition, the most cell type and lung 
cancer specific miRNAs were found for monocytes and 
granulocytes. Regarding the above mentioned deregulated 
miRNAs, we found only few overlaps between the cell 
type specific comparisons. Only one miRNA, hsa-miR-21, 
was upregulated in all comparisons. Interestingly, hsa-
miR-21 is a well-known oncomiR and its overexpression 
in tissue or serum/plasma is correlated with a poor 
prognosis for patients with primary squamous cell lung 
carcinoma [27–31]. Furthermore it was recently found to 
be associated with increase DNA damage tolerance in lung 
cancer [32]. Some other miRNAs found in our study to 
be deregulated in certain cell types between lung cancer 
samples and controls were already found to be associated 
with lung cancer. For example, has-miR-155, that was 
down-regulated in monocytes of lung cancer patients in 
our study, was shown to be significantly reduced in the 
circulation of NSCLC patients compared to controls[33]. 
Hsa-miR-150 was down-regulated in whole blood and 
B-cells in the present study. This miRNA is mainly 
expressed in lymphocytes and an important regulator 
of hematopoiesis. Down-regulation of hsa-miR-150 
contributes to tumorigenesis [34, 35]. However, in lung 
cancer tissue, controversial results were found. One study 
described that up-regulation of hsa-miR-150 results in 
lung cancer proliferation by targeting p53, but in another 
study it was shown that hsa-miR-150 is down-regulated in 
NSCLC tissue [36, 37].

Besides the miRNAs that were deregulated 
between lung cancer patients and controls, we also 
identified miRNAs that seem to be specific for one single 
immune cell subtype for lung cancer patients and healthy 
individuals, separately. The majority of specific miRNAs 
were found for cells with a common myeloid progenitor 
(monocytes and granulocytes) whereas we found only few 
specific miRNAs for the different types of lymphocytes 
(B-, T-, and NK-cells). This phenomenon was observed 
for both blood derived from healthy individuals as well 
as from lung cancer patients. In contrast, Watkins et al. 
found the least cell type specific miRNAs in granulocytes 
and monocytes and the most cell type specific miRNAs 
in lymphocytes. This suggests reciprocation between the 

amount of miRNAs found in our study and the amount 
of mRNAs in the study of Watkins et al. [38]. Indeed, we 
found cell type specific mRNAs in the Watkins study that 
might be potential targets of cell type specific miRNAs 
identified in our study.

Comparing the miRNA expression pattern of 
the single immune cell subsets with the whole blood 
miRNome suggests that the whole blood miRNome 
is not mirrored by a combinatorial consideration of the 
five investigated leukocyte subtypes. Surprisingly, we 
found for both control and lung cancer samples a panel of 
miRNAs that were not detected in any analyzed immune 
cell subset sample but in all whole blood samples. We 
also found a panel of miRNAs that were detected in more 
than 90% of the immune cell subset samples but not in 
any whole blood sample. These results suggest that there 
are a couple of further blood compartments other than 
leukocytes (e.g., erythrocytes, platelets, exosomes, etc.) 
that contribute to the whole blood miRNome. On the other 
hand, some leukocyte specific miRNAs might not reach 
the detection limit of the microarray in the whole blood 
samples, i.e., these miRNAs might be too much diluted in 
the whole blood samples.

CONCLUSION

In conclusion, here we identified miRNAs specific 
for certain immune cell types, including eosinophilic 
and neutrophilic granulocytes, NK cells, monocytes, 
B-cells, and T-cells in lung cancer patients and healthy 
individuals. We further found evidence that the miRNA 
expression pattern depends on the cell origin (myeloid 
or lymphoid progenitors), the line of defense (innate or 
adaptive immune system), and the function (antigen 
presenting cells or cytotoxic cells). The overlaps in the cell 
type specific miRNAs between lung cancer samples and 
controls suggest that there is a basic miRNA expression 
pattern that is responsible for the specific functions of each 
immune cell type. However, some miRNAs differ between 
controls and lung cancer patients and were sufficient for 
highly accurate classification. In addition, from our former 
studies on whole blood, we know that there is a specific 
lung cancer miRNA signature. However, this lung cancer 
specific miRNA signature of whole blood could not be 
restricted to one certain immune cell subtype analyzed 
here, but in fact, seems also to be influenced by other 
blood constituents that have to be investigated in future 
studies.

MATERIALS AND METHODS

Blood samples

We obtained blood from 7 healthy subjects and 
7 lung cancer patients drawn in EDTA Monovettes 
(Sarstedt) and in PAXgene Blood RNA Tubes 
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(Beckton Dickinson). Details on the blood donors are 
given in Table 3. The study was approved by the local 
ethics comittee (01/08). We obtained informed consent 
from each participant.

Cell sorting and RNA isolation

We isolated five different immune cell subsets from 
whole blood samples from seven lung cancer patients and 
seven healthy individuals. Protocols were optimized in 
order to minimize the amount of blood necessary to isolate 
enough cells per subtype for downstream analyses. Isolation 
of cell subpopulation was performed using positive 
selection to reduce contamination with other cells and to 
reach high purity of the isolated cell subsets. CD3, CD19, 
CD15, and CD14 positive cells were separated using non-
magnetic beads and a sieve (pluriSelect), whereas CD56 
positive cells were isolated using magnetic beads (Miltenyi 
Biotech) as non-magnetic beads were not available for this 
cell type. Though we used kits suitable for whole blood, we 
performed the separation only with leukocytes to minimize 
contamination with erythrocytes. Therefore, we incubated 
the blood with erythrocyte lysis buffer (10 mM TRIS-HCl, 
165 mM NH4Cl, 1:3) for 12 min at RT and and washed 
the resulting leukocytes with PBS. The leukocytes were 
resuspended in the same amount of PBS as compared to 
the amount of blood used. The non-magnetic cell sorting 
was performed sequential i.e., the flowthrough of a previous 
separation was used as sample material for the subsequent 
separation. For the separation with the non-magnetic beads 
we used about 11 ml leukocyte suspension. After incubation 
with the non-magnetic beads on the pluriPlix® sample 
mixer, the suspension was filtered through a sieve. Cells 

bound to the beads were retained and directly lysed on the 
sieve using QIAzol lysis reagent. Lysates were subsequently 
stored at -70°C until RNA isolation. The immune cell 
subsets were isolated with different incubation times in the 
following order: CD15 (10 min incubation), CD3 (15 min 
incubation), CD19 (20 min incubation), and CD14 (25 
min incubation). In parallel, CD56 positive cells were 
isolated using magnetic beads and whole blood columns. 
Therefore, 3 ml leukocyte suspension was incubated for 
15 min at 4°C with 150 μl Whole Blood CD56 MicroBeads 
according to manufacturer’s instructions. The isolated 
CD56 positive cells were resuspended in QIAzol lysis 
reagent and stored at -70°C until RNA isolation. Total RNA 
including small RNAs was isolated from sorted cells using 
miRNeasy Micro Kit (Qiagen) according to manufacturer’s 
instructions.

Total RNA including miRNA from whole blood 
(PAXgene Blood RNA Tubes) was isolated using the 
PAXgene Blood miRNA Kit (Qiagen) following the 
manufacturers recommendations.

Isolated RNA was stored at -80°C. RNA integrity 
was analyzed using Bioanalyzer 2100 (Agilent) and 
concentration and purity was measured using NanoDrop 
2000 (Thermo Scientific).

miRNA Microarray Analyses

The miRNA expression analysis was performed 
using Sure Print G3 Human v16 8x60K miRNA 
microarrays according to manufacturer’s instruction 
and previously described [12]. Each array contained 40 
replicates of each of the 1,205 miRNAs of miRBase v16 
(http://www.mirbase.org/).

Table 3: Information on all blood donors
Lung cancer patients healthy individuals

number of individuals 7 7

classification

 adenocarcinoma 5 -

 squamous cell lung cancer 1 -

 Small cell lung cancer 1 -

gender

 female 3 5

 male 4 2

age, mean 64 41
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Data analysis

Signal intensity values were extracted from the 
image file using Feature Extraction software (Agilent 
Technologies). To calculate the total expression 
value for each miRNA per sample we summed up the 
gTotalProbeSignals in the feature extraction file. Quantile 
normalization was applied to normalize expression values 
across the arrays using the preprocessCore package 
of the programming language R and we performed a 
log2 transformation of the data. For cluster analysis, we 
applied complete linkage hierarchical clustering using the 
Euclidian distance to compute the dissimilarity of miRNA 
(rows) and samples (columns) independently of each 
other using the normalized data. To compare expression 
values of miRNAs between the control and lung cancer 
groups, we applied the independent two-tailed t-test to find 
significantly deregulated miRNAs. The computed p-values 
were adjusted for multiple testing using the FDR (false 
discovery rate) approach by Benjamini and Hochberg 
[20, 21].

To identify blood cell type specific miRNAs, we 
performed t-tests for each possible pairwise combination 
of cell types. Then we extracted for each cell type those 
miRNAs that had an adjusted p-value < 0.05 and were 
significantly deregulated in each of the comparisons with 
the considered cell type. After that we removed those 
miRNAs from the cell type specific set that were also 
contained in the set of any other cell type to finally obtain 
five disjoint sets of miRNAs. We obtained the validated 
targets for those leukocyte subtype specific miRNAs from 
miRWalk [39] and performed with GeneTrail [40] an over-
representation analysis of those targets in KEGG pathways 
[41] using the validated targets of the miRNA chip as 
reference. For creating the overview figures we further 
reduced the resulting significant pathways by showing 
only those that contained at least 10% of the target genes 
for the considered cell subtype.

Classification of samples using miRNA patterns 
was carried out using Support Vector Machines (SVM) as 
implemented in the R e1071 package using standard leave-
one-out cross-validation.
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