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Abstract

Astrocytes, the star-shaped glial cells, are the most abundant non-neuronal cell popu-

lation in the central nervous system. They play a key role in modulating activities of

neural networks, including those involved in complex motor behaviors. Common mar-

mosets (Callithrix jacchus), the most vocal non-human primate (NHP), have been used

to study the physiology of vocalization and social vocal production. However, the

neural circuitry involved in vocal production is not fully understood. In addition, even

less is known about the involvement of astrocytes in this circuit. To understand the

role, that astrocytes may play in the complex behavior of vocalization, the initial step

may be to study their structural properties in the cortical and subcortical regions that

are known to be involved in vocalization. Here, in the common marmoset, we identify

all astrocytic subtypes seen in other primate's brains, including intralaminar astro-

cytes. In addition, we reveal detailed structural characteristics of astrocytes and per-

form morphometric analysis of astrocytes residing in the cortex and midbrain regions

that are associated with vocal production. We found that cortical astrocytes in these

regions illustrate a higher level of complexity when compared to those in the mid-

brain. We hypothesize that this complexity that is expressed in cortical astrocytes

may reflect their functions to meet the metabolic/structural needs of these regions.
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1 | INTRODUCTION

Astrocytes, the most numerous glial cells in the central nervous

system (CNS), have historically been considered neuronal support cells

primarily due to their role to maintain homeostasis in the CNS.

Astrocytic homeostasis has come to include stabilization of ionic equi-

librium (D'Ambrosio et al., 2002; Walz, 1989), metabolic control

(Bröer et al., 1997; Dringen et al., 1993; Magistretti, 2006; Marina

et al., 2018; Pellerin et al., 1998), clearance of neurotransmitter (Lehre

et al., 1995; Wu et al., 2013) as well as maintenance of the

blood–brain barrier and relationship with the neurovascular units

(Haydon & Carmignoto, 2006; Mishra et al., 2016; Volterra &

Meldolesi, 2005). While these functions are crucial for preserving a

healthy brain, in recent years, it has become evident that astrocytes

are not just “support cells” but actively communicate with neighbor-

ing neuronal cells. The astrocytic membrane contains receptors and

transport mechanisms for neurotransmitters. In addition, they release

gliotransmitters such as adenosine, ATP, glutamate, lactate, D-serine,

prostaglandin E2, and others to modulate the activities of other brain

cells (Anderson & Swanson, 2000; Araque et al., 2014; Bazargani &

Attwell, 2016; Bezzi et al., 1998; Covelo & Araque, 2018; Durkee &

Araque, 2019; Harada et al., 2015; Parpura & Haydon, 2000;

Received: 25 March 2021 Revised: 3 August 2021 Accepted: 5 August 2021

DOI: 10.1002/cne.25230

This is an open access article under the terms of the Creative Commons Attribution-NonCommercial License, which permits use, distribution and reproduction in any

medium, provided the original work is properly cited and is not used for commercial purposes.

Published 2021. This article is a U.S. Government work and is in the public domain in the USA.

J Comp Neurol. 2021;1–16. wileyonlinelibrary.com/journal/cne 1



TURK and SHEIKHBaHaEI 575

conventional, upright microscope (BX51WI; Olympus) with a �60 (.9

NA) water immersion objective (Olympus) and Dodt gradient contrast

(DGC) optics (Luigs & Neumann) for contrast enhancement. The extra-

cellular perfusing solution was continuously bubbled with 95% O2–

5% CO2 and had the following composition (in mM): 125 NaCl,

25 NaHCO3, 2.5 KCl, 2.5 CaCl2, 1 MgCl2, 10 glucose, pH 7.4 (osmolar-

ity �300 mOsm).

Using a combination of transmitted light and epifluorescence

optics (filter set 49011 with excitation filter ET480/40X, beam splitter

T510lpxrxt, and emission filter ET535/50m; Chroma), visually

targeted AII amacrine cells were impaled with sharp microelectrodes

with the tip filled with 5 mM Alexa Fluor 488 (“Alexa 488,” Thermo

Fisher Scientific) dissolved in 200 mM KCl and backfilled with

200 mM KCl without dye. Microelectrodes were pulled (P-87; Sutter

Instrument) from thin-walled borosilicate glass (OD, 1.0 mm; ID,

.78 mm; BF100-78-10; Sutter Instrument). When filled with dye solu-

tion, the resistance of the injection pipettes typically ranged between

80 and 150 MΩ. For injection, the microelectode was connected to

an intracellular amplifier (SEC-05LX; NPI Electronic) in bridge mode,

controlled by Patchmaster software (HEKA Elektronik; RRID:

SCR_000034). With the pipette resistances used, we typically did not

find it necessary to apply a retaining current to prevent leakage of

dye. After successful impalement, cells were injected with a current of

�500 pA for 3 min (�1 Hz; 900 ms on per cycle).

2.3 | Immunocytochemical labeling of slices with
injected cells

After injection, slices were fixed at room temperature for 10–15 min

in 4% paraformaldehyde in .1 M phosphate buffer (PB; .081 M

Na2HPO4/.019 M NaH2PO4, pH 7.4). Following fixation, slices were

washed three times (5 min each) in .01 M phosphate-buffered saline

(PBS; .01 M PB with 8.76 g NaCl and .2 g KCl per liter, pH 7.4). Next,

slices were incubated for 1 h at room temperature in antibody incuba-

tion solution consisting of PBS with 5% normal goat serum (NGS;

Sigma-Aldrich), .5% Triton X-100 (Sigma-Aldrich), and .05% NaN3.

Slices were then incubated for three nights (at 4�C) with primary anti-

body (mouse anti-ankyrin-G or guinea pig anti-ankyrin-G; Table 1) in

antibody incubation solution. After incubation, slices were washed

three times (10 min each) in PBS and incubated with secondary anti-

body in antibody incubation solution (with .2% Triton X-100), either

for 2 h at room temperature or overnight at 4�C. Secondary anti-

bodies were purchased from Thermo Fisher Scientific and included

goat anti-mouse coupled to Alexa Fluor 594 (“Alexa 594,” #A11032)

or Alexa Fluor 647 (“Alexa 647,” #A21236), and goat anti-guinea pig

coupled to Alexa 594 (#A11076) or Alexa 647 (#A21450), used at a

dilution of 1:1000. Subsequently, the slices were washed three times

(15 min each) in PBS and mounted in SlowFade Diamond Antifade

mountant (refractive index 1.42; Thermo Fisher Scientific, cat. number

S36967) between two precision coverslips (.17 mm thickness; Karl

Hecht Assistent, cat. number 1014/5024) separated by a .12 mm

thick imaging spacer disk (“SecureSeal,” cat. number 70327-13S; Elec-

tron Microscopy Sciences).

2.4 | Immunocytochemical labeling of retinal
wholemounts

For immunolabeling of retinal wholemounts, we used a marker (Penol)

to place a spot of permanent ink (xylene free) on the dorsal part of the

eye before removing it from the orbit. After enucleation, we made a

small cut in the dorsal part of the retina and sclera before dissecting

the retina from the eye cup. The retina was then flattened by making

four radial incisions from the periphery almost to the center and trans-

ferred onto the non-gridded surface of a piece of nitrocellulose filter

paper (Millipore, cat. number HABG01300). The filter paper with

attached retina was then positioned on a piece of folded tissue paper

(e.g., Kimwipe) and a few drops of HEPES-buffered extracellular solu-

tion was added on top and allowed to soak through. For fixation, a

few drops of 4% paraformaldehyde (in .1 M PB) was added on top

and allowed to soak through. After repeating this 2–3 times, the filter

paper with retina was transferred to a larger volume of 4% para-

formaldehyde in .1 M PB and fixed for 30 min at room temperature.

After fixation, the retina was washed six times (10 min each) in .01 M

PBS and incubated in antibody incubation solution (identical to that

used for slices) overnight at 4�C. The retina was then incubated for

four nights (at 4�C) with primary antibodies (mouse anti-ankyrin-G

and guinea pig anti-parvalbumin; Table 1) in antibody incubation solu-

tion identical to that used for slices, but with .2% Triton X-100. After-

wards, the retina was washed six times (10 min each) in PBS and

incubated overnight (at 4�C) with secondary antibodies (goat anti-

guinea pig coupled to Alexa 488, #A11073 from Thermo Fisher Scien-

tific, diluted 1:1000; goat anti-mouse coupled to Alexa 594, #A11032

from Thermo Fisher Scientific, diluted 1:1000) in antibody incubation

solution (identical to that used for slices, i.e., with .2% Triton X-100).

Finally, the retina was washed six times (10 min each) in PBS and

mounted in Vectashield between a microscope slide and a precision

TABLE 1 Primary antibodies

Antibody name Immunogen Source, cat #, RRID Antibody type Dilution

Ankyrin-G Ankyrin-G (463) Santa Cruz, SC12719, AB_626674 Mouse, monoclonal 1:100

Ankyrin-G Ankyrin-G epitope: aa 1784-1961 rat, mouse Synaptic Systems, 386004, AB_2725774 Guinea pig, polyclonal 1:1000

Parvalbumin Parvalbumin, aa 1-133 rat Synaptic Systems, 195004, AB_2156476 Guinea pig, polyclonal 1:1000

Abbreviation: RRID, Research Resource Identifiers (for details see the Resource Identification Portal: https://scicrunch.org/resources).
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Sheikhbahaei, Turovsky, et al., 2018; Simard & Nedergaard, 2004).

The capacity for astrocytes to take away and renew the neurotrans-

mitters being released from neurons, as well as release of their own

transmitter, portrays evidence that astrocytes may be modulating

synaptic activity and contributing to neural networks' function.

Therefore, it is proposed that astrocytes can play a key role in regu-

lating complex behaviors and cognitive function (Halassa

et al., 2009; Oberheim Bush & Nedergaard, 2017; Oliveira

et al., 2015; Santello et al., 2019; Sheikhbahaei, Turovsky,

et al., 2018).

Vocal production is a complex motor behavior that involves coor-

dination of several brain regions and more than 100 muscles in the

body. While the complete circuits are not fully elucidated, particular

brain regions, including cerebral cortices, midbrain, and brainstem

regions, have been illustrated as crucial for vocal production behaviors

(Jarvis, 2019; Jürgens, 2002; Simonyan & Fuertinger, 2015). Recent

data suggest that astrocytes are involved in regulation of complex

motor circuits controlling locomotion (Christensen et al., 2013; Hegyi

et al., 2009, 2018), mastication (Morquette et al., 2015), and respira-

tion (Angelova et al., 2015; Rajani et al., 2018; Sheikhbahaei,

Turovsky, et al., 2018). Therefore, it is plausible that astrocytes may

also play a critical role in modulation of vocalization (Turk et al., 2021).

In accordance with this hypothesis, it was suggested that a defect in

astrocytes can lead to developmental stuttering (a common speech

disorder that affects the fluency of speech) (Han et al., 2019; Maguire

et al., 2021). Thus, it will be imperative to further understand the role

of astrocytes in circuits that are involved in control of vocal

production.

Previous work in rodents has identified morphological differences

in astrocytic cellular structures that possibly reflect their physiological

functions (Chai et al., 2017; Khakh & Sofroniew, 2015; Sheikhbahaei

et al., 2018, b). Additionally, other glial cells, in particular microglia,

have displayed morphological differences in specific CNS regions and

illustrated that these differences are due to functional necessities

(Berkiks et al., 2019; Doyle et al., 2017). While morphological analysis

of astrocytes has previously been assessed in brainstem, midbrain,

and some subcortical regions (Althammer et al., 2020; Chai

et al., 2017; Mong & McCarthy, 2002; Reeves et al., 2011;

Sheikhbahaei, Morris, et al., 2018; Tavares et al., 2017), only limited

information is known about cellular architecture of cortical astrocytes

(Eilam et al., 2016). Moreover, the majority of this work has been

investigated in rodent models, with a few examples in human

(Oberheim et al., 2006, 2009, 2012; Verkhratsky et al., 2018). There-

fore, it is essential to fill the gap between rodent studies and human

studies, possibly, by studying the morphometric characteristics of

astrocytes in NHPs.

Common marmoset (Callithrix jacchus), the most vocal NHP

(Eliades & Miller, 2017; Miller et al., 2015), is relatively small

(300–400 g, similar to size of a rat), but their brain structures and the

ratio of gray matter to white matter are similar to those in human

(Zilles et al., 1989). Therefore, marmosets might be a good model to

investigate structural and functional properties of glia cells in regions

involved the vocal production circuits. Accordingly, in this study, we

used the adult common marmoset to perform a morphometric analysis

of immunostained GFAP-positive astrocytes residing in cortical

[rostral anterior cingulate cortex (ACC), ventral primary somatosen-

sory cortex (SM1), primary auditory cortex (A1), ventral premotor cor-

tex (A6Va), area 45 (A45)] and midbrain [central nucleus of the

amygdala (CeA), ventral tegmental area (VTA), periaqueductal gray

(PAG)] regions that are involve in vocalization. We identified all

astrocyte subtypes that are described previously in primate and

human brains (Oberheim et al., 2006, 2009, 2012; Verkhratsky

et al., 2018). In addition, our data suggest that there are few structural

differences among astrocytes in the cortical regions and among astro-

cytes in the midbrain regions. However, there was a substantial differ-

ence in astrocyte structure when comparing between cortical and

midbrain regions. These structural differences reflect a possible differ-

ence in function for astrocytes in cortical and midbrain areas, such

that greater complexity of cortical astrocytes could reflect a higher

metabolic and/or structural demand that more nuanced astrocytes

would be able to provide.

2 | METHODS

2.1 | Animals

Two adult common marmosets (C. jacchus) (1 male, 1 female, ages: 61

± 3 months; weight: 402 ± 20 g) were used in this study. We complied

with all relevant ethical regulations for animal testing and research. All

procedures in this study were approved by the Animal Care and Use

Committee of the Intramural Research Program of National Institute

of Mental Health. Marmosets were housed in cages in pairs or alone

in a room with a 12 h light/dark cycle. Their food and water intake

were regulated, receiving food and water ad liberum.

2.2 | Tissue processing and immunohistochemistry

Adult marmosets were euthanized with an overdose of anesthesia

sodium pentobarbital (100 mg/kg, i.p.) and transcardially perfused

with 500 ml of phosphate-buffered saline (PBS, .1 M) solution

followed by 4% paraformaldehyde (PFA) fixative. Subsequently, the

brain was extracted and post-fixed for 3–5 days in the same PFA solu-

tion. The extracted brains were sent to NeuroScience Associates

(NSA) to be sectioned at 50 μm. Floating slices were stored in anti-

freeze solution in �20�C until staining. Coronal sections were

selected based on corresponding section in atlas (Paxinos et al., 2012).

Coronal sections were immunostained as described before

(Sheikhbahaei, Morris, et al., 2018). Briefly, floating sections were

quenched in PBS containing 10% methanol and 3% H2O2 to suppress

background fluorescence. To perform antigen retrieval, 1% citrate

buffer warmed to 80�C was used to unmask the proteins. The tissue

was then incubated on a shaker for 48 h at 4�C with an antibody

against glial fibrillary acidic protein (GFAP; Table 1). While one primary

antibody was conjugated and did not require a secondary antibody,
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other sections were incubated with a GFAP primary antibody that

required secondary conjugation. Those sections were subsequently

incubated in secondary antibodies conjugated to the fluorescent pro-

bes (1:500; donkey anti-rabbit Life Technologies, RRID: AB_2762834)

for 1.5 h shaking at room temperature. A separate section before or

after the one that used for GFAP staining was stained with Nissl.

Briefly, the tissue was stained with NeuroTrace™ green fluorescent

Nissl stain (1:200 in PBS, Life Technologies, catalog No. N-21480) for

20 min at room temperature. All sections were subsequently mounted

onto microscope slides and covered in an anti-fading mounting

medium. Using an inverted confocal laser scanning microscope (Zeiss

LSM 510) with image acquisition settings with 1024 � 1024-pixel res-

olution, z-stack images of GFAP-positive astrocytes were obtained

from the slice thickness at 20� and 40� within the cortical (ACC,

SM1, A1, A6Va, and A45) and midbrain (CeA, VTA, and PAG) regions

(see Figure 1 for representative sketch of regions). Nissl images were

acquired using an AxioScan.Z1 slide scanner (Carl Zeiss, with a

20 � objective). To avoid possible experimental variation, immuno-

staining was conducted and processed by one investigator with the

same solutions and imaging protocol.

2.3 | Antibody characterization

We used two different anti-GFAP antibodies to validate specificity of

GFAP staining in the adult marmoset (see Figure 2a–c, and Table 1).

Both of these GFAP antibodies have previously been successfully

used to demonstrate astrocytes in human and NHPs (Dominy

et al., 2019; Forny-Germano et al., 2014; Kang et al., 2018;

Thiruvalluvan et al., 2016).

Isolated from cow spinal cord, the rabbit-polyclonal anti-GFAP

antibody (1:1000; formerly DAKO, now Agilent, catalog #z-0334,

RRID: AB_10013382) cross-reacts with an epitome of mouse, rat, and

human cytoskeleton, the intra-cytoplasmic filamentous protein [manu-

facturer's technical information; (Eng, 1985; Eng et al., 2000)]. Addi-

tionally, this antibody stains a double band at 245-395kDA on

Western Blot Analysis (Key et al., 1993).

The mouse monoclonal GFAP antibody (1:1000, Sigma-Aldrich,

catalog #MAB3402C3, RRID: AB_11213580) reacts with human, pig,

chicken, and rat GFAP (manufacturer's technical information). This

GFAP antibody was raised against purified glial filament protein

(Debus, Weber, & Osborn, 1983).

2.4 | Three-dimensional (3D) reconstruction of
astrocytes

In sections with fully expressed GFAP-positive astrocytes, image

z-stacks (Figure 3) were imported into Imaris software (Oxford

Instruments, RRID: SCR_007370) where semi-automatic and

automatic reconstructions of individual astrocytes were com-

pleted with the software's filament tracing tool (see Figure 4).

All images were obtained from the center of the region of inter-

est to minimize overlap from nearby regions. GFAP-positive

astrocytes from six brain regions (ACC, SM1, A1, CeA, VTA, and

PAG) were chosen for reconstruction (up to five astrocytes per

image, one to five images per regions). Astrocytic processes

were traced throughout the entire thickness of the sections by

one investigator and verified by a second investigator. Using

Imaris, the astrocytes were subsequently analyzed for structural

quantification.

2.5 | Morphometric analysis of astrocytes

Fully traced astrocytes in Imaris were used to obtain morphometric

data. Using the 3D filament data that were developed originally to

analyze reconstructed neurons, we specifically ran morphometric

analysis in the regions of interest. The features extracted included

analysis to determine the unique astrocyte process morphology found

in each region. This included sholl analysis (Sholl, 1953) and convex

hull analysis (Costa, 1995). Since complexity of astrocytic processes

increases with radial distance from the soma, sholl analysis quantifies

astrocyte branches quantity, branch points, number of terminals as

well as process length. This analysis utilized shell volumes between

concentric spheres, each 1 μm apart, radiating out from the center of

the soma (see Figure 2f). Importantly, the sholl analysis finds the num-

ber of intersections between processes and sphere at a given radius.

Because astrocytic processes branch from their primary pro-

cesses to secondary and tertiary and then even further to fine

leaflets and branchlets that are unrecognizable with GFAP

staining, we used 3D convex hull analysis to assess the volume

occupied by the astrocytic process. In convex hull analysis, the

volume of astrocytes was estimated by enveloping the cell surface

area, creating a polygon that joins terminal points of the processes

as described before (Sheikhbahaei, Morris, et al., 2018) (see

Figure 2e).

To normalize and properly compare the cell process complexity

in disparate regions, we used a complexity index. While this calcu-

lation was originally developed to analyze neuronal dendrite, it has

since been adapted to also evaluate astrocyte processes

(Sheikhbahaei, Morris, et al., 2018). Complexity index was com-

puted by using the following formula: (Σ terminal orders + number

of terminals) � (total process length/number of primary branches),

where the number of “terminal orders for each terminal point is cal-

culated as the number of branches that appear in proceeding back-

ward from the defined terminal to the cell soma” (Sheikhbahaei,

Morris, et al., 2018).

TABLE 1 Primary antibody characterization

Antigen

Description of

immunogen

Source, host species,

catalog no. RRID

Dilution

used

GFAP GFAP isolated

from cow

spinal cord

DAKO, rabbit polyclonal,

catalog #z-0334, RRID:

AB_10013382

1:1000

GFAP Purified glial

filament

protein

Sigma-Aldrich, mouse

monoclonal Cy3

conjugate,

MAB3402C3, RRID:

AB_11213580

1:1000
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conventional, upright microscope (BX51WI; Olympus) with a �60 (.9

NA) water immersion objective (Olympus) and Dodt gradient contrast

(DGC) optics (Luigs & Neumann) for contrast enhancement. The extra-

cellular perfusing solution was continuously bubbled with 95% O2–

5% CO2 and had the following composition (in mM): 125 NaCl,

25 NaHCO3, 2.5 KCl, 2.5 CaCl2, 1 MgCl2, 10 glucose, pH 7.4 (osmolar-

ity �300 mOsm).

Using a combination of transmitted light and epifluorescence

optics (filter set 49011 with excitation filter ET480/40X, beam splitter

T510lpxrxt, and emission filter ET535/50m; Chroma), visually

targeted AII amacrine cells were impaled with sharp microelectrodes

with the tip filled with 5 mM Alexa Fluor 488 (“Alexa 488,” Thermo

Fisher Scientific) dissolved in 200 mM KCl and backfilled with

200 mM KCl without dye. Microelectrodes were pulled (P-87; Sutter

Instrument) from thin-walled borosilicate glass (OD, 1.0 mm; ID,

.78 mm; BF100-78-10; Sutter Instrument). When filled with dye solu-

tion, the resistance of the injection pipettes typically ranged between

80 and 150 MΩ. For injection, the microelectode was connected to

an intracellular amplifier (SEC-05LX; NPI Electronic) in bridge mode,

controlled by Patchmaster software (HEKA Elektronik; RRID:

SCR_000034). With the pipette resistances used, we typically did not

find it necessary to apply a retaining current to prevent leakage of

dye. After successful impalement, cells were injected with a current of

�500 pA for 3 min (�1 Hz; 900 ms on per cycle).

2.3 | Immunocytochemical labeling of slices with
injected cells

After injection, slices were fixed at room temperature for 10–15 min

in 4% paraformaldehyde in .1 M phosphate buffer (PB; .081 M

Na2HPO4/.019 M NaH2PO4, pH 7.4). Following fixation, slices were

washed three times (5 min each) in .01 M phosphate-buffered saline

(PBS; .01 M PB with 8.76 g NaCl and .2 g KCl per liter, pH 7.4). Next,

slices were incubated for 1 h at room temperature in antibody incuba-

tion solution consisting of PBS with 5% normal goat serum (NGS;

Sigma-Aldrich), .5% Triton X-100 (Sigma-Aldrich), and .05% NaN3.

Slices were then incubated for three nights (at 4�C) with primary anti-

body (mouse anti-ankyrin-G or guinea pig anti-ankyrin-G; Table 1) in

antibody incubation solution. After incubation, slices were washed

three times (10 min each) in PBS and incubated with secondary anti-

body in antibody incubation solution (with .2% Triton X-100), either

for 2 h at room temperature or overnight at 4�C. Secondary anti-

bodies were purchased from Thermo Fisher Scientific and included

goat anti-mouse coupled to Alexa Fluor 594 (“Alexa 594,” #A11032)

or Alexa Fluor 647 (“Alexa 647,” #A21236), and goat anti-guinea pig

coupled to Alexa 594 (#A11076) or Alexa 647 (#A21450), used at a

dilution of 1:1000. Subsequently, the slices were washed three times

(15 min each) in PBS and mounted in SlowFade Diamond Antifade

mountant (refractive index 1.42; Thermo Fisher Scientific, cat. number

S36967) between two precision coverslips (.17 mm thickness; Karl

Hecht Assistent, cat. number 1014/5024) separated by a .12 mm

thick imaging spacer disk (“SecureSeal,” cat. number 70327-13S; Elec-

tron Microscopy Sciences).

2.4 | Immunocytochemical labeling of retinal
wholemounts

For immunolabeling of retinal wholemounts, we used a marker (Penol)

to place a spot of permanent ink (xylene free) on the dorsal part of the

eye before removing it from the orbit. After enucleation, we made a

small cut in the dorsal part of the retina and sclera before dissecting

the retina from the eye cup. The retina was then flattened by making

four radial incisions from the periphery almost to the center and trans-

ferred onto the non-gridded surface of a piece of nitrocellulose filter

paper (Millipore, cat. number HABG01300). The filter paper with

attached retina was then positioned on a piece of folded tissue paper

(e.g., Kimwipe) and a few drops of HEPES-buffered extracellular solu-

tion was added on top and allowed to soak through. For fixation, a

few drops of 4% paraformaldehyde (in .1 M PB) was added on top

and allowed to soak through. After repeating this 2–3 times, the filter

paper with retina was transferred to a larger volume of 4% para-

formaldehyde in .1 M PB and fixed for 30 min at room temperature.

After fixation, the retina was washed six times (10 min each) in .01 M

PBS and incubated in antibody incubation solution (identical to that

used for slices) overnight at 4�C. The retina was then incubated for

four nights (at 4�C) with primary antibodies (mouse anti-ankyrin-G

and guinea pig anti-parvalbumin; Table 1) in antibody incubation solu-

tion identical to that used for slices, but with .2% Triton X-100. After-

wards, the retina was washed six times (10 min each) in PBS and

incubated overnight (at 4�C) with secondary antibodies (goat anti-

guinea pig coupled to Alexa 488, #A11073 from Thermo Fisher Scien-

tific, diluted 1:1000; goat anti-mouse coupled to Alexa 594, #A11032

from Thermo Fisher Scientific, diluted 1:1000) in antibody incubation

solution (identical to that used for slices, i.e., with .2% Triton X-100).

Finally, the retina was washed six times (10 min each) in PBS and

mounted in Vectashield between a microscope slide and a precision

TABLE 1 Primary antibodies

Antibody name Immunogen Source, cat #, RRID Antibody type Dilution

Ankyrin-G Ankyrin-G (463) Santa Cruz, SC12719, AB_626674 Mouse, monoclonal 1:100

Ankyrin-G Ankyrin-G epitope: aa 1784-1961 rat, mouse Synaptic Systems, 386004, AB_2725774 Guinea pig, polyclonal 1:1000

Parvalbumin Parvalbumin, aa 1-133 rat Synaptic Systems, 195004, AB_2156476 Guinea pig, polyclonal 1:1000

Abbreviation: RRID, Research Resource Identifiers (for details see the Resource Identification Portal: https://scicrunch.org/resources).
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2.6 | Statistical analyses

The analyzed data were exported from Imaris to Prism 9.0 software

(Graphpad Software Inc., RRID: SCR_002798) where it was reported

as averages ± standard error of mean (SEM). For statistical analysis,

we used non-parametric Mann–Whitney U rank test or the Kruskal-

Wallis one-way ANOVA by ranks followed by Dunn's post hoc test as

appropriate. Evaluations with p < .05 were considered to be

significant.

3 | RESULTS

3.1 | Distinction and categorization of marmoset
astrocytes

We found primate-specific interlaminar astrocytes with cell bod-

ies in layer I of the SM1 cortex and long, minimally branching pro-

cesses terminating in the deeper cortical layers (Figure 5a). In

addition, we observed fibrous astrocytes that have overlapping

F IGURE 1 Schematic drawings of regions of interest in adult marmoset brain. (a) Locations of ventral premotor cortex (A6Va) and area
45 (A45) are shown on illustration (right) and Nissl-stained (left) coronal section. r—rostral, c—caudal, v—ventral, d—dorsal. (b) Illustration of a
coronal section containing ventral primary sensorimotor cortex (SM1) corresponding to the orofacial region, rostral anterior cingulate cortex
(ACC), and central nucleus of the amygdala (CeA) (right) is accompanied with Nissl staining from the corresponding section (left). (c) Location of
primary auditory cortex (A1) and ventral tegmental area (VTA) in illustration (right) and Nissl-stained coronal slice (left). (d) Location of
periaqueductal gray (PAG) is illustrated in coronal section from midbrain. Sagittal drawings of marmoset brain illustrate the regions of interest in
each panel with a dashed line. Scale bars: 1 mm
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processes with neighboring astrocytes in the white-matter brain

regions as well as corpus callosum (Figure 5b-c). Moreover, in

cortical regions of the marmoset brain, we have identified gray

matter protoplasmic astrocytes, which are described as spatially

non-overlapping astrocytes (Figure 5d). In addition, primate-

specific polarized astrocytes were present in marmoset cortical

layers V and VI, close to blood vessels (Figure 5e). Lastly, we iden-

tified astrocytes that fit the description of varicose astrocytes,

characterized by one to five long processes and multiple varicosi-

ties (Figure 5f). The interlaminar and polarized astrocytes were

not very common among marmoset cortical astrocytes as we only

detected them in SM1 and therefore were excluded from morpho-

metric analysis.

3.2 | Morphometric characteristics of cortical
astrocytes

The number of primary branches, number of branch points, number of

terminal points, and process length were studied in ACC, A6Va, A45,

SM1, and A1 astrocytes using the sholl analysis (see Figures 2 and 6

for more details). We found no differences in the average number of

primary branches (p > .9, Kruskal-Wallis ANOVA by ranks followed by

Dunn's post hoc test; Figure 7a). Similarly, when evaluating the num-

ber of branch points, we found no significant difference between

astrocytes residing in these regions (p > .9, Kruskal-Wallis ANOVA by

ranks followed by Dunn's post hoc test, Figure 7b). Likewise, when

investigating the number of terminal points, we found no differences

F IGURE 2 Antibody validation and methods to analyze morphometric characterization of astrocytes. (a–c) Ventrolateral brainstem
immunostained GFAP-positive astrocytes with mouse anti-GFAP monoclonal antibody (green; a) and rabbit anti-GFAP polyclonal antibody (red; b).
Merged low magnification and high magnification images. (c) Displays colocalization of both GFAP antibody labeling. (d) Semi-automated morphological
3D reconstructed astrocyte using Imaris in SM1. (e) Example of convex hull analysis in which the tips of each astrocytic process are connected to form
a polygon in order to evaluate the space occupied by the astrocyte. (f) Portrayal of sholl analysis in which data points including branch points, terminal
points, and process length are measured at each radial circle starting at the cell body and emanating outward. (g) Color-coated evaluation of process
length where red indicates the shortest branches and white indicates the longest processes. (h and i) Display visualization of data from branch points
(h) and terminal point (i), all data were generated using Imaris software [Color figure can be viewed at wileyonlinelibrary.com]
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conventional, upright microscope (BX51WI; Olympus) with a �60 (.9

NA) water immersion objective (Olympus) and Dodt gradient contrast

(DGC) optics (Luigs & Neumann) for contrast enhancement. The extra-

cellular perfusing solution was continuously bubbled with 95% O2–

5% CO2 and had the following composition (in mM): 125 NaCl,

25 NaHCO3, 2.5 KCl, 2.5 CaCl2, 1 MgCl2, 10 glucose, pH 7.4 (osmolar-

ity �300 mOsm).

Using a combination of transmitted light and epifluorescence

optics (filter set 49011 with excitation filter ET480/40X, beam splitter

T510lpxrxt, and emission filter ET535/50m; Chroma), visually

targeted AII amacrine cells were impaled with sharp microelectrodes

with the tip filled with 5 mM Alexa Fluor 488 (“Alexa 488,” Thermo

Fisher Scientific) dissolved in 200 mM KCl and backfilled with

200 mM KCl without dye. Microelectrodes were pulled (P-87; Sutter

Instrument) from thin-walled borosilicate glass (OD, 1.0 mm; ID,

.78 mm; BF100-78-10; Sutter Instrument). When filled with dye solu-

tion, the resistance of the injection pipettes typically ranged between

80 and 150 MΩ. For injection, the microelectode was connected to

an intracellular amplifier (SEC-05LX; NPI Electronic) in bridge mode,

controlled by Patchmaster software (HEKA Elektronik; RRID:

SCR_000034). With the pipette resistances used, we typically did not

find it necessary to apply a retaining current to prevent leakage of

dye. After successful impalement, cells were injected with a current of

�500 pA for 3 min (�1 Hz; 900 ms on per cycle).

2.3 | Immunocytochemical labeling of slices with
injected cells

After injection, slices were fixed at room temperature for 10–15 min

in 4% paraformaldehyde in .1 M phosphate buffer (PB; .081 M

Na2HPO4/.019 M NaH2PO4, pH 7.4). Following fixation, slices were

washed three times (5 min each) in .01 M phosphate-buffered saline

(PBS; .01 M PB with 8.76 g NaCl and .2 g KCl per liter, pH 7.4). Next,

slices were incubated for 1 h at room temperature in antibody incuba-

tion solution consisting of PBS with 5% normal goat serum (NGS;

Sigma-Aldrich), .5% Triton X-100 (Sigma-Aldrich), and .05% NaN3.

Slices were then incubated for three nights (at 4�C) with primary anti-

body (mouse anti-ankyrin-G or guinea pig anti-ankyrin-G; Table 1) in

antibody incubation solution. After incubation, slices were washed

three times (10 min each) in PBS and incubated with secondary anti-

body in antibody incubation solution (with .2% Triton X-100), either

for 2 h at room temperature or overnight at 4�C. Secondary anti-

bodies were purchased from Thermo Fisher Scientific and included

goat anti-mouse coupled to Alexa Fluor 594 (“Alexa 594,” #A11032)

or Alexa Fluor 647 (“Alexa 647,” #A21236), and goat anti-guinea pig

coupled to Alexa 594 (#A11076) or Alexa 647 (#A21450), used at a

dilution of 1:1000. Subsequently, the slices were washed three times

(15 min each) in PBS and mounted in SlowFade Diamond Antifade

mountant (refractive index 1.42; Thermo Fisher Scientific, cat. number

S36967) between two precision coverslips (.17 mm thickness; Karl

Hecht Assistent, cat. number 1014/5024) separated by a .12 mm

thick imaging spacer disk (“SecureSeal,” cat. number 70327-13S; Elec-

tron Microscopy Sciences).

2.4 | Immunocytochemical labeling of retinal
wholemounts

For immunolabeling of retinal wholemounts, we used a marker (Penol)

to place a spot of permanent ink (xylene free) on the dorsal part of the

eye before removing it from the orbit. After enucleation, we made a

small cut in the dorsal part of the retina and sclera before dissecting

the retina from the eye cup. The retina was then flattened by making

four radial incisions from the periphery almost to the center and trans-

ferred onto the non-gridded surface of a piece of nitrocellulose filter

paper (Millipore, cat. number HABG01300). The filter paper with

attached retina was then positioned on a piece of folded tissue paper

(e.g., Kimwipe) and a few drops of HEPES-buffered extracellular solu-

tion was added on top and allowed to soak through. For fixation, a

few drops of 4% paraformaldehyde (in .1 M PB) was added on top

and allowed to soak through. After repeating this 2–3 times, the filter

paper with retina was transferred to a larger volume of 4% para-

formaldehyde in .1 M PB and fixed for 30 min at room temperature.

After fixation, the retina was washed six times (10 min each) in .01 M

PBS and incubated in antibody incubation solution (identical to that

used for slices) overnight at 4�C. The retina was then incubated for

four nights (at 4�C) with primary antibodies (mouse anti-ankyrin-G

and guinea pig anti-parvalbumin; Table 1) in antibody incubation solu-

tion identical to that used for slices, but with .2% Triton X-100. After-

wards, the retina was washed six times (10 min each) in PBS and

incubated overnight (at 4�C) with secondary antibodies (goat anti-

guinea pig coupled to Alexa 488, #A11073 from Thermo Fisher Scien-

tific, diluted 1:1000; goat anti-mouse coupled to Alexa 594, #A11032

from Thermo Fisher Scientific, diluted 1:1000) in antibody incubation

solution (identical to that used for slices, i.e., with .2% Triton X-100).

Finally, the retina was washed six times (10 min each) in PBS and

mounted in Vectashield between a microscope slide and a precision

TABLE 1 Primary antibodies

Antibody name Immunogen Source, cat #, RRID Antibody type Dilution

Ankyrin-G Ankyrin-G (463) Santa Cruz, SC12719, AB_626674 Mouse, monoclonal 1:100

Ankyrin-G Ankyrin-G epitope: aa 1784-1961 rat, mouse Synaptic Systems, 386004, AB_2725774 Guinea pig, polyclonal 1:1000

Parvalbumin Parvalbumin, aa 1-133 rat Synaptic Systems, 195004, AB_2156476 Guinea pig, polyclonal 1:1000

Abbreviation: RRID, Research Resource Identifiers (for details see the Resource Identification Portal: https://scicrunch.org/resources).
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between ACC, A6Va, A45, SM1, and A1 astrocytes (p > .9, Kruskal-

Wallis ANOVA by ranks followed by Dunn's post hoc test; Figure 7c).

On the other hand, the averaged process length of SM1 astro-

cytes was significantly larger than ACC, A6Va, A45, and astrocyte pro-

cesses (p = .016, p < .001, p < .001, and p = .029, respectively;

Mann–Whitney U rank test). However, no differences were observed

in astrocytic process lengths between ACC, A6Va, A45, and A1

regions (p = .9, Mann–Whitney U rank test, Figure 7d). Surface area

of SM1 astrocytes proved to be larger than astrocytes in ACC

(p < .001, Mann–Whitney U rank test) as well as astrocytes residing in

A6Va, A45, and A1 (p = .001, p < .001, and p = .005, Mann–Whitney

U rank test). However, no differences in surface area were found

between astrocytes in ACC, A6Va, A45, and A1 (p = .9, Kruskal-Wallis

ANOVA by ranks followed by Dunn's post hoc test; Figure 8a). While

the convex hull analysis found differences in surface area, no such dif-

ference was found when evaluating the convex hull volume of ACC,

SM1, and A1 astrocytes (p > .9, Kruskal-Wallis ANOVA by ranks

followed by Dunn's post hoc test; Figure 8b). We also evaluated

F IGURE 4 Example reconstructed GFAP-positive astrocytes in the adult marmoset cortex and midbrain. (a–e) Example of reconstructed
cortical astrocytes in (a) anterior cingulate cortex (ACC), (b) primary sensorimotor cortex (SM1), (c) primary auditory cortex (A1), (d) ventral
premotor cortex (A6Va), and (e) area 45 (A45). (f–h) Illustrate reconstructed midbrain astrocytes residing in (f) central nucleus of the amygdala
(CeA), (g) ventral tegmental area (VTA), and (h) periaqueductal gray (PAG)

F IGURE 3 Immuno-stained GFAP-positive astrocytes in the adult marmoset cortex and midbrain. (a–e) Show the confocal images of cortical
regions, including anterior cingulate cortex (ACC) (a), primary sensorimotor cortex (SM1) (b), primary auditory cortex (A1) (c), ventral premotor
cortex (A6Va) (d), and area 45 (A45) (e). (f–h) Denote the confocal images of midbrain regions, including central nucleus of the amygdala (CeA) (f ),
ventral tegmental area (VTA) (g), and periaqueductal gray (PAG) (h)
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astrocytes via a complexity index (see Methods for more details) to

compare the overall complexity of astrocytes' morphology in vari-

ous regions. While differences were observed in many of the indi-

vidual measures, the overall complexity indices of astrocytes in

ACC compared to those in SM1 and A1 were not different (p = .3,

p > .9, respectively; Mann–Whitney U rank test) and the complex-

ity index comparison between SM1 and A1 astrocytes also

showed no differences (p = .9, Mann–Whitney U rank test). How-

ever, differences in complexity indices were only observed

between A6Va and SM1 as well as between A45 and SM1 astro-

cytes (p = .01, p = .002, respectively, Mann–Whitney U rank test;

Figure 9).

3.3 | Morphological features of midbrain and
brainstem astrocytes

We then evaluated morphometric features of the astrocytes from CeA,

VTA, and PAG, regions that have shown to be also involved in vocal pro-

duction. We first compared the number of primary branches per

astrocyte in each region and found no differences between the measure-

ments from these three midbrain regions (p > .9, Kruskal-Wallis ANOVA

by ranks followed by Dunn's post hoc test; Figure 7a). We then analyzed

the number of branch points from astrocytes residing in these three

regions and similarly found not difference (p = .9, Mann–Whitney U rank

test; Figure 7b). Although, the number of terminal points of VTA astro-

cytes was greater than CeA astrocytes (p = .003, Mann–Whitney U rank

test), the number of terminal points measured from PAG astrocytes was

similar to astrocytes found in VTA and CeA (p = .4, .1, respectively,

Mann–Whitney U rank test; Figure 7c).

We then evaluated and compared process length of the midbrain

astrocytes. Our findings indicate that VTA astrocyte length, on aver-

age, was larger than CeA astrocytes (p = .007, Mann–Whitney U rank

test) but not PAG astrocytes (p = .3, Mann–Whitney U rank test).

CeA and PAG astrocytes were also found to show no differences in

process length (p = .1, Mann–Whitney U rank test; Figure 7d).

Subsequently, we acquired and analyzed the convex hull sur-

face area and volume of the midbrain astrocytes. Our findings

indicate no significant region to region variation in surface area

(p > .9, Kruskal-Wallis ANOVA by ranks followed by Dunn's post

F IGURE 5 Astrocyte subtypes observed in the marmoset brain. All five astrocyte subtypes that were previously described human and other
primate species were observed in marmoset brain. (a) Interlaminar astrocytes in layers I and II of the primary sensorimotor cortex (SM1) cortex
(b and c) fibrous astrocytes displayed in the white matter tissue with overlapping and intermingling processes. (b) Astrocytes found in the ventral
tegmental area (VTA) and (c) astrocytes seen in the anterior commissure. (d) Spatially distinct protoplasmic astrocytes found in layers VI-V of the
SM1 cortex. (e) Example of polarized astrocyte in layer V of SM1 in close proximity and interacting with a blood vessel (marked by *). (f) Illustrates a
varicose astrocyte in layer V of SM1 with one long process (marked with white arrowheads) extended and multiple varicosities observed along the process
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conventional, upright microscope (BX51WI; Olympus) with a �60 (.9

NA) water immersion objective (Olympus) and Dodt gradient contrast

(DGC) optics (Luigs & Neumann) for contrast enhancement. The extra-

cellular perfusing solution was continuously bubbled with 95% O2–

5% CO2 and had the following composition (in mM): 125 NaCl,

25 NaHCO3, 2.5 KCl, 2.5 CaCl2, 1 MgCl2, 10 glucose, pH 7.4 (osmolar-

ity �300 mOsm).

Using a combination of transmitted light and epifluorescence

optics (filter set 49011 with excitation filter ET480/40X, beam splitter

T510lpxrxt, and emission filter ET535/50m; Chroma), visually

targeted AII amacrine cells were impaled with sharp microelectrodes

with the tip filled with 5 mM Alexa Fluor 488 (“Alexa 488,” Thermo

Fisher Scientific) dissolved in 200 mM KCl and backfilled with

200 mM KCl without dye. Microelectrodes were pulled (P-87; Sutter

Instrument) from thin-walled borosilicate glass (OD, 1.0 mm; ID,

.78 mm; BF100-78-10; Sutter Instrument). When filled with dye solu-

tion, the resistance of the injection pipettes typically ranged between

80 and 150 MΩ. For injection, the microelectode was connected to

an intracellular amplifier (SEC-05LX; NPI Electronic) in bridge mode,

controlled by Patchmaster software (HEKA Elektronik; RRID:

SCR_000034). With the pipette resistances used, we typically did not

find it necessary to apply a retaining current to prevent leakage of

dye. After successful impalement, cells were injected with a current of

�500 pA for 3 min (�1 Hz; 900 ms on per cycle).

2.3 | Immunocytochemical labeling of slices with
injected cells

After injection, slices were fixed at room temperature for 10–15 min

in 4% paraformaldehyde in .1 M phosphate buffer (PB; .081 M

Na2HPO4/.019 M NaH2PO4, pH 7.4). Following fixation, slices were

washed three times (5 min each) in .01 M phosphate-buffered saline

(PBS; .01 M PB with 8.76 g NaCl and .2 g KCl per liter, pH 7.4). Next,

slices were incubated for 1 h at room temperature in antibody incuba-

tion solution consisting of PBS with 5% normal goat serum (NGS;

Sigma-Aldrich), .5% Triton X-100 (Sigma-Aldrich), and .05% NaN3.

Slices were then incubated for three nights (at 4�C) with primary anti-

body (mouse anti-ankyrin-G or guinea pig anti-ankyrin-G; Table 1) in

antibody incubation solution. After incubation, slices were washed

three times (10 min each) in PBS and incubated with secondary anti-

body in antibody incubation solution (with .2% Triton X-100), either

for 2 h at room temperature or overnight at 4�C. Secondary anti-

bodies were purchased from Thermo Fisher Scientific and included

goat anti-mouse coupled to Alexa Fluor 594 (“Alexa 594,” #A11032)

or Alexa Fluor 647 (“Alexa 647,” #A21236), and goat anti-guinea pig

coupled to Alexa 594 (#A11076) or Alexa 647 (#A21450), used at a

dilution of 1:1000. Subsequently, the slices were washed three times

(15 min each) in PBS and mounted in SlowFade Diamond Antifade

mountant (refractive index 1.42; Thermo Fisher Scientific, cat. number

S36967) between two precision coverslips (.17 mm thickness; Karl

Hecht Assistent, cat. number 1014/5024) separated by a .12 mm

thick imaging spacer disk (“SecureSeal,” cat. number 70327-13S; Elec-

tron Microscopy Sciences).

2.4 | Immunocytochemical labeling of retinal
wholemounts

For immunolabeling of retinal wholemounts, we used a marker (Penol)

to place a spot of permanent ink (xylene free) on the dorsal part of the

eye before removing it from the orbit. After enucleation, we made a

small cut in the dorsal part of the retina and sclera before dissecting

the retina from the eye cup. The retina was then flattened by making

four radial incisions from the periphery almost to the center and trans-

ferred onto the non-gridded surface of a piece of nitrocellulose filter

paper (Millipore, cat. number HABG01300). The filter paper with

attached retina was then positioned on a piece of folded tissue paper

(e.g., Kimwipe) and a few drops of HEPES-buffered extracellular solu-

tion was added on top and allowed to soak through. For fixation, a

few drops of 4% paraformaldehyde (in .1 M PB) was added on top

and allowed to soak through. After repeating this 2–3 times, the filter

paper with retina was transferred to a larger volume of 4% para-

formaldehyde in .1 M PB and fixed for 30 min at room temperature.

After fixation, the retina was washed six times (10 min each) in .01 M

PBS and incubated in antibody incubation solution (identical to that

used for slices) overnight at 4�C. The retina was then incubated for

four nights (at 4�C) with primary antibodies (mouse anti-ankyrin-G

and guinea pig anti-parvalbumin; Table 1) in antibody incubation solu-

tion identical to that used for slices, but with .2% Triton X-100. After-

wards, the retina was washed six times (10 min each) in PBS and

incubated overnight (at 4�C) with secondary antibodies (goat anti-

guinea pig coupled to Alexa 488, #A11073 from Thermo Fisher Scien-

tific, diluted 1:1000; goat anti-mouse coupled to Alexa 594, #A11032

from Thermo Fisher Scientific, diluted 1:1000) in antibody incubation

solution (identical to that used for slices, i.e., with .2% Triton X-100).

Finally, the retina was washed six times (10 min each) in PBS and

mounted in Vectashield between a microscope slide and a precision

TABLE 1 Primary antibodies

Antibody name Immunogen Source, cat #, RRID Antibody type Dilution

Ankyrin-G Ankyrin-G (463) Santa Cruz, SC12719, AB_626674 Mouse, monoclonal 1:100

Ankyrin-G Ankyrin-G epitope: aa 1784-1961 rat, mouse Synaptic Systems, 386004, AB_2725774 Guinea pig, polyclonal 1:1000

Parvalbumin Parvalbumin, aa 1-133 rat Synaptic Systems, 195004, AB_2156476 Guinea pig, polyclonal 1:1000

Abbreviation: RRID, Research Resource Identifiers (for details see the Resource Identification Portal: https://scicrunch.org/resources).
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F IGURE 6 Summary of region-by-region sholl analyses. Averaged process intersections at each spherical point emanating from the astrocyte
cell body is displayed. Left column and first graph in the right column (a–e) displays cortical regions, anterior cingulate cortex (ACC) (a), primary
sensorimotor cortex (SM1) (b), primary auditory cortex (A1) (c), ventral premotor cortex (A6Va) (d), area 45 (A45) (e) and the rest of the right
column (f–h) illustrates midbrain regions, central nucleus of the amygdala (CeA) (f), ventral tegmental area (VTA) (g), periaqueductal gray (PAG) (h)
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hoc test; Figure 8a). While no differences were seen in area, the

volume of astrocytes in VTA proved to be significantly larger than

both the volume of CeA astrocytes (p = .007, Mann–Whitney U

rank test) and PAG astrocytes (p = .004, Mann–Whitney U rank

test; Figure 8b). A complexity index was used to evaluate over all

morphometric characteristics of astrocytes residing in CeA, VTA,

and PAG. Our findings indicate no differences in complexity

between any of the midbrain and brainstem regions (p > .9,

Kruskal-Wallis ANOVA by ranks followed by Dunn's post hoc test;

Figure 9).

In addition, since anterior striatum is involved in vocal produc-

tion, we also attempted to evaluate striatal astrocytes. However,

no GFAP-positive astrocytes were observed in the striatum of

marmoset; these results are similar to previously reported data in

NHP tissue within the striatum (De Salles et al., 2001; Himeda

et al., 2006).

3.4 | Comparison of morphological features of
cortical and midbrain astrocytes

We also compared the number of primary branches, branch points,

and number of terminal points of astrocytes in the cortical regions

(ACC, A6Va, A45, SM1, A1) with those of astrocytes in the midbrain

regions (CeA, VTA, PAG). Our data suggest that astrocytes in cortical

regions, overall, have a greater number of branch points and terminal

points when compared to midbrain astrocyte data (Kruskal-Wallis

ANOVA by ranks followed by Dunn's post hoc test; Tables 2 and S1).

However, no significant differences were observed in number of pri-

mary branches (Kruskal-Wallis ANOVA by ranks followed by Dunn's

post hoc test; Tables 2 and S1). Additionally, a comparison of astro-

cyte process length between cortical and midbrain regions indicated

that cortical astrocytes are generally longer than midbrain astrocytes

(Kruskal-Wallis ANOVA by ranks followed by Dunn's post hoc test;

Figure 7; Tables 2 and S1).

Convex hull assessment of volume and surface area was also

compared between astrocytes in the cortex and midbrain. While corti-

cal astrocytes displayed greater volume compared to midbrain astro-

cytes (p < .001, Kruskal-Wallis ANOVA by ranks followed by Dunn's

post hoc test), this finding was not observed in surface area where

only astrocytes from SM1 proved to be larger than midbrain astro-

cytes (p < .001, Kruskal-Wallis ANOVA by ranks followed by Dunn's

post hoc test; Figure 8). While no differences were observed in

astrocyte complexity within cortical or midbrain regions, significant

differences were displayed between cortical and midbrain astro-

cytes. Our data suggested that cortical astrocytes, on average, are

more complex when compared to midbrain astrocytes (Figure 9,

Tables 2 and S1).
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F IGURE 7 Morphometric features of cortical and midbrain astrocytes. Group morphological data obtained using sholl analysis: (a) number of
primary branches, (b) number of branch points, (c) number of terminal points, and (d) process length of anterior cingulate cortex (ACC) (n = 18),

ventral premotor cortex (A6Va) (n = 18), area 45 (A45) (n = 18), primary sensorimotor cortex (SM1) (n = 18), primary auditory cortex (A1)
(n = 18), central nucleus of the amygdala (CeA) (n = 19), ventral tegmental area (VTA) (n = 18), and periaqueductal gray (PAG) (n = 18) (see
Table 2 for more details). On average, cortical astrocytes have longer processes, more branch points, and terminal points. All statistical differences
are indicated in results section and Table S1
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conventional, upright microscope (BX51WI; Olympus) with a �60 (.9

NA) water immersion objective (Olympus) and Dodt gradient contrast

(DGC) optics (Luigs & Neumann) for contrast enhancement. The extra-

cellular perfusing solution was continuously bubbled with 95% O2–

5% CO2 and had the following composition (in mM): 125 NaCl,

25 NaHCO3, 2.5 KCl, 2.5 CaCl2, 1 MgCl2, 10 glucose, pH 7.4 (osmolar-

ity �300 mOsm).

Using a combination of transmitted light and epifluorescence

optics (filter set 49011 with excitation filter ET480/40X, beam splitter

T510lpxrxt, and emission filter ET535/50m; Chroma), visually

targeted AII amacrine cells were impaled with sharp microelectrodes

with the tip filled with 5 mM Alexa Fluor 488 (“Alexa 488,” Thermo

Fisher Scientific) dissolved in 200 mM KCl and backfilled with

200 mM KCl without dye. Microelectrodes were pulled (P-87; Sutter

Instrument) from thin-walled borosilicate glass (OD, 1.0 mm; ID,

.78 mm; BF100-78-10; Sutter Instrument). When filled with dye solu-

tion, the resistance of the injection pipettes typically ranged between

80 and 150 MΩ. For injection, the microelectode was connected to

an intracellular amplifier (SEC-05LX; NPI Electronic) in bridge mode,

controlled by Patchmaster software (HEKA Elektronik; RRID:

SCR_000034). With the pipette resistances used, we typically did not

find it necessary to apply a retaining current to prevent leakage of

dye. After successful impalement, cells were injected with a current of

�500 pA for 3 min (�1 Hz; 900 ms on per cycle).

2.3 | Immunocytochemical labeling of slices with
injected cells

After injection, slices were fixed at room temperature for 10–15 min

in 4% paraformaldehyde in .1 M phosphate buffer (PB; .081 M

Na2HPO4/.019 M NaH2PO4, pH 7.4). Following fixation, slices were

washed three times (5 min each) in .01 M phosphate-buffered saline

(PBS; .01 M PB with 8.76 g NaCl and .2 g KCl per liter, pH 7.4). Next,

slices were incubated for 1 h at room temperature in antibody incuba-

tion solution consisting of PBS with 5% normal goat serum (NGS;

Sigma-Aldrich), .5% Triton X-100 (Sigma-Aldrich), and .05% NaN3.

Slices were then incubated for three nights (at 4�C) with primary anti-

body (mouse anti-ankyrin-G or guinea pig anti-ankyrin-G; Table 1) in

antibody incubation solution. After incubation, slices were washed

three times (10 min each) in PBS and incubated with secondary anti-

body in antibody incubation solution (with .2% Triton X-100), either

for 2 h at room temperature or overnight at 4�C. Secondary anti-

bodies were purchased from Thermo Fisher Scientific and included

goat anti-mouse coupled to Alexa Fluor 594 (“Alexa 594,” #A11032)

or Alexa Fluor 647 (“Alexa 647,” #A21236), and goat anti-guinea pig

coupled to Alexa 594 (#A11076) or Alexa 647 (#A21450), used at a

dilution of 1:1000. Subsequently, the slices were washed three times

(15 min each) in PBS and mounted in SlowFade Diamond Antifade

mountant (refractive index 1.42; Thermo Fisher Scientific, cat. number

S36967) between two precision coverslips (.17 mm thickness; Karl

Hecht Assistent, cat. number 1014/5024) separated by a .12 mm

thick imaging spacer disk (“SecureSeal,” cat. number 70327-13S; Elec-

tron Microscopy Sciences).

2.4 | Immunocytochemical labeling of retinal
wholemounts

For immunolabeling of retinal wholemounts, we used a marker (Penol)

to place a spot of permanent ink (xylene free) on the dorsal part of the

eye before removing it from the orbit. After enucleation, we made a

small cut in the dorsal part of the retina and sclera before dissecting

the retina from the eye cup. The retina was then flattened by making

four radial incisions from the periphery almost to the center and trans-

ferred onto the non-gridded surface of a piece of nitrocellulose filter

paper (Millipore, cat. number HABG01300). The filter paper with

attached retina was then positioned on a piece of folded tissue paper

(e.g., Kimwipe) and a few drops of HEPES-buffered extracellular solu-

tion was added on top and allowed to soak through. For fixation, a

few drops of 4% paraformaldehyde (in .1 M PB) was added on top

and allowed to soak through. After repeating this 2–3 times, the filter

paper with retina was transferred to a larger volume of 4% para-

formaldehyde in .1 M PB and fixed for 30 min at room temperature.

After fixation, the retina was washed six times (10 min each) in .01 M

PBS and incubated in antibody incubation solution (identical to that

used for slices) overnight at 4�C. The retina was then incubated for

four nights (at 4�C) with primary antibodies (mouse anti-ankyrin-G

and guinea pig anti-parvalbumin; Table 1) in antibody incubation solu-

tion identical to that used for slices, but with .2% Triton X-100. After-

wards, the retina was washed six times (10 min each) in PBS and

incubated overnight (at 4�C) with secondary antibodies (goat anti-

guinea pig coupled to Alexa 488, #A11073 from Thermo Fisher Scien-

tific, diluted 1:1000; goat anti-mouse coupled to Alexa 594, #A11032

from Thermo Fisher Scientific, diluted 1:1000) in antibody incubation

solution (identical to that used for slices, i.e., with .2% Triton X-100).

Finally, the retina was washed six times (10 min each) in PBS and

mounted in Vectashield between a microscope slide and a precision

TABLE 1 Primary antibodies

Antibody name Immunogen Source, cat #, RRID Antibody type Dilution

Ankyrin-G Ankyrin-G (463) Santa Cruz, SC12719, AB_626674 Mouse, monoclonal 1:100

Ankyrin-G Ankyrin-G epitope: aa 1784-1961 rat, mouse Synaptic Systems, 386004, AB_2725774 Guinea pig, polyclonal 1:1000

Parvalbumin Parvalbumin, aa 1-133 rat Synaptic Systems, 195004, AB_2156476 Guinea pig, polyclonal 1:1000

Abbreviation: RRID, Research Resource Identifiers (for details see the Resource Identification Portal: https://scicrunch.org/resources).
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4 | DISCUSSION

In this study, we investigated the structural properties of astrocyte

morphology within the vocalization circuits of adult common marmo-

sets. While the brain circuits that control vocal production are not

fully understood, it is accepted that certain cortical and midbrain

regions are involved in the execution of this complex behavior

(Jarvis, 2019; Jürgens, 2002). While vocalization could be an innate

behavior involving midbrain regions (including CeA, VTA, and PAG),

voluntary vocalization is considered a cognitive function and there-

fore, involves a variety of cortical regions. These cortical regions

include sensory (such as SM1 and A1) as well as frontal

regions (including ACC, area 6Va, and A45). Area 45 has been defined

as a homolog of human's Broca's area and as such, may be important

for vocalization (Bakola et al., 2015; Burman et al., 2015; Petrides

et al., 2005; Simões et al., 2010; Theodoni et al., 2020). Since it is

plausible that, similar to other complex motor circuits, astrocytes may

also modulate the vocal motor circuits, we investigated the morpho-

metric properties of astrocytes from both cortical and midbrain

regions that have been previously suggested to be involved in vocal

production circuits.

4.1 | Astrocytes

Astrocytes are the star-shaped glial cells with several long processes

stemming from the soma. The primary branches split into numerous

secondary and tertiary branches with fine branchlets and leaflets hold-

ing the space in between the thicker processes. These complex glial

cells are found throughout all regions of the CNS in communication

with other glia cells, neurons and the vascular system. Astrocytes play

myriad roles throughout the CNS, including maintaining ionic and

metabolic balance as well as clearance and reuptake of neurotransmit-

ters (D'Ambrosio et al., 2002; Lehre et al., 1995; Magistretti, 2006;

Wu et al., 2013). While these functions are necessary to keep the

brain healthy and running smoothly, it has become evident that astro-

cytes also play an active role in regulation of brain circuits controlling

complex behaviors.

Here, we used immunostaining against GFAP to extract the cellu-

lar architecture of astrocytes in six distinct brain regions (Figure 1,

Figure 3), each of which are involved in vocal production behaviors in

common marmoset. GFAP, a protein specifically expressed in mature

astrocytes of the CNS, was used to delineate astrocytic complexity in

the regions of interest (see Sheikhbahaei, Morris, et al., 2018 for

details regarding GFAP staining). However, GFAP immunostaining

might underestimate the complexity of astrocyte's processes and is

not expressed by all astrocytes (Yu et al., 2020). In addition, in the

rodent hippocampus, it has been estimated �15% of total astrocyte

volume contained GFAP-positive filaments. This is because fine astro-

cytic processes, such as small branchlets and leaflets, are GFAP-

negative (Bushong et al., 2002). However, there is also evidence that

when hippocampal astrocytes are filled with lipophilic dyes (which

reveals the finest processes) and compared to GFAP immuno-labeled

astrocytes (which does not delineate the finest processes), there were

no significant differences between measured values of astrocyte

diameter, as well as process length and thickness (Oberheim

et al., 2008). Additionally, it has been shown that in the rat brainstem,

that thickness and main process length of astrocytes that are virally

transduced to express green fluorescent protein (GFP) were similar to
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F IGURE 8 Convex hull analysis of cortical and midbrain
astrocytes. Summary of data from convex hull volume (a) and surface
area (b) analyses in anterior cingulate cortex (ACC) (n = 18), ventral
premotor cortex (A6Va) (n = 18), area 45 (A45) (n = 18), primary
sensorimotor cortex (SM1) (n = 18), primary auditory cortex (A1)
(n = 18), central nucleus of the amygdala (CeA) (n = 19), ventral
tegmental area (VTA) (n = 18), and periaqueductal gray (PAG)
(n = 18). On average, SM1 astrocytes have a larger volume and
surface area compared to the astrocytes in the other regions
evaluated
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F IGURE 9 Complexity indices of astrocytes in cortical and
midbrain regions. Comparison of data in each region measuring the
morphological complexity of astrocytes. This measurement was
obtained using a complexity index (see Methods) applied to the semi-

automatic reconstructed astrocytes in the regions of interest. Overall,
cortical astrocytes were more complex compared to midbrain
astrocytes
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those immunostained against GFAP (Sheikhbahaei, Morris,

et al., 2018). Although GFAP immunostaining has limitations, this

method is still very reliable for the analysis of key morphometric char-

acteristics of astrocytes, including branch processes, allowing for com-

parative analyses, which was the main focus of this study.

Other astrocytic markers (s100ß, Aldh1, Sox9, GLT1, GLAST) are

also able to illustrate some astrocyte details; however, they hold their

own limitations (see Sheikhbahaei, Morris, et al., 2018 and Yu

et al., 2020 for more details). Additionally, other techniques have been

introduced to gain insight into specific details of astrocyte morphol-

ogy. For example, intracellular dye-filling allows for detailed investiga-

tion of fine astrocytic processes at the single-cell level. While the

intricate details of the fine astrocyte processes can be examined, this

method is time-consuming and only allows for an evaluation of a small

number of astrocytes (Moye et al., 2019; Zhou et al., 2019). Electron

microscopy is another method being used to comprehend the mor-

phometric features of astrocytes as it allows for a 3D reconstruction

of serial sections. This method includes a tissue fixation technique

that might affect the preservation of astrocytic structure (Korogod

et al., 2015; Ventura & Harris, 1999).

To analyze the morphometric processes of the astrocytes,

computer-aided morphometric analyses were used to investigate the

structural features of CNS astrocytes potentially contributing to their

functional role. Imaris software (or other software such as Neu-

rolucida 360) has been previously used to study the morphology of

astrocytes and other glial cells (Althammer et al., 2020; Cengiz

et al., 2019; Hefendehl et al., 2014; Radford et al., 2015;

Sheikhbahaei, Morris, et al., 2018; Smith & Bilbo, 2019; Wagner

et al., 2013). While other methods have been developed for the pur-

pose of analysis of cellular morphology (Heindl et al., 2018; Karperien

et al., 2013; Xu et al., 2016), these approaches are time-consuming

and may result in an over- or under-sampling of the cells given that

overlapping or cut-off cells are included in the analysis. Computer-

aided analysis holds advantages as it allows for a quick, unbiased,

automated reconstruction (Althammer et al., 2020). Additionally, the

user-friendly interface of Imaris easily allowed us to integrate immu-

nostained cells and reconstructed images into one interface to

smoothly extract data for analysis.

There are five distinct subtypes of astrocytes that have been

characterized in various species: (1) protoplasmic astrocytes, (2) polar-

ized astrocytes, (3) fibrous astrocytes, (4) interlaminar astrocytes, and

(5) varicose astrocytes (Oberheim et al., 2006, 2009). It has been

suggested that the rodent brain only features protoplasmic and

fibrous astrocytes (Oberheim et al., 2006). Whereas the primate brain

also contains polarized and interlaminar astrocytes (Oberheim

et al., 2006) and varicose astrocytes have only been observed in

higher-order primate (Oberheim et al., 2009). Our data suggest that all

astrocyte subtypes exist in marmoset brain, including varicose astro-

cytes that were only previously observed in higher-order primates

(Oberheim et al., 2009), (Figure 5f). Traditionally, interlaminar astro-

cytes described as dense and numerous in the Old world primate, ape,

and human brain, and devoid from the New World monkey brain, in

particular the marmoset brain (Colombo, 1996, 2017, 2018; ColomboT
A
B
L
E
2

In
di
vi
du

al
va
lu
es

(m
ea

n
±
SE

M
)o

f
al
la
na

ly
ze
d
pa

ra
m
et
er
s
fo
r
as
tr
o
cy
te

m
o
rp
ho

lo
gy

A
C
C

SM
1

A
6
V
a

A
4
5

A
1

C
eA

V
T
A

P
A
G

n
=

1
8

n
=

1
8

n
=

1
8

n
=

1
8

n
=

1
8

n
=

1
9

n
=

1
8

n
=

1
8

T
o
ta
ln

um
be

r
o
f
br
an

ch
es

7
±
.5

7
±
.4

6
±
.5

6
±
.4

7
±
.5

6
±
.4

8
±
.8

6
±
.5

N
um

be
r
o
f
br
an

ch
po

in
ts

2
2
±
2

2
5
±
2

2
1
±
1

1
9
±
1

2
2
±
2

1
3
±
1

1
4
±
1

1
3
±
1

N
um

be
r
o
f
te
rm

in
al
po

in
ts

2
7
±
2

3
0
±
1

2
4
±
1

2
4
±
1

2
7
±
2

1
4
±
1

1
8
±
1

1
7
±
1

P
ro
ce
ss

le
ng

th
(μ
m
)

4
5
0
±
3
3

5
6
1
±
2
2

4
3
4
±
2
8

4
2
3
±
2
0

4
3
6
±
3
8

2
6
8
±
1
5

3
4
5
±
2
0

3
0
5
±
1
9

Su
rf
ac
e
ar
ea

(μ
m

2
)

4
6
2
8
±
2
8
0

6
4
2
4
±
3
4
9

4
9
1
9
±
3
0
9

4
4
8
8
±
2
1
2

4
7
1
4
±
3
8
3

3
9
1
5
±
2
6
6

4
4
1
1
±
2
9
3

3
7
1
6
±
2
8

V
o
lu
m
e
(μ
m

3
)

1
9
,0
5
3
±
2
0
1
5

2
5
,0
1
7
±
2
4
5
6

1
8
,3
5
5
±
1
5
9
4

1
6
,7
9
4
±
1
1
2
1

1
7
,4
0
1
±
2
3
9
7

1
0
,1
4
4
±
1
3
7
7

1
5
,9
0
5
±
1
6
3
0

9
1
4
0
±
1
4
0
2

C
o
m
pl
ex

it
y
in
de

x
4
4
5
6
±
6
5
1

7
2
3
2
±
9
1
7

4
5
9
5
±
3
5
1

4
2
5
6
±
2
5
3

4
9
2
7
±
6
0
2

2
7
1
6
±
2
6
1

2
9
2
6
±
2
5
4

3
1
6
4
±
2
6
5

N
ot
e:
n,
nu

m
be

r
o
f
as
tr
o
cy
te
s
an

al
yz
ed

pe
r
re
gi
o
n.

TURK AND SHEIKHBAHAEI 11



TURK and SHEIKHBaHaEI 585

conventional, upright microscope (BX51WI; Olympus) with a �60 (.9

NA) water immersion objective (Olympus) and Dodt gradient contrast

(DGC) optics (Luigs & Neumann) for contrast enhancement. The extra-

cellular perfusing solution was continuously bubbled with 95% O2–

5% CO2 and had the following composition (in mM): 125 NaCl,

25 NaHCO3, 2.5 KCl, 2.5 CaCl2, 1 MgCl2, 10 glucose, pH 7.4 (osmolar-

ity �300 mOsm).

Using a combination of transmitted light and epifluorescence

optics (filter set 49011 with excitation filter ET480/40X, beam splitter

T510lpxrxt, and emission filter ET535/50m; Chroma), visually

targeted AII amacrine cells were impaled with sharp microelectrodes

with the tip filled with 5 mM Alexa Fluor 488 (“Alexa 488,” Thermo

Fisher Scientific) dissolved in 200 mM KCl and backfilled with

200 mM KCl without dye. Microelectrodes were pulled (P-87; Sutter

Instrument) from thin-walled borosilicate glass (OD, 1.0 mm; ID,

.78 mm; BF100-78-10; Sutter Instrument). When filled with dye solu-

tion, the resistance of the injection pipettes typically ranged between

80 and 150 MΩ. For injection, the microelectode was connected to

an intracellular amplifier (SEC-05LX; NPI Electronic) in bridge mode,

controlled by Patchmaster software (HEKA Elektronik; RRID:

SCR_000034). With the pipette resistances used, we typically did not

find it necessary to apply a retaining current to prevent leakage of

dye. After successful impalement, cells were injected with a current of

�500 pA for 3 min (�1 Hz; 900 ms on per cycle).

2.3 | Immunocytochemical labeling of slices with
injected cells

After injection, slices were fixed at room temperature for 10–15 min

in 4% paraformaldehyde in .1 M phosphate buffer (PB; .081 M

Na2HPO4/.019 M NaH2PO4, pH 7.4). Following fixation, slices were

washed three times (5 min each) in .01 M phosphate-buffered saline

(PBS; .01 M PB with 8.76 g NaCl and .2 g KCl per liter, pH 7.4). Next,

slices were incubated for 1 h at room temperature in antibody incuba-

tion solution consisting of PBS with 5% normal goat serum (NGS;

Sigma-Aldrich), .5% Triton X-100 (Sigma-Aldrich), and .05% NaN3.

Slices were then incubated for three nights (at 4�C) with primary anti-

body (mouse anti-ankyrin-G or guinea pig anti-ankyrin-G; Table 1) in

antibody incubation solution. After incubation, slices were washed

three times (10 min each) in PBS and incubated with secondary anti-

body in antibody incubation solution (with .2% Triton X-100), either

for 2 h at room temperature or overnight at 4�C. Secondary anti-

bodies were purchased from Thermo Fisher Scientific and included

goat anti-mouse coupled to Alexa Fluor 594 (“Alexa 594,” #A11032)

or Alexa Fluor 647 (“Alexa 647,” #A21236), and goat anti-guinea pig

coupled to Alexa 594 (#A11076) or Alexa 647 (#A21450), used at a

dilution of 1:1000. Subsequently, the slices were washed three times

(15 min each) in PBS and mounted in SlowFade Diamond Antifade

mountant (refractive index 1.42; Thermo Fisher Scientific, cat. number

S36967) between two precision coverslips (.17 mm thickness; Karl

Hecht Assistent, cat. number 1014/5024) separated by a .12 mm

thick imaging spacer disk (“SecureSeal,” cat. number 70327-13S; Elec-

tron Microscopy Sciences).

2.4 | Immunocytochemical labeling of retinal
wholemounts

For immunolabeling of retinal wholemounts, we used a marker (Penol)

to place a spot of permanent ink (xylene free) on the dorsal part of the

eye before removing it from the orbit. After enucleation, we made a

small cut in the dorsal part of the retina and sclera before dissecting

the retina from the eye cup. The retina was then flattened by making

four radial incisions from the periphery almost to the center and trans-

ferred onto the non-gridded surface of a piece of nitrocellulose filter

paper (Millipore, cat. number HABG01300). The filter paper with

attached retina was then positioned on a piece of folded tissue paper

(e.g., Kimwipe) and a few drops of HEPES-buffered extracellular solu-

tion was added on top and allowed to soak through. For fixation, a

few drops of 4% paraformaldehyde (in .1 M PB) was added on top

and allowed to soak through. After repeating this 2–3 times, the filter

paper with retina was transferred to a larger volume of 4% para-

formaldehyde in .1 M PB and fixed for 30 min at room temperature.

After fixation, the retina was washed six times (10 min each) in .01 M

PBS and incubated in antibody incubation solution (identical to that

used for slices) overnight at 4�C. The retina was then incubated for

four nights (at 4�C) with primary antibodies (mouse anti-ankyrin-G

and guinea pig anti-parvalbumin; Table 1) in antibody incubation solu-

tion identical to that used for slices, but with .2% Triton X-100. After-

wards, the retina was washed six times (10 min each) in PBS and

incubated overnight (at 4�C) with secondary antibodies (goat anti-

guinea pig coupled to Alexa 488, #A11073 from Thermo Fisher Scien-

tific, diluted 1:1000; goat anti-mouse coupled to Alexa 594, #A11032

from Thermo Fisher Scientific, diluted 1:1000) in antibody incubation

solution (identical to that used for slices, i.e., with .2% Triton X-100).

Finally, the retina was washed six times (10 min each) in PBS and

mounted in Vectashield between a microscope slide and a precision

TABLE 1 Primary antibodies

Antibody name Immunogen Source, cat #, RRID Antibody type Dilution

Ankyrin-G Ankyrin-G (463) Santa Cruz, SC12719, AB_626674 Mouse, monoclonal 1:100

Ankyrin-G Ankyrin-G epitope: aa 1784-1961 rat, mouse Synaptic Systems, 386004, AB_2725774 Guinea pig, polyclonal 1:1000

Parvalbumin Parvalbumin, aa 1-133 rat Synaptic Systems, 195004, AB_2156476 Guinea pig, polyclonal 1:1000

Abbreviation: RRID, Research Resource Identifiers (for details see the Resource Identification Portal: https://scicrunch.org/resources).
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et al., 2000; Colombo & Reisin, 2004). However, this view was chal-

lenged recently, as interlaminar astrocytes were found in many mam-

mals including common marmoset (Falcone et al., 2019). Here, we

found interlaminar astrocytes residing in layer I of the marmoset pri-

mary somatosensory cortex. While these astrocytes were not as

dense as those described in other primate brains, our data further

confirm the existence of interlaminar astrocytes in marmoset brain

(Figure 5a). Since we did not observe interlaminar astrocytes in A1,

6Va, and A45 regions, though further studies are required, it is possi-

ble that interlaminar astrocytes are specific to some cortical regions

(including SM1 region) in common marmoset.

4.2 | Marmosets

On an anatomical level, the orofacial movements and rhythmic move-

ments observed in primates are similar to the oscillatory patterns

humans use when vocalizing (Ghazanfar et al., 2012; Morrill

et al., 2012). While these facial patterns are seen across primates,

unlike Old World monkeys (such as rhesus macaques), common mar-

mosets have the ability to create flexible vocalizations in research set-

ting (Ghazanfar et al., 2019). The common marmoset is a widely used

animal model for neuroscientific research as they hold advantages in

being small primates (Power et al., 2001). Additionally, marmosets live

in highly social environments and, importantly, have rich vocal com-

munications (Miller et al., 2016; Okano et al., 2012; Pomberger

et al., 2019). Marmoset vocal production is not just an autonomic

response but their vocal repertoire ranges acoustically and includes

responses to their social environment and to conspecifics (Bergman

et al., 2019; Eliades & Miller, 2017; Ghazanfar et al., 2019). They can

control what, where, and when to vocalize (Bergman et al., 2019).

These communicative behaviors, at least on a rudimentary level, are

similar to the mechanisms used in humans and therefore it is hypothe-

sized that human speech is evolutionarily adapted from primates

(Eliades & Miller, 2017). While marmosets have been used to study

the physiology of vocalization (Gustison et al., 2019; Miller

et al., 2015) and social vocal production (Kato et al., 2014; Sadagopan

et al., 2015), little is known about the neuronal circuitry involved in

vocal production and even less is known about the involvement of

astrocytes within the vocalization circuits.

While the morphology and functions of astrocytes are mainly

studied in rodents, human astrocytes are �2.5-fold larger and more

complex compared to rodents' astrocytes (L�opez-Hidalgo &

Schummers, 2014; Oberheim et al., 2006, 2009). Since the function of

brain cells is intimately related to the cell's morphology, it is plausible

that the function of astrocytes should be more elaborate in humans

compared to rodents. In this setting, using the common marmoset as a

primate animal model to study astrocyte morphology and function

might be advantageous. Their brain similarities to other primates (such

as analogous brain regions, similar gray-to-white matter ratio) and

rodents (similar brain size) make marmoset an attractive animal model

to fill the research gap between humans and rodents.

4.3 | Cortical versus midbrain astrocytes

While our data suggest that no significant differences were observed

between morphology of astrocytes residing in the cortical or in the

midbrain regions, profound differences were displayed between corti-

cal and midbrain astrocytes. These differences extend to include

astrocytic process complexity, volume, and surface area. These mor-

phometric differences observed are in line with other findings in

rodents that illustrate regional differences in the morphology and

function of astrocytes. For instance, it has been shown that while ven-

tral brainstem astrocytes respond to changes in pH by releasing ATP,

cortical astrocytes have no such pH sensitivity and response

(Kasymov et al., 2013). In addition, a variance in astrocytic regulation

of excitatory synapses as well as a differential gene expression profile

for synaptogenic factors in cortical and midbrain astrocytes are

reported (Buosi et al., 2018). Moreover, it has been shown that astro-

cytes in the midbrain are physiologically distinct from those in the cor-

tex such that midbrain astrocytes have a lower membrane resistance,

are extensively coupled to oligodendrocytes through gap junctions,

and have intracellular calcium activity that is particularly modulated by

dopamine 2 receptor signaling (Xin et al., 2019). Other data suggest

that the epidermal growth factor receptor (EGFR) signaling seemed to

be regulated by astrocytes within the mouse cortex whereas midbrain

astrocytes do not such a role (Wagner et al., 2006). Therefore, since

cortical and midbrain astrocytes are functionally distinct, it is plausible

that their morphology should be different as well. Additionally, we

acknowledge that other cortical and subcortical regions may play a

role in vocal production behaviors (Burman et al., 2008). Therefore,

future experiments are required to investigate cellular properties of

astrocytes (and other distinct cell types) residing in those regions that

may further elucidate circuit-dependent astrocytic properties at the

cellular and functional levels.

4.4 | Concluding remarks

Astrocytes are remarkably integrated into neural networks in both the

cortex and midbrain where they may be involved in regulation of com-

plex motor behaviors, including the vocalization. Here, our data sug-

gest that the overall cellular architecture of cortical astrocytes is more

complex than astrocyte in midbrain regions. Although we cannot rule

out the possible constraints imposed by structural features of associ-

ated neurons (including pyramidal neurons in the cortical areas) or the

parenchymal characteristics of the brain regions, we hypothesize that

the differences in astrocyte morphology illustrated here could be

related to their distinct functions. Higher order brain regions may

require more complex metabolic and structural support than midbrain

regions because of the cognitive function they play. Thus, cortical

regions may demand astrocytes to maintain a more dynamic, complex

structure and function. Our data also provide a framework for future

morphometric analysis of astrocytes in the primate brain. For instance,

since vocalization is known to be lateralized to the left hemisphere
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(Fuertinger et al., 2018; Vigneau et al., 2006), it may be important to

further investigate if there is a lateralized morphological differences in

astrocytes. Understanding more about the role of astrocytes in con-

trol of complex motor behaviors might provide additional information

for cell-targeting for novel pharmacogenomic strategies to interfere

with motor control disorders, such as speech fluency disorders.
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conventional, upright microscope (BX51WI; Olympus) with a �60 (.9

NA) water immersion objective (Olympus) and Dodt gradient contrast

(DGC) optics (Luigs & Neumann) for contrast enhancement. The extra-

cellular perfusing solution was continuously bubbled with 95% O2–

5% CO2 and had the following composition (in mM): 125 NaCl,

25 NaHCO3, 2.5 KCl, 2.5 CaCl2, 1 MgCl2, 10 glucose, pH 7.4 (osmolar-

ity �300 mOsm).

Using a combination of transmitted light and epifluorescence

optics (filter set 49011 with excitation filter ET480/40X, beam splitter

T510lpxrxt, and emission filter ET535/50m; Chroma), visually

targeted AII amacrine cells were impaled with sharp microelectrodes

with the tip filled with 5 mM Alexa Fluor 488 (“Alexa 488,” Thermo

Fisher Scientific) dissolved in 200 mM KCl and backfilled with

200 mM KCl without dye. Microelectrodes were pulled (P-87; Sutter

Instrument) from thin-walled borosilicate glass (OD, 1.0 mm; ID,

.78 mm; BF100-78-10; Sutter Instrument). When filled with dye solu-

tion, the resistance of the injection pipettes typically ranged between

80 and 150 MΩ. For injection, the microelectode was connected to

an intracellular amplifier (SEC-05LX; NPI Electronic) in bridge mode,

controlled by Patchmaster software (HEKA Elektronik; RRID:

SCR_000034). With the pipette resistances used, we typically did not

find it necessary to apply a retaining current to prevent leakage of

dye. After successful impalement, cells were injected with a current of

�500 pA for 3 min (�1 Hz; 900 ms on per cycle).

2.3 | Immunocytochemical labeling of slices with
injected cells

After injection, slices were fixed at room temperature for 10–15 min

in 4% paraformaldehyde in .1 M phosphate buffer (PB; .081 M

Na2HPO4/.019 M NaH2PO4, pH 7.4). Following fixation, slices were

washed three times (5 min each) in .01 M phosphate-buffered saline

(PBS; .01 M PB with 8.76 g NaCl and .2 g KCl per liter, pH 7.4). Next,

slices were incubated for 1 h at room temperature in antibody incuba-

tion solution consisting of PBS with 5% normal goat serum (NGS;

Sigma-Aldrich), .5% Triton X-100 (Sigma-Aldrich), and .05% NaN3.

Slices were then incubated for three nights (at 4�C) with primary anti-

body (mouse anti-ankyrin-G or guinea pig anti-ankyrin-G; Table 1) in

antibody incubation solution. After incubation, slices were washed

three times (10 min each) in PBS and incubated with secondary anti-

body in antibody incubation solution (with .2% Triton X-100), either

for 2 h at room temperature or overnight at 4�C. Secondary anti-

bodies were purchased from Thermo Fisher Scientific and included

goat anti-mouse coupled to Alexa Fluor 594 (“Alexa 594,” #A11032)

or Alexa Fluor 647 (“Alexa 647,” #A21236), and goat anti-guinea pig

coupled to Alexa 594 (#A11076) or Alexa 647 (#A21450), used at a

dilution of 1:1000. Subsequently, the slices were washed three times

(15 min each) in PBS and mounted in SlowFade Diamond Antifade

mountant (refractive index 1.42; Thermo Fisher Scientific, cat. number

S36967) between two precision coverslips (.17 mm thickness; Karl

Hecht Assistent, cat. number 1014/5024) separated by a .12 mm

thick imaging spacer disk (“SecureSeal,” cat. number 70327-13S; Elec-

tron Microscopy Sciences).

2.4 | Immunocytochemical labeling of retinal
wholemounts

For immunolabeling of retinal wholemounts, we used a marker (Penol)

to place a spot of permanent ink (xylene free) on the dorsal part of the

eye before removing it from the orbit. After enucleation, we made a

small cut in the dorsal part of the retina and sclera before dissecting

the retina from the eye cup. The retina was then flattened by making

four radial incisions from the periphery almost to the center and trans-

ferred onto the non-gridded surface of a piece of nitrocellulose filter

paper (Millipore, cat. number HABG01300). The filter paper with

attached retina was then positioned on a piece of folded tissue paper

(e.g., Kimwipe) and a few drops of HEPES-buffered extracellular solu-

tion was added on top and allowed to soak through. For fixation, a

few drops of 4% paraformaldehyde (in .1 M PB) was added on top

and allowed to soak through. After repeating this 2–3 times, the filter

paper with retina was transferred to a larger volume of 4% para-

formaldehyde in .1 M PB and fixed for 30 min at room temperature.

After fixation, the retina was washed six times (10 min each) in .01 M

PBS and incubated in antibody incubation solution (identical to that

used for slices) overnight at 4�C. The retina was then incubated for

four nights (at 4�C) with primary antibodies (mouse anti-ankyrin-G

and guinea pig anti-parvalbumin; Table 1) in antibody incubation solu-

tion identical to that used for slices, but with .2% Triton X-100. After-

wards, the retina was washed six times (10 min each) in PBS and

incubated overnight (at 4�C) with secondary antibodies (goat anti-

guinea pig coupled to Alexa 488, #A11073 from Thermo Fisher Scien-

tific, diluted 1:1000; goat anti-mouse coupled to Alexa 594, #A11032

from Thermo Fisher Scientific, diluted 1:1000) in antibody incubation

solution (identical to that used for slices, i.e., with .2% Triton X-100).

Finally, the retina was washed six times (10 min each) in PBS and

mounted in Vectashield between a microscope slide and a precision

TABLE 1 Primary antibodies

Antibody name Immunogen Source, cat #, RRID Antibody type Dilution

Ankyrin-G Ankyrin-G (463) Santa Cruz, SC12719, AB_626674 Mouse, monoclonal 1:100

Ankyrin-G Ankyrin-G epitope: aa 1784-1961 rat, mouse Synaptic Systems, 386004, AB_2725774 Guinea pig, polyclonal 1:1000

Parvalbumin Parvalbumin, aa 1-133 rat Synaptic Systems, 195004, AB_2156476 Guinea pig, polyclonal 1:1000

Abbreviation: RRID, Research Resource Identifiers (for details see the Resource Identification Portal: https://scicrunch.org/resources).
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conventional, upright microscope (BX51WI; Olympus) with a �60 (.9

NA) water immersion objective (Olympus) and Dodt gradient contrast

(DGC) optics (Luigs & Neumann) for contrast enhancement. The extra-

cellular perfusing solution was continuously bubbled with 95% O2–

5% CO2 and had the following composition (in mM): 125 NaCl,

25 NaHCO3, 2.5 KCl, 2.5 CaCl2, 1 MgCl2, 10 glucose, pH 7.4 (osmolar-

ity �300 mOsm).

Using a combination of transmitted light and epifluorescence

optics (filter set 49011 with excitation filter ET480/40X, beam splitter

T510lpxrxt, and emission filter ET535/50m; Chroma), visually

targeted AII amacrine cells were impaled with sharp microelectrodes

with the tip filled with 5 mM Alexa Fluor 488 (“Alexa 488,” Thermo

Fisher Scientific) dissolved in 200 mM KCl and backfilled with

200 mM KCl without dye. Microelectrodes were pulled (P-87; Sutter

Instrument) from thin-walled borosilicate glass (OD, 1.0 mm; ID,

.78 mm; BF100-78-10; Sutter Instrument). When filled with dye solu-

tion, the resistance of the injection pipettes typically ranged between

80 and 150 MΩ. For injection, the microelectode was connected to

an intracellular amplifier (SEC-05LX; NPI Electronic) in bridge mode,

controlled by Patchmaster software (HEKA Elektronik; RRID:

SCR_000034). With the pipette resistances used, we typically did not

find it necessary to apply a retaining current to prevent leakage of

dye. After successful impalement, cells were injected with a current of

�500 pA for 3 min (�1 Hz; 900 ms on per cycle).

2.3 | Immunocytochemical labeling of slices with
injected cells

After injection, slices were fixed at room temperature for 10–15 min

in 4% paraformaldehyde in .1 M phosphate buffer (PB; .081 M

Na2HPO4/.019 M NaH2PO4, pH 7.4). Following fixation, slices were

washed three times (5 min each) in .01 M phosphate-buffered saline

(PBS; .01 M PB with 8.76 g NaCl and .2 g KCl per liter, pH 7.4). Next,

slices were incubated for 1 h at room temperature in antibody incuba-

tion solution consisting of PBS with 5% normal goat serum (NGS;

Sigma-Aldrich), .5% Triton X-100 (Sigma-Aldrich), and .05% NaN3.

Slices were then incubated for three nights (at 4�C) with primary anti-

body (mouse anti-ankyrin-G or guinea pig anti-ankyrin-G; Table 1) in

antibody incubation solution. After incubation, slices were washed

three times (10 min each) in PBS and incubated with secondary anti-

body in antibody incubation solution (with .2% Triton X-100), either

for 2 h at room temperature or overnight at 4�C. Secondary anti-

bodies were purchased from Thermo Fisher Scientific and included

goat anti-mouse coupled to Alexa Fluor 594 (“Alexa 594,” #A11032)

or Alexa Fluor 647 (“Alexa 647,” #A21236), and goat anti-guinea pig

coupled to Alexa 594 (#A11076) or Alexa 647 (#A21450), used at a

dilution of 1:1000. Subsequently, the slices were washed three times

(15 min each) in PBS and mounted in SlowFade Diamond Antifade

mountant (refractive index 1.42; Thermo Fisher Scientific, cat. number

S36967) between two precision coverslips (.17 mm thickness; Karl

Hecht Assistent, cat. number 1014/5024) separated by a .12 mm

thick imaging spacer disk (“SecureSeal,” cat. number 70327-13S; Elec-

tron Microscopy Sciences).

2.4 | Immunocytochemical labeling of retinal
wholemounts

For immunolabeling of retinal wholemounts, we used a marker (Penol)

to place a spot of permanent ink (xylene free) on the dorsal part of the

eye before removing it from the orbit. After enucleation, we made a

small cut in the dorsal part of the retina and sclera before dissecting

the retina from the eye cup. The retina was then flattened by making

four radial incisions from the periphery almost to the center and trans-

ferred onto the non-gridded surface of a piece of nitrocellulose filter

paper (Millipore, cat. number HABG01300). The filter paper with

attached retina was then positioned on a piece of folded tissue paper

(e.g., Kimwipe) and a few drops of HEPES-buffered extracellular solu-

tion was added on top and allowed to soak through. For fixation, a

few drops of 4% paraformaldehyde (in .1 M PB) was added on top

and allowed to soak through. After repeating this 2–3 times, the filter

paper with retina was transferred to a larger volume of 4% para-

formaldehyde in .1 M PB and fixed for 30 min at room temperature.

After fixation, the retina was washed six times (10 min each) in .01 M

PBS and incubated in antibody incubation solution (identical to that

used for slices) overnight at 4�C. The retina was then incubated for

four nights (at 4�C) with primary antibodies (mouse anti-ankyrin-G

and guinea pig anti-parvalbumin; Table 1) in antibody incubation solu-

tion identical to that used for slices, but with .2% Triton X-100. After-

wards, the retina was washed six times (10 min each) in PBS and

incubated overnight (at 4�C) with secondary antibodies (goat anti-

guinea pig coupled to Alexa 488, #A11073 from Thermo Fisher Scien-

tific, diluted 1:1000; goat anti-mouse coupled to Alexa 594, #A11032

from Thermo Fisher Scientific, diluted 1:1000) in antibody incubation

solution (identical to that used for slices, i.e., with .2% Triton X-100).

Finally, the retina was washed six times (10 min each) in PBS and

mounted in Vectashield between a microscope slide and a precision

TABLE 1 Primary antibodies

Antibody name Immunogen Source, cat #, RRID Antibody type Dilution

Ankyrin-G Ankyrin-G (463) Santa Cruz, SC12719, AB_626674 Mouse, monoclonal 1:100

Ankyrin-G Ankyrin-G epitope: aa 1784-1961 rat, mouse Synaptic Systems, 386004, AB_2725774 Guinea pig, polyclonal 1:1000

Parvalbumin Parvalbumin, aa 1-133 rat Synaptic Systems, 195004, AB_2156476 Guinea pig, polyclonal 1:1000

Abbreviation: RRID, Research Resource Identifiers (for details see the Resource Identification Portal: https://scicrunch.org/resources).
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