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Assessing the impact of land 
surface temperature on urban net 
primary productivity increment 
based on geographically weighted 
regression model
Xue‑Yuan Lu1, Xu Chen1*, Xue‑Li Zhao2, Dan‑Jv Lv1 & Yan Zhang3

Urbanization had a huge impact on the regional ecosystem net primary productivity (NPP). Although 
the urban heat island (UHI) caused by urbanization has been found to have a certain promoting effect 
on urban vegetation NPP, the factors on the impact still are not identified. In this study, the impact 
of urbanization on NPP was divided into direct impact  (NPPdir) and indirect impact  (NPPind), taking 
Kunming city as a case study area. Then, the spatial heterogeneity impact of land surface temperature 
(LST) on  NPPind was analyzed based on the geographically weighted regression (GWR) model. The 
results indicated that NPP, LST,  NPPdir and  NPPind in 2001, 2009 and 2018 had significant spatial 
autocorrelation in Kunming based on spatial analytical model. LST had a positive impact on  NPPind 
in the central area of Kunming. The positively correlation areas of LST on  NPPind increased by 4.56%, 
and the  NPPind caused by the UHI effect increased by an average of 4.423 gC  m−2 from 2009 to 2018. 
GWR model can reveal significant spatial heterogeneity in the impacts of LST on  NPPind. Overall, our 
findings indicated that LST has a certain role in promoting urban NPP.

Urbanization, as one of the most extreme anthropogenic land-use/land-cover (LULC) changes, strongly affects 
the terrestrial ecosystem carbon  cycle1–3. Urbanization is reflected in the replacement of vegetation areas which 
can directly alter the regional terrestrial  ecosystem4. Furthermore, the habitat of urban vegetation is also severely 
affected by  urbanization5, and a typical example is urban heat island (UHI) effect. Vegetation net primary pro-
ductivity (NPP), the net amount of dry organic biomass accumulated by plants per unit area and  time6,7, reflects 
the changes in the structure and operation of the terrestrial  ecosystem8,9. As an important component of the 
terrestrial ecosystem carbon cycle, NPP quantifies the growth of vegetation, which is related to the amount of 
vegetation and the growth environment in an  area10,11. Therefore, NPP is a common indicator to assess urbaniza-
tion process impacts on urban  vegetation12,13.

Urbanization has two opposite impacts on vegetation depending on different urban development  stages14–18. 
Rapid urban expansion leads to a dramatic reduction in natural vegetation and cropland, which is a direct 
 impact14, especially appear in the newly expanded urban areas. For the direct impact, the unprecedented urbani-
zation in China in recent decades have led to drastic land-cover  change19, which can undoubtedly reduce regional 
 NPP20,21. For instance, intensive urbanization in Shenzhen City resulted in an 80% decrease in  NPP22. Liu et al. 
found that approximately 309.95 GgC was lost over 13 years in Wuhan City, which was mainly due to the conver-
sion from cropland to built-up  areas23. On the contrary, urbanization may also increase NPP mainly inside the 
old urban area through UHI effect, artificial irrigation or by introducing highly productive plants and reducing 
the impact of climate  factors15–18, which is an indirect impact. For the indirect impact, it was first discovered in 
Tokyo that the higher photosynthetic rate of the street trees observed in the central district of  city24. In China, 
it was found that the vegetation growth of most cities is clearly improved by the indirect impact, which offsets 
about 40% of the direct NPP loss caused by the direct  impact2. In addition, Guan et al. based on multi-source 
remote sensing data to establish and analyze both the long-term direct and indirect impacts of urbanization on 
 NPP17. The results indicated that the urbanization has also resulted in an apparently positive indirect impact 
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on NPP and the urban temperature was the main driving force of the indirect impact. However, a systematic 
understanding of the driving mechanism of indirect impact of NPP is largely unknown. Urban areas tend to 
have higher temperatures than the surroundings, referred to as urban heat island (UHI), largely resulted from 
the rise of impervious  surface25–27. And UHI as an important factor of global warming, has not been studied 
deeply how to drive the growth of urban vegetation. As a major parameter associated with surface radiation and 
energy exchange, Land surface temperature (LST) is able to modulate the air temperature of the layer immedi-
ately above the earth  surface28–30. And previous UHI-related articles have reviewed and found that 44% of these 
manuscripts used LST as a synonym for UHI when examining urban thermal  environments31,32. Consequently, 
LST retrieved from infrared remote sensing imagery has been widely applied to study the phenomenon of urban 
heat island  effect33,34. So, LST can be used as the UHI indicator to study the promotion of UHI on indirect impact 
of NPP in this study.

Although the previous studies have put forward some valuable insights into the forces driving of urban NPP 
changes, including the increase and decrease of  NPP2,22–24. The research on spatial heterogeneity still needs to be 
further studied. Urban areas are characterized by complex land cover types with highly heterogeneous sizes and 
development  states35. A limited number of studies have considered the spatial patterns of urbanization impacts. 
They divided cities into different buffer zones according to urban expansion  intensities14,17. However, the main 
method used in these studies is the traditional ordinary least square (OLS) regression model. The OLS model 
tend to ignore the role of the spatial location of the different observations  required36. This leads to biased esti-
mations, which might not provide a reliable basis for understanding the impact of UHI on the indirect impact 
in a city. But, the geographically weighted regression (GWR) model, which allows the estimated parameters to 
accommodate potential spatial differences varying across  region37,38, is more conducive to study the influence 
of LST on the indirect impact of NPP for different areas of the city area.

Kunming, as the capital of Yunnan province, one of the largest plateau mountain cities in southwestern  China17 
has undergone rapid urbanization over the last few decades, with an expanding urban area and  population37. 
Overall, in this study, we choose Kunming as a case study area, the main objectives are: (1) To clarify the urbani-
zation process, the UHI effect, NPP expansion of the city and the distribution of direct and indirect impact of 
NPP using spatial autocorrelation analysis. (2) To provide an estimation of the indirect impact of urbanization 
on NPP and a certain understanding of the driving mechanism of UHI on NPP through revealing the spatial 
distribution of correlation coefficients of LST on indirect impact of NPP based on the OLS and GWR models.

Results
The spatial features of NPP, IS and LST. In order to assess the spatial agglomeration, global Moran’s 
indexes of NPP, land surface temperature (LST) and impervious surface (IS) were calculated using Geoda 
 software39. As shown in Table 1, the global Moran’s I of NPP, IS and LST were greater than 0 (p < 0.001), meaning 
that they are positive spatial autocorrelation in Kunming. In other words, NPP, LST and IS among the city areas 
tend to gather in space. However, the global Moran’s I only shows whether there is agglomeration in the city, but 
it does not reveal in which area the agglomeration occurs. To further understand the evolution in local spatial 
distribution, the local indicators of spatial association (LISA) map of NPP, IS and LST was calculated (Fig. 1).

The local Moran LISA maps (Fig. 1d–f) revealed that the NPP mostly were concentrated in the LL (low-low) 
and HH (high-high) clusters areas. Specifically, LL clusters of NPP distributed mainly inside the city and the 
Chenggong district, a new investment and development zone. From 2001 to 2018, the LL clusters of NPP gradu-
ally expanded to Chenggong and airport area. Interestingly, a shrinking trend of the LL clusters was observed 
in 2018, which had no more concentrated areas than in 2009, especially in Chenggong district. Because of the 
intensification of urban development, the value of regional NPP is similar to the surrounding grid points and 
shows insignificant characteristics. The clusters of NPP distributed mainly in north, northwest and northeast 
regions, where more vegetation zones. Correspondingly, the clusters of NPP could be an index for the urbaniza-
tion. HH clusters indicated less vegetation inside the urban area, while LL clusters indicated more vegetation in 
the forest (Fig. 1a–c). In addition, HL (high-low) clusters appeared in or around the LL clusters, representing the 

Table 1.  The global Moran’s I of NPP, IS and LST in 2001, 2009, and 2018. GMI denotes the globe Moran’s 
index. Z is the standardized value which denotes the Z-Scores. P is the significance test level value which 
denotes the P-values. NPP is net primary productivity. IS is impervious surface. LST is land surface 
temperature.

Years GMI Z P

2001

NPP 0.521 103.597 0.001

IS 0.572 116.944 0.001

LST 0.283 58.459 0.001

2009

NPP 0.519 104.104 0.001

IS 0.595 118.292 0.001

LST 0.275 56.306 0.001

2018

NPP 0.503 105.414 0.001

IS 0.593 118.852 0.001

LST 0.252 50.301 0.001
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existence of vegetation in the city. HH clusters of IS (Fig. 1g–i) mainly gathered in the city area corresponding 
to true color image (Fig. 1a–c). While the distribution of LL clusters of IS was approximately consistent with 
the HH clusters of NPP. LST is geographically concentrated in HH clusters areas (Fig. 1j–l). And HH clusters of 
LST is mainly concentrated in the central, northeast and south of Kunming. The HH clusters of LST gradually 
expanded with the development of city through time.

In general, the HH clusters of IS, LL clusters of NPP and the HH clusters of LST were roughly distributed in 
city area of Kunming. The urban expansion of Kunming can be obtained from the HH clusters of IS (Fig. 1g–i). 
From 2001 to 2018, the urban area gradually expanded to the airport, Chenggong district and the vicinity of 
Dianchi Lake. At the same time, urbanization has led to the decrease of vegetation in urban newly expansion 

Figure 1.  LISA cluster maps of NPP, IS and LST. (a–c) are the true color images of Kunming; (d–l) are the LISA 
cluster maps of NPP, IS and LST in 2001, 2009, and 2018. NS means not significant. H–H means high–high 
clusters. L–L means low–low clusters. L–H means low–high clusters. H–L means high–low clusters. In addition, 
NPP is net primary productivity. IS is impervious surface. LST is land surface temperature.
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areas, resulting in a decrease in NPP. NPP correspondingly showed LL clusters in urban areas. As the intensity of 
urbanization increases, the city’s surface has become “urban heat”. As a result, LST produces HH clusters within 
the city areas. In summary, the urbanization process would bring the reduction of NPP and the strengthening 
of the UHI effect. The HH clusters of LST and LL clusters of NPP have similar distributions in the central of 
Kunming especially in 2009 and 2018 which provides a basis for studying the impact of UHI on urban NPP.

The spatial features of direct and indirect impact of NPP. The direct impact of NPP caused by the 
reduction of vegetation coverage is defined as  NPPdir. And the indirect impact of NPP result from anthropogenic 
and climatic factors is defined as  NPPind. As shown in Table 2, the global Moran’s I of  NPPdir were observed to be 
0.152 and 0.271 in 2009 and 2018 respectively, and the global Moran’s I of  NPPind were 0.347 and 0.378 in 2009 
and 2018 respectively, indicating a significant positive spatial autocorrelation in  NPPdir and  NPPind (p < 0.001).

The LISA cluster map of  NPPdir and  NPPind (Fig. 2) further illustrates the local spatial distribution geographi-
cally. The  NPPdir mostly concentrated in the LL and HH clusters. LL clusters mainly concentrated in the newly 
expanded urban areas such as Chenggong district, representing the most obvious area of direct impact of NPP. 
From 2009 to 2018, the area of the LL clusters has expanded significantly and is consistent with the HH clusters 
of IS (Fig. 1), which proves that newly expanded urban areas mainly reflect the  NPPdir because of the transfor-
mation of LULC. On the contrary, with the increase of urban intensification,  NPPind expanded from the central 
area to the surrounding area in the city. The indirect impact of NPP was mainly reflected in the better growth 
of urban vegetation within city, so the HH clusters of indirect impacts mostly are concentrated in urban areas. 
Corresponding to LISA cluster map of LST in 2009 and 2018, the HH clusters of LST and  NPPind have roughly 
similar distribution ranges.

Regression analyses of OLS model. LST is negatively correlated at the 1% significance level (Table 3), 
indicating that UHI effect will lead to decreased indirect impact of NPP on the entire city area of Kunming. But 
it is inconsistent with our argument that UHI effect will promote the growth of urban vegetation. Because the 
traditional OLS regression method assumes that there are no heterogeneous differences in Kunming city, and 
estimates the “global” parameters of the explanatory variables. Specifically, the forest areas in the north, north-
west and northeast of Kunming are also included, but the UHI effect in these areas is not obvious and may not 
promote vegetation growth, which lead to negative correlation between LST and  NPPind in the whole area. From 
2009 to 2018, the correlation coefficient increased from − 6.019 to − 2.994. The negative correlation of LST on 
 NPPind became smaller in the whole areas.

Regression analyses of GWR model. We applied the GWR method to explore the spatial heterogeneity 
of the LST on  NPPind of Kunming. A summary of estimated coefficients is given in Table 4. The standard resid-
ual of coefficient estimation between − 2.5 and 2.5 is considered as the high  reliability37. Most of the standard 
residual of coefficient estimates in the study area are reliable with the proportion is 98.8% and 97.9% in 2009 and 
2018 respectively (Table 4).

As displayed in Fig. 4, the estimated coefficients of the LST on  NPPind range from − 27.488 to 8.971, and from 
− 9.076 to 10.742 in 2009 and 2018. Respectively, implying that the impact of LST varies greatly from region to 
region. The positive coefficients are mainly concentrated in the central city shown in red and orange in Fig. 4, 
which is consistent with the areas of HH clusters of LST that characterizes UHI effect. The high temperature 
caused by the UHI effect has positively impact on increasing the urban vegetation NPP of the central city area 
in a certain extent. However, low estimated coefficients were observed in the surrounding area probably due 
to lower LST. From the perspective of spatial changes, the areas with positive coefficients gradually expanded 
from the main city area to the surrounding area from 2009 to 2018. A small part of the southeast of Kunming, 
the interior of Chenggong district, also showed a positive correlation until 2018. As shown in Fig. 3, the positive 
correlation area of the study area increased from 6.30 to 10.86% from 2009 to 2018. The rapid urbanization has 
led to an increase in the scope of LST, which can be seen in Fig. 1. In addition, due to the promotion of LST on 
NPP,  NPPind increased by an average of 4.423 gC  m−2 from 2009 to 2018 in Kunming (Table 5).

Comparison of OLS and GWR . In order to prove whether the GWR model is better than the OLS model 
for the results in this study, we compared the  R2 and AIC statistics respectively in the GWR and OLS model. 
The GWR model revealed a higher  R2 (0.496 and 0.486 in 2009 and 2018 respectively) than that of the OLS 
model (0.143 and 0.388 in 2009 and 2018 respectively), indicating that the GWR model is better fitted. Then we 
compared the AIC statistics. When the AIC value differs by more than 3, the lower the AIC value, the better the 

Table 2.  The global Moran’s I of  NPPdir and  NPPind in 2001, 2009, and 2018.  NPPdir is the direct impact of 
urbanization on NPP and  NPPind is the indirect impact of NPP.

Years GMI Z P

2009
NPPdir 0.152 31.197 0.001

NPPind 0.348 70.725 0.001

2018
NPPdir 0.271 56.021 0.001

NPPind 0.378 74.398 0.001
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Figure 2.  LISA cluster maps of  NPPdir (a,b) and  NPPind (c,d) in 2009 and 2018.  NPPdir is the direct impact of 
urbanization on NPP and  NPPind is the indirect impact of NPP.

Table 3.  Global regression analyses of LST on  NPPind (OLS model). * Indicates a statistically significant 
p-value (p < 0.01).

Years Coefficient Std. error t value Pr. (> |t|)

2009 − 6.019* 0.103 − 58.580 0.000

2018 − 2.994* 0.069 − 43.909 0.000

Table 4.  Descriptive statistics of regression coefficients in the GWR model.

Years Min Max Mean Std. err. − 2.5 < Std.Res < 2.5(%)

2009 − 27.487 8.971 − 7.703 0.608 98.770%

2018 − 9.075 10.742 − 3.112 0.399 97.940%
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 fit40. As shown in Table 6, the AIC value for the GWR was approximately 4314 less than the AIC value of OLS in 
2009, and 5312 less in 2018. To sum up, the GWR model is better fitted than the OLS model. The analysis of the 
estimated coefficients of the explanatory variables in the previous section also shows that the wider the range of 
variable coefficients, the greater the spatial variability of the contribution and influence of LST on  NPPind, which 
illustrates the appropriateness of the GWR model in providing a better explanation for the local estimation.

Discussion
The urbanization has led to dramatic carbon flux fluctuations. Most of the previous studies focused on the reduc-
tion of NPP caused by urban  expansion18–21. A typical example is that Wen et al.41 quantified the large urban 
expansions occurred in most provinces of China and were accompanied with huge NPP losses. They have only 
considered the total NPP when study about the driving factors of NPP. If the indirect impact was not consid-
ered, we could only make the conclusion that the influencing factors brought by urbanization have reduced the 
urban NPP. But the NPP loss just consider land-cover replacement is inaccurate, because compensation effect 

Figure 3.  Percentage of positive and negative correlation of LST on  NPPind in Kunming city. The orange column 
represents percentage of positive correlation area of LST on  NPPind in total area. The blue column represents 
percentage of positive correlation area of LST on  NPPind in total area.

Table 5.  Descriptive statistics of  NPPind in Kunming.  NPPind is the indirect impact of NPP. Grid count is the 
number of grid points where  NPPind > 0. The unit of max, min and mean is gC  m−2  year−1.

Years Grid count  (NPPind > 0) Min Max Mean

2009 243 0.297 204.729 14.415

2018 403 0.125 139.873 18.838

Table 6.  Comparison of AIC values between OLS and GWR models.

Years OLS GWR 

2009
Adjusted  R2 0.143 0.496

AIC 134,948.273 130,634.719

2018
Adjusted  R2 0.388 0.486

AIC 128,760.397 123,448.120
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of climate and artificial factors will reduce the NPP loss. As shown in Fig. 1d–f, the LL clusters of NPP in cities 
have expanded with urban development which was in good agreement with the results of previous studies. In 
fact, the reduced NPP was the result of the area of vegetation being replaced mainly in newly expanded areas of 
city, but the remaining vegetation was much more productive after the urbanization. This phenomenon has been 
discovered in early studies. For example, Gregg et al.42 reported that enhanced biomass of vegetation in New York 
City compared with that of rural sites. Takagi and  Gyokusen24 also found that the higher photosynthetic rate in 
the urban core due to the air pollutant. They all began to realize the urban vegetation had much more produc-
tive affected by urbanization, in essence, this is due to the indirect impact of urbanization on urban vegetation 
NPP. Then there are some studies to quantify this indirect impact. And the indirect impact was found to be able 
to offset the direct loss of vegetation NPP caused by replacing vegetated surfaces in the urban  area16,17. In this 
study, the HH clusters of  NPPind has expanded significantly with the urbanization from the perspective of spatial 
distribution (Fig. 2). It showed that  NPPind in Kunming mainly existed in urban areas, especially in the old city, 
and it gradually expanded to the Chenggong district. The mean value of  NPPind increased by 4.423 gC  m−2 from 
2009 to 2018 (Table 5). This result is similar to that of Guan et al.17 that the indirect impact can promote NPP 
more in the old city region. In addition, separating the indirect impact of NPP can contribute to identify the 
real relationship between UHI effect and NPP. The total NPP of vegetation cannot represent the growth status of 
urban vegetation. Because of the direct impact, even though the vegetation growth is promoted by UHI effect, 
urban NPP will decrease with urbanization. All these conclusions could only be drawn by separating indirect 
impacts of urbanization on NPP. Thus, it is necessary to separate the indirect impact of NPP, in order to figure 
out the real relationship between UHI effect and urban vegetation NPP.

The driving factors of NPP have been examined through previous  research14,17. Due to the complexity of urban 
spatial heterogeneity, the coefficients of different factors varied by land use and region under different urbaniza-
tion intensities. In order to divide the areas with different urbanization intensity, Tian et al.14 divided Beijing 
into four eco-regions including the Capital Core Functional Region (CCFR), the Capital Extended Functional 
Region (CEFR), the New Developing Functional Region (NDFR), and the Ecological Reservation and Developing 
Functional Region (ERDFR). Guan et al.17 divided Kunming into old city (OC), expansion area (EA), sub-urban 
area (SA) and non-urban area (NA). They have taken into account the spatial patterns of the urbanization impact 
by dividing the buffer zone, and did regression analysis by region to analyze the indirect impact of climate fac-
tors on NPP. However, these studies rely on traditional regression models, and have failed to reveal the spatial 
changes in each buffer zone. The regional linear regression will result in cliff-jumping changes in the boundaries 
between regions and also make the relationship between different regions unable to be expressed. Compared 

Figure 4.  The spatial distribution of the GWR local coefficients of LST on  NPPind.
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with the regression analysis, GWR can accurately display the regional variation of  coefficient36. As the results 
of the impact of LST on  NPPind, the results from the GWR (Fig. 4) revealed more specific information which 
cannot be revealed by OLS model (Table 3). GWR divided Kunming into 10,984 fishnet grids with 500 × 500 m 
resolution to obtain the regression coefficients of each grid locally taking into account the spatial weight matrix. 
Since GWR considers the spatial information of each point, it has higher accuracy compared to sub-regional 
regression. The spatial distribution of regional correlation coefficients revealed the specific regions where LST 
promoted  NPPind. Pei et al.20 indicated that the increases of NPP might be correlated with the effects of UHI 
caused by urban land development around some regions that experienced rapid urbanization, as well as the arid 
regions in northwest China. In this study, the  NPPind also found to be positive correlated with LST in the city of 
Kunming, where has experienced rapid urbanization in recent years. Guan et al.17 also mentioned that climate 
condition in the old city was years ahead of that in the expansion area, as a result of higher temperature in the 
old city. In Fig. 4, the vegetation in the old city also has more productivity affected by the UHI effect. Compared 
with the previous  studies18,20, GWR specifically clarify the areas of LST promotes  NPPind over time rather than 
dividing urbanization intensity regions artificially. Overall, GWR has reference significance for analyzing the 
driving factors of NPP in urban areas with spatial heterogeneity.

The major uncertainties of this study mainly come from CASA model and other factors that may affect NPP. 
First, although the CASA model is widely used for NPP  inversion4,11,17,43, the data processes and the parameter 
value definition could bring some bias to the NPP  results17, which also influencing  NPPdir and  NPPind. As an input 
data of CASA model, the monthly total solar radiation obtained by Kriging interpolation may have error caused 
by inadequate meteorological data sites. Subsequent research can consider other improved models to overcome 
the limitation of fewer  sites44,45. And as an important static parameter of CASA model, the maximum light use 
efficiency εmax has been shown to be different among different vegetation types, ecosystems and seasons. But the 
εmax values in this study may be more suitable for the whole country, which adopted from the study of Zhu et al.46. 
So further adjustment of εmax for urban vegetations is necessary. Then, due to the lack of field measurement of 
NPP data in Kunming, we used the MODIS NPP product (MOD17A3) to assess the accuracy of the NPP from 
CASA model. The mean estimation values of CASA and the MODIS product were extracted from 500 random 
points except the districts in the central city, because the NPP on building land was not estimated in the MODIS 
 product11. The validation results of these points indicating that the CASA model is suitable for estimating the 
NPP in Kunming city (R = 0.73, P < 0.01). Secondly, this study separated the impact of urbanization on NPP into 
 NPPind and  NPPdir, so it would be meaningful to consider other influencing factors of NPP. For the total NPP, at 
regional scale, variation of precipitation was found to dictate most of the inter-annual variation of NPP of the 
tropical region. And in the mid northern latitudes the variation of NPP seems to be attributed to the relative 
variability and mean of  temperature47. So Kunming NPP may be more related to temperature. Therefore, this 
study provides a certain understanding of the driving mechanism of LST on  NPPind in urban areas. However, 
other factors that may affect the NPP, such as the urban dry island, urban rain island and urban  CO2 concentra-
tion should also be considered in subsequent  studies20,22,48. The NPP was due to the vegetation replacement in 
the process of urbanization, but the changes of the type, form and maintenance of the vegetation should also be 
explored in further study. For example, among the vegetation in different urban structures, the vegetation in old 
urban areas is older and have longer growth times, which is more adaptable to the urban environment. While 
vegetation in new urban areas is mostly newly transplanted trees with younger age. In addition, this study divided 
the study area into 500 × 500 m grids, so it would be meaningful to divide into finer grids. And how to increase 
the time point and expand the scope of study area to 32 major cities in China are also interesting directions 
for future work, which will be of great significance in advancing our knowledge of urbanization and terrestrial 
ecosystems. In general, although some conclusions were obtained in this study, we believe that the conclusions 
obtained in this study are credible and valuable. But further efforts are still required for an in-depth exploration 
of the indirect impact of urbanization on NPP.

Conclusion
Urbanization has a huge influence on regional NPP. In this study, first, the direct and indirect impact of urbani-
zation on NPP were separated. Then spatial variations of the correlation coefficient between LST and  NPPind 
were analyzed both globally and locally with the support of OLS and GWR models. The main conclusions can 
be summarized as follows:

(1) From 2001 to 2018, the results of spatial autocorrelation analysis showed that the study area has experienced 
an accelerated urbanization process. Most of the urban sprawl was concentrated in Chenggong district and 
the airport area of northeast of Kunming. With the expansion of the city and the decrease of vegetation 
coverage, NPP has shown a corresponding decreasing trend and LST is higher in the urban areas.

(2) After dividing the impact of urbanization on NPP into  NPPind and  NPPdir, the spatial autocorrelation analy-
sis showed that  NPPind and  NPPdir differ in the spatial agglomeration area. In the process of urbanization, 
the scope of LL clusters of  NPPdir were mainly appeared in the newly expanded urban areas, which was 
due to the reduction of NPP caused by land cover replacement in the new urban areas. However, the HH 
clusters of  NPPind were concentrated in the central area of Kunming city and gradually expanded to the 
surrounding areas with the urban development, which was similar to the area affected by higher LST.

(3) Urbanization leads to the decrease of vegetation which caused the reduction of NPP in urban area. However, 
urbanization has also brought positive effects, promoting the growth of vegetation, such as UHI effect. In 
this study, we mainly studied the spatial heterogeneity of the impact of LST on  NPPind. Compared with 
the OLS model, the GWR model revealed that LST has a positive impact on  NPPind in the central city of 
Kunming. And the positive correlation area expanded by 4.56% from 2009 to 2018. Particularly in recent 
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10 years, there also appeared positive correlation areas in Chenggong district. And the mean value of  NPPind 
increased by 4.423 gC  m−2 from 2009 to 2018. These results indicated that the urban LST which character-
izing UHI effect can promote the growth of vegetation in the central city of Kunming.

Materials and methods
Study area. Yunnan Province, bordered by the Qinghai-Tibet Plateau in the north, and the Hengduan 
Mountains in the northwest, is a component of the Yunnan-Kweichow Plateau. Kunming city (24.13°N–25.18°N, 
102.20°E–103.03°E), as the capital of Yunnan, was selected as the study area. Kunming city located at the north-
ern of the Dianchi Basin in Yunnan, which is a representative of low-latitude plateau cities. As shown in Fig. 5, 
the city has a total area of 2602.46  km2, an average elevation of 1900 m, and is surrounded by mountains on three 
sides. Affected by the circulation of the southwest monsoon and the adjustment of the water surface of Dianchi 
Lake, a natural environment with spring seasons, abundant rainfall, long sunshine and perennial southwest wind 
has been  formed49. Located in the northern subtropical monsoon climate zone, Kunming has typical temper-
ate climate characteristics. However, the climate shows great seasonal heterogeneity, with humid summers and 
dry winters, and most of the precipitation occurs during the growing season (April to October). In order to 
distinguish the spatial patterns of the urbanization impacts, the total urban area was shown as the Wuhua dis-
trict, Panlong district, Xishan district, Guandu district and Chenggong district (Fig. 5). The Wuhua district and 
Panlong district areas are the earliest developed old city in Kunming, which has the highest degree of impervious 
surface. Then Xishan District and Guandu District have a higher degree of urbanization. And the establishment 
of Chenggong New District in recent years has greatly promoted the rapid development of Kunming.

Data source and preprocessing. The Landsat and moderate-resolution imaging spectroradiometer 
(MODIS) images used in this study were selected based on the least amount of cloud (cloud cover < 10%). Land-
sat Thematic Mapper (TM)/Operational Land Imager (OLI) were downloaded from the Geospatial Data Cloud 
(http:// gsclo ud. cn/) and the United States geological survey (USGS) science center (http:// glovis. usgs. gov/). The 
MODIS products were also obtained from the USGS (http:// glovis. usgs. gov/). The monthly meteorological data 
used in this study include average temperature, total precipitation and the total solar radiation. The climate data, 
were derived from 29 climatological stations around Kunming city, which were provided by the China Mete-
orological Administration (http:// data. cma. cn/). The digital elevation model (DEM) data was obtained from 
LPDAA of NASA (http:// www. gdem. aster. ersdac. or. jp/), and the vector data was extracted from the GADM 
database (https:// www. gadm. org/). All Landsat and MODIS images were rectified to the universal transverse 
mercator (UTM) projection and world geodetic system 1984 (WGS84) datum.

The LST was inverted by Landsat TM/OLI images based on the radiative transfer equation (RTE)  method50,51 
at a spatial resolution of 30 m in 2001, 2009 and 2018. Based on the linear spectral mixing analysis model 
(SMA)52, Landsat images were used to analyze the abundance of impervious surface in Kunming covering the 
same time point as LST. The percentage of impervious surface in a single pixel was used to quantify the intensity 
of urban expansion.

In order to meet the requirements of heterogeneity of small-scale urban vegetation study, we simulated the 
30 m NPP in 2001, 2009 and 2018 based on the Carnegie Ames Stanford Approach (CASA)  model46. In the 

Figure 5.  The location of the study area. This map was generated by Arcgis10.2 (https:// www. esri. com/ en- us/ 
arcgis).

http://gscloud.cn/
http://glovis.usgs.gov/
http://glovis.usgs.gov/
http://data.cma.cn/
http://www.gdem.aster.ersdac.or.jp/
https://www.gadm.org/
https://www.esri.com/en-us/arcgis
https://www.esri.com/en-us/arcgis
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NPP estimation framework, first, to obtain the normalized difference vegetation index (NDVI), the Landsat 
TM/OLI images were used to extract NDVI calculated by Landsat infrared (IR) band and near-infrared (NIR) 
band. MCD12Q1 at spatial resolution of 500 m covering the study area closer to the observation time of Landsat 
images were selected as land cover classification data. To control the CASA model, the land cover types data 
from MCD12Q1 were further reclassified into different vegetation types, including evergreen broad-leaved forest 
(EBF), deciduous broad-leaved forest (DBF), evergreen needle-leaved forest (ENF), deciduous needle-leaved 
forest (DNF), mixed forest (MF), shrub, urban land, cropland, grass-land, unused land and water area. Then the 
cover classification data were resampled to 30 m. Because it is difficult to acquire meteorological data includ-
ing monthly average temperature, total precipitation and the total solar radiation due to the limited number of 
meteorological stations, the meteorological data were used to interpolated into 30 m raster images using Kriging 
 method53. Kriging method is the most widely used interpolation method. It thinks that any attribute of spatial 
continuously change is stochastic, and semi-variation function is used to analyze  data43. The root-mean-square 
standardized of Kriging is close to 1, indicating that the standard error is accurate. In this study, the root-mean-
square standardized of monthly average temperature, total precipitation and the total solar radiation are 1.8525, 
0.7344 and 0.9671 respectively. The mean standardized of Kriging is close to 0, indicating that the results are 
unbiased. And mean standardized of monthly average temperature, total precipitation and the total solar radia-
tion are − 0.0653, − 0.0510 and − 0.0636 respectively. These Kriging statistical errors illustrate the reliability of the 
interpolation results. Finally, according to the study of Zhu et al.46, the static parameters such as the maximum 
light use efficiency εmax (gC  MJ−1)54 were obtained.

The direct and indirect impact of urbanization on NPP. In order to obtain the direct and indirect 
impact of urbanization on NPP, a specific method for separating and analyzing  NPPdir and  NPPind was detailed 
as  follows17. First, assuming that every pixel has ideal full vegetation coverage before urbanization which defined 
as NPPfv . And assume that NPPfv does not change over time. Then, according to SMA model, the urbanization 
intensity (β) is represented by the percentage of IS of every pixel. NPPh is hypothetical NPP assuming that there 
is no indirect impact during the urbanization period, which is determined by the percentage of the non-urban 
surface (1 − β) and the NPPfv together, and are described in detail as the following:

Thus, based on this concept (1), under ideal conditions, the hypothetical NPPh after urbanization in time t 
can be expressed as:

where NPPh(x,  t1) is the NPP in pixel x at time t. And it is the hypothetical NPP value after urbanization, just 
considering the direct impact of land-cover changes; �(x, t) is the urban expansion intensity; and NPPfv(x, t) 
is the NPP value in pixel x at time t when it has full vegetation cover. The hypothetical NPPh in time  t0 can be 
expressed as:

And the hypothetical NPPh after urbanization in time  t1 can be expressed as:

Then the change in NPP due to urbanization from  t0 to  t1 is formula (4)–(3):

Since the ideal full vegetation cover pixel NPPfv does not change over time:

Then, we can calculate the direct impact at time  t1 as follows:

where NPPdir(x,  t1) is the direct impact NPP in pixel x at time  t1. The difference between NPPh(x,  t1) and the NPP 
at  t1 should be the indirect impact of urbanization on NPP. The indirect impact at time  t1 as follows:

where NPPind(x,  t1) is the indirect impact NPP in pixel x at time  t1. As NPP
(

x, t1
)

 is the NPP value estimated 
from CASA model after urbanization in pixel x at time  t1, bring formula (3) into formula (8) to get the indirect 
effect NPP:

According to the formula (9), we could calculate the direct and indirect impacts of urbanization on NPP 
from 2001 to 2009 and 2001 to 2018.

Spatial autocorrelation analysis. Spatial autocorrelation analysis is used to determine whether there is 
spatial clustering of NPP, LST, IS,  NPPdir and  NPPind of Kunming in 2001, 2009 and 2018. In order to meet the 
calculation limits of Geoda in this study, the IS, LST, NPP,  NPPdir and  NPPind at a spatial resolution of 30 m of 

(1)NPPh = (1− β)× NPPfv

(2)NPPh(x, t) = [1− β(x, t)]× NPPfv(x, t)

(3)NPPh(x, t0) = [1− β(x, t0)]× NPPfv(x, t0)

(4)NPPh(x, t1) = [1− β(x, t1)]× NPPfv(x, t1)

(5)NPPh(x, t1)− NPPh(x, t0) = [1− β(x, t1)]× NPPfv(x, t1)− [1− β(x, t0)]× NPPfv(x, t0)

(6)NPPfv(x, t0) = NPPfv(x, t1)

(7)NPPdir(x, t1) = NPPh(x, t1)− NPP(x, t0) = [β(x, t0)− β(x, t1)]× NPPfv(x, t0)

(8)NPPind(x, t1) = NPP(x, t1)− NPPh(x, t1)

(9)NPPind(x, t1) = NPP(x, t1)− [1− β(x, t1)]× NPPfv(x, t0)
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Kunming city were resampled to 500 × 500 m fishnet grid. Then, using Geoda  software39 to obtain the global 
Moran’s index and local Moran’s index of the above indicators. While, global Moran’s I reflects the global spatial 
autocorrelation between different geographical regions and local Moran’s I reflects the local similarities and dif-
ferences between neighboring  areas55. The two variables of the z-score and the p-value respectively refer to the 
spatial correlation level between neighboring areas and its corresponding significance  level35.

(1) Global spatial autocorrelation
Global spatial autocorrelation is used to measure the spatial autocorrelation. This study used the global 

Moran’s I and its statistical test to analysis the spatial dependence of NPP, LST, IS,  NPPdir and  NPPind. It was first 
proposed in 1950 by the Australian statistician Parker  Moran56. The global Moran’s I statistics of spatial autocor-
relation can be expressed as:

where n is the total number of observation area. As Yi is the Observation value in the i-th region. Wij is the spatial 
weight matrix, j = 1, 2, …, n. n is the number of cross-sectional observation units. The global Moran’s I values 
between − 1 and 1, if the Moran’s I is greater than 0, it means that this attribute value has a positive correlation 
in the study area. In contrast, if the Moran’s I is less than 0, it means that the attribute value has a negative cor-
relation. The larger the value, the greater the degree of spatial autocorrelation.

If the calculated global Moran’s index shows that this attribute value has spatial autocorrelation, the Z value 
can be used to test its significance. Z value calculation formula is as follows:

Z value can be used to test the spatial correlation. When Z > 0 and significant, there have spatial autocor-
relation. When Z = 0, there have random distribution. When Z < 0 and significant, there have negative spatial 
correlation.

(2) Local spatial autocorrelation
Compared with global spatial autocorrelation, local spatial autocorrelation is used to calculate the spatial 

correlation degree between each spatial object and its neighboring objects in a region. The calculation of local 
Moran’s I is similar to the global Moran’s I. Anselin proposed the definition of the local Moran’s I in  199557. The 
calculation of local Moran’s I is shown as follow:

The definitions of n, Yi , Wij and n are the same as the global Moran’s index in the previous section (i = 1, 2, 
…, n, j = 1, 2, …, n).

The LISA cluster map can reflect where the indicators are clustered in the space. Local Moran’s I and LISA 
cluster map can be divided into four space-related patterns, namely high–high cluster (HH), low–low cluster (LL), 
low–high cluster (LH), high–low cluster (HL). HH clusters indicates that the high-value region is surrounded 
by other high-value regions. LL clusters represents a low-value region is surrounded by other low-value regions. 
Similarly, LH clusters indicates that the low-value region is surrounded by other high-value regions, and HL 
clusters represents that a high-value region is surrounded by other low-value  regions36,55.

Geographically weighted regression model. The geographically weighted regression model (GWR) 
can be used to examine the spatial heterogeneity of the effect of LST on  NPPind. The geographically weighted 
regression model (GWR) is a local spatial technique that can be used to examine the spatial variabilities of 
regression parameters and model performance. Compared with the ordinary least squires (OLS) model, the 
GWR model carries out separate regressions at each location, considering only other observations within a spe-
cific distance to that  location35. The model can be expressed as  follow37:

where y is the dependent variable. x is the independent variable. k is the number of dependent variables. 
(

ui , vi
)

 
represents the geographic coordinates of the i-th unit. �0

(

ui , vi
)

 is a constant term, �k
(

ui , vi
)

 is the local 

(10)I =

∑n
i=1

∑n
j=1 Wij

(

Yi − Y
)(

Yj − Y
)

S2
∑n

i=1

∑n
j=1 Wij

(11)S2 =
1

n

n
∑

i=1

(

Yi − Y
)2
, Y =

1

n

n
∑

i=1

Yi ,

(12)Z =
I − E(I)
√
Var(I)

, E(I) =
−1

n− 1
, Var(I) =

n2W1 − nW2 + 3W2
0

W2
0

(

n2 − 1
) E2(I),

(13)Ii =

(

Yi − Y
)

S2

n
∑

j=1

Wij

(

Yj − Y
)

(14)S2 =
1
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∑
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(
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∑
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(15)yi = β0(ui , vi)+
∑
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βk(ui , vi)xij + εi



12

Vol:.(1234567890)

Scientific Reports |        (2021) 11:22282  | https://doi.org/10.1038/s41598-021-01757-7

www.nature.com/scientificreports/

regression parameter to be estimated at the regression point 
(

ui , vi
)

 which represents the longitude and latitude 
coordinates of the i-th grid point. �i is the random error term.

According to Tobler’s first law of geography, one thing is related to another, and more related to the nearer 
things than to the distant  things58. Therefore, the GWR model adopting a distance decay function in cooperation 
with a weight matrix for calibration. The parameters estimation adopts weighted least square method:

where W
(

ui , vi
)

 is a diagonal weight matrix. With the change of W
(

ui , vi
)

 and �
(

ui , vi
)

 . The choice of weight-
ing is crucial in the GWR, as it defines how many neighbors should be included in the matrix. In this study, we 
selected the bi-square weighting function to calculate the spatial weight matrix. The adaptive bandwidth was 
adopted to determine the number of nearby observations. And the bandwidth is optimized according to the 
Akaike Information Criterion (AIC)59.
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