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Lesion analysis reveals causal contributions of brain regions tomental functions, aiding the understanding of nor-
mal brain function as well as rehabilitation of brain-damaged patients. We applied a novel lesion inference tech-
nique based on game theory, Multi-perturbation Shapley value Analysis (MSA), to a large clinical lesion dataset.
We usedMSA to analyze the lesion patterns of 148 acute stroke patients together with their neurological deficits,
as assessed by the National Institutes of Health Stroke Scale (NIHSS). The results revealed regional functional
contributions to essential behavioral and cognitive functions as reflected in the NIHSS, particularly by subcortical
structures. There were also side specific differences of functional contributions between the right and left hemi-
spheric brain regions which may reflect the dominance of the left hemispheric syndrome aphasia in the NIHSS.
Comparison of MSA to established lesion inference methods demonstrated the feasibility of the approach for an-
alyzing clinical data and indicated its capability for objectively inferring functional contributions from multiple
injured, potentially interacting sites, at the cost of having to predict the outcome of unknown lesion configura-
tions. The analysis of regional functional contributions to neurological symptomsmeasured by theNIHSS contrib-
utes to the interpretation of this widely used standardized stroke scale in clinical practice as well as clinical trials
and provides a first approximation of a ‘map of stroke’.

© 2015 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Ischemic stroke is a common cause of brain injury that may lead to
severe deficits in brain function, requiring substantial efforts in treat-
ment and rehabilitation. Understanding the functional anatomy of
acute stroke is an important prerequisite for clinical decision making,
as well as for the guidance of stroke treatment in routine clinical prac-
tice and in the context of clinical trials (Saver et al., 1999). Moreover,
the diverse behavioral and cognitive deficits resulting from strokes
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may be used for systematic inferences on the neural substrate of funda-
mental brain functions (De Freitas et al., 2009).

Today, a broad range of techniques exists to investigate the functions
of the living brain through the correlation of behavior and cognition
with brain activity, as revealed by functional imaging. However, infer-
ences drawn from the behavioral impact of lesions remain a fundamen-
tal source of information about causal functional contributions of
different brain territories; see Rorden and Karnath (2004) for a detailed
review of traditional concepts as well as current approaches for lesion
inference. Diverse statistical strategies for deriving lesion inferences
by lesion behavior mapping have been described (Rorden et al., 2009),
such as Voxel-based Lesion Symptom Mapping (VLSM) (Bates et al.,
2003), Voxel-based analysis of lesions (VAL) (Rorden and Brett, 2000),
or Multi-Variate Pattern Analysis (MVPA) (Smith et al., 2013).

Specifically, in VLSM and VAL, lesions are manually or automatically
identified for each patient and used to derive patterns of damage through
statistical map comparisons. The VLSMmethod, introduced by Bates et al.
(2003), uses similar voxel-based procedures as employed in the analysis
of functional neuroimaging data, by comparing patients with or without
lesions in a given voxel with respect to differences in behavioral mea-
sures, yielding a t-statistic for each voxel. The method can be modified
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into a Voxel-based Lesion Symptom Correlation (VLSC) approach, by re-
lating lesion patterns to behavioral measures through correlations, rather
than through statistical group comparisons. VAL is also similar to VLSM,
but compares lesion locations between a group of patientswith behavior-
al deficit and a group of patients with brain damage, but without deficit.
Finally, Smith et al. (2013) introduced an inference approach based on
machine learning, called Multi-Variate Pattern Analysis (MVPA), to pre-
dict the presence or absence of spatial neglect based on brain injury
maps using linear and nonlinear support vector machines (SVMs).

As a further alternative, an inference approach based on game theory
has been proposed for the analysis of behavioral effects resulting from
multi-lesion patterns. This approach, Multi-perturbation Shapley value
Analysis (MSA) (Keinan et al., 2004a) is a rigorous mathematical meth-
od to assess functional localization from perturbation data. It defines
and calculates the contributions of network elements, specifically
brain regions, from a dataset of multiple lesions (or perturbation exper-
iments) and their associated performance scores. The regions are con-
sidered as ‘players’ in a game who interact to achieve a behavioral
outcome. The approach can also be used to quantify the interactions of
the network elements. TheMSA approach has found awide range of ap-
plications in neuroscience, such as the analysis of reversible deactiva-
tion experiments (Keinan et al., 2004b) and computational models of
neurocontrollers (Keinan et al., 2006), as well as applications in bio-
chemistry and genetics, for instance, the localization of function in
gene-regulatory networks from gene knockouts (Kaufman et al.,
2005). In a proof-of-concept study for clinical applications, Kaufman
et al. (2009) applied MSA to lesion data and line bisection test scores
of 23 right-hemisphere stroke patients.

Lesion inference methods have been frequently applied to study
specific neurological symptoms, such as neglect (Smith et al., 2013;
Karnath et al., 2001) or aphasia (Kümmerer et al., 2013). However,
there is still only a limited understanding of the clinical consequences
of acute stroke lesions in specific brain regions with respect to the
whole picture of neurological symptoms. Moreover, while standardized
clinical rating scales, such as the National Institutes of Health Stroke
Scale (NIHSS, Brott et al., 1989), are widely used to characterize the
functional abilities of patients and guide treatment decisions, only little
is known about how scores in these scales relate to the involvement of
specific brain lesions in acute brain ischemia (Menezes et al., 2007).

In the present study, we applied MSA systematically to a large and
representative sample of patients with acute stroke, to derive contribu-
tions of bilateral cortical and subcortical regions to a broad range of neu-
rological symptoms as captured by the NIHSS, which quantifies basic
behavioral and cognitive capabilities through a test battery of simple
sensory,motor, language, and attention tasks.We also compared the re-
gional functional contributions indicated by MSA with those computed
by other methods that relate stroke lesion patterns to behavior, such as
VLSM, VLSC (Saver et al., 1999) and multi-variate pattern prediction.
Our principal goals in this studywere, first, to understand the functional
contributions of different brain regions to the broad spectrum of neuro-
logical symptoms as reflected by the NIHSS, representing the most
widely used standardized stroke symptom rating scale. Second, we
wanted to assess the suitability of theMSA approach for processing clin-
ical lesion data and use MSA to study the functional contribution of
large-scale brain regions to basic behavioral functions, based on func-
tional deficits after lesion damage. Third, our study compared the infer-
ences provided by MSA with those of alternative approaches and
investigate potential biases in the inferences due to a restricted sample
of available lesion configurations.

2. Methods and data

2.1. Behavioral and lesion image data

In the present study, we used a largemulti-center set of stroke patient
data to investigate functional contributions of eight bilateral volumes of
interest (VOIs), defined by the MNI structural atlas (Collins et al., 1995):
caudate (CAU), insula (IN), frontal (FR), occipital (OCC), parietal (PAR)
and temporal lobes (TEM), as well as putamen (PUT) and thalamus
(TH). The MRI and clinical data used in this study (N = 148) constitute
a subset of the patient data included in the PRE-FLAIR study, which is a
multi-center observational study designed to analyze the combined use
of FLAIR (fluid attenuated inversion recoveryMR imaging) and DWI (dif-
fusion-weighted MR imaging) for identifying patients with acute ische-
mic stroke within 4.5 h of symptom onset (Thomalla et al., 2011). All
patients in this study were studied within 12 h of witnessed stroke
onset, and severity of neurological deficit on admission was assessed
using the global NIHSS. The DWI sequences, which were used as the
basis for lesion segmentation, were acquired by applying diffusion
gradients in three directions with strong diffusion weighting (b-
value = 1000 s/mm2). Detailed information about the imaging parame-
ters can be found in Thomalla et al. (2011).

The NIHSS is a rating scale resulting from a standardized neurologi-
cal examination quantifying symptom severity in acute stroke (Brott
et al., 1989). The NIHSS comprises 11 items scoring specific abilities
with values ranging between 0 (no symptoms, correct performance of
task) and 2–4 (maximum symptom severity for corresponding item):
Level of Consciousness, Horizontal Eye Movement, Visual field, Facial
Palsy,Motor Arm,Motor Leg, LimbAtaxia, Sensory, Language (Aphasia),
Dysarthria, Extinction and Inattention. Higher scores indicate more se-
vere impairment. A sum score is calculated from the individual score
values and ranges from 0 to 42. The NIHSS is widely used for standard-
ized clinical assessment of stroke patients in routine clinical practice as
well as in stroke research and is also frequently used to include or ex-
clude patients in acute stroke trials.

2.2. Lesion image processing

For the purpose of a quantitative lesion analysis, the infarct lesions
were semi-automatically segmented by an experienced neurologist
(B.C.) for each DWI image sequence acquired with strong diffusion
weighting in a standardized fashion (Cheng et al., 2013). More precisely,
the visible lesionsweremanually surrounded in each axial slice including
a safety margin by interactively placing points at the border of the visible
stroke lesion. These points were automatically connected using a cubic
spline interpolation and points were manually adjusted if required.
After contour definition in each affected slice, a binary volumewas gener-
ated using all spline-based contours. A second healthy volume of interest
was then placed in the contralateral unaffected hemisphere in the corre-
sponding brain tissue in the same manner. The resulting healthy volume
of interestwas defined in away that it represents an approximation of the
mirrored lesion volume. This healthy volume of interest was then
employed for calculating the corresponding mean μ and standard devia-
tion σ of the DWI signal intensities. These values were used for refining
the defined coarse DWI lesion volume of interest by rejecting voxels
with a DWI signal intensity b μ + 2σ, such that only the actual lesion
was covered by the resulting segmentation.

Due to different positions of the acute stroke patients within the
MR scanner, different inter-subject head anatomies and variations
regarding the spatial resolution of the DWI image sequences, a regis-
tration of the datasets into a reference space was necessary to quan-
tify the number of lesioned voxels in different brain regions of
interest that are defined in the reference space. Therefore, the
1 mm3 MNI ICBM152 brain atlas, which has been designated as the
standard template by the International Consortium for Brain Map-
ping, was used for definition of the reference space (Collins et al.,
1995). To overcome the problem of differences regarding the signal
intensities and visible tissues in the MNI brain atlas, which was con-
structed based on T1-weighted image sequences from 148 healthy
subjects, and in the T2-weighted DWI image sequences, an iterative
closest point (ICP) registration approach (Besl and McKay, 1992)
was used in this work, which is illustrated in Fig. 1. Particularly, an



Fig. 1. Pipeline for registration and quantitative lesion image processing. Left: the brain tissue is automatically segmented in the DWI dataset and used to generate a 3D surface model. A
corresponding 3D surfacemodel is also generated based on the atlas brain segmentation, which is then used to calculate the optimal transformation to the DWI dataset using an iterative
closest point algorithm(ICP). Right: the resulting transformation is employed to align the structural regions defined in the atlaswith thepatient-specific DWI dataset. After semi-automatic
segmentation of the lesion in the DWI dataset, the transformed structural brain regions can be used to calculate the individual lesion overlap values. The lesion overlap visualization also
depicts the eight bilateral VOIs used in the present study.

85M. Zavaglia et al. / NeuroImage: Clinical 9 (2015) 83–94
adapted version of the brain segmentation method described in
Forkert et al. (2009) was used to extract the brain tissue from each
DWI dataset with strong diffusion weighting of the acute stroke pa-
tients. The resulting brain segmentations were employed for gener-
ation of the corresponding 3D surface models using the Marching
Cubes algorithm (Lorensen and Cline, 1987). The Marching Cubes al-
gorithm was also used for generation of a surface model from the
brain segmentation of the MNI brain atlas. After this step, the brain
surface model of the MNI brain atlas was registered to each patient
brain surface model employing the ICP algorithm using an affine
transformation. After surface-based ICP registration, the resulting af-
fine transformation was used to adapt the brain regions defined in
the MNI brain atlas to each patient.

Finally, the overlap (in %) between the transformed 16 anatom-
ical structural regions as defined in the MNI structural atlas (Fig. 1)
and the patient-specific acute ischemic stroke lesion was calculated
for each patient. The choice of the volumes of interest was motivat-
ed by the need of the subsequent MSA approach for a moderate
number of included regions, the ready availability of such a coarse
parcellation in the MNI atlas, as well as the requirement of an ex-
haustive parcellation of the whole brain in order to exclude hidden
functional contributions. The resulting dataset was composed of
148 patient cases with different patterns of lesioned VOIs (76 pa-
tients left-only, 71 patients right-only) and the corresponding glob-
al NIHSS values of the patients. One further case without lesions in
any of the VOIs and a NIHSS of zero was included in both the left
and right hemispheric group, serving as a baseline value for the
NIHSS in healthy controls. As there were no cases with lesion over-
lap between the hemispheres, left- and right-hemispheric lesion
cases were analyzed separately.
2.3. Original versus complete-predicted dataset

The original-graded dataset described in Section 2.2 is composed of
76 left-hemisphere-only and 71 right-hemisphere-only lesion patients,
aswell as one further patientwithout an apparent lesion, whichwas in-
cluded in the left as well as in the right hemispheric set, resulting in 77
and 72 patients, respectively. For each patient, the NIHSS score (ranging
from 0 to 21,where 0 indicates the absence of behavioral deficits and 21
indicates the most severe impairment found) as well as the graded le-
sion overlap measure for each of the eight VOIs in the affected hemi-
sphere were available. Thus, the dataset comprised graded values of
lesions for each VOI together with the corresponding NIHSS and, as is
typical for clinical datasets, did not represent the full set of all possible
combination of binary lesions of the VOIs (where each VOI can be le-
sioned, “0”, or intact, “1”) but presents an opportunistic sample
(original-sample dataset). In order to balance the occurrence of different
lesion configurations, we expanded the sample to the full set of all pos-
sible 2N = 256 binary lesion configuration cases (where N = 8 is the
number of VOIs for each hemisphere and eachVOI can be lesioned or in-
tact). Then, we used amachine learning predictor in order to obtain the
behavioral scores corresponding to the full set of all possible binary con-
figurations (complete-predicted dataset). Since the scores are graded
from 0 to 21 (i.e., 22 possible classes) we used a multi-class predictor;
specifically a linear kernel support vector machine (SVM) for multi-
class classification, implemented in LIBSVM (Chang and Lin, 2011),
trained on the available graded original-sample dataset after binariza-
tion (binary-sample dataset). As a pragmatic approach, the binary-
sample dataset used for training the predictor was obtained from the
original-graded dataset for each hemisphere separately, by defining
each VOI as lesioned (“0”) or intact (“1”) depending onwhether relative
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lesion size was larger or smaller than the median value of all non-zero
percentages of lesioned voxels for that VOI. In order to assess the statis-
tical power of the multi-class predictor, we performed a leave-one-out
cross-validation by iteratively using each single case from the training
data as the validation data and all the remaining cases as the training
data. Specifically, we performed the leave-one-out cross-validation on
both left (77 cases) and right (72 cases) training sets by computing
the RMSE (Root Mean Square Error) and the accuracy (obtained with
a maximum tolerance error between real and predicted score of ±3).
For the left hemisphere the RMSE and accuracy were, respectively, 5.6
and 54%, and for right hemisphere 6.0 and 53%. These classification ac-
curacies are considerably higher than the statistical chance levels,
which were determined by calculating the precise chance level
(NIHSS ± 0) for each NIHSS value, by dividing each NIHSS value fre-
quency by the total number of patients and subsequent addition of the
chance levels ±3 for each NIHSS score. According to this procedure, a
mean chance level of 30.22% for the left hemisphere (ranging from
12.98% to 54.54%) and 30.49% for the right hemisphere (ranging from
4.17% to 45.83%) was found for this patient cohort.

We then used the leave-one-out technique to estimate the variabil-
ity of the prediction, by iteratively excluding each individual left- or
right-hemispheric case from the prediction of the behavioral scores
for the complete-predicted dataset, resulting in 77 separate predictions
for the left and 72 predictions for the right hemisphere.

2.4. Multi-perturbation Shapely value Analysis (MSA)

TheMSA approach is a rigorousmethod for assessing causal function
localization frommultiple perturbation data, based on coalitional game
theory (Shapley, 1953). In general, the system elements (here, VOIs)
can be seen as players in a game, and a perturbation configuration repre-
sents a subset of elements that are perturbed concomitantly. The coali-
tion of players is represented by the group of elements that are left
intact. For each configuration, the performance of the system, which
can be seen as the worth of the coalition, is measured. Since NIHSS rep-
resents the severity of neurological deficit and MSA requires a score
reflecting behavioral ability, we used the inverse of NIHSS (maximum
NIHSS score minus current NIHSS score) as an indicator of functional
performance. The aim of the analysis is to assign values that represent
the elements3 contribution to, or importance for, the overall function.
The contribution value of a player, formalized as the Shapley value
(Shapley, 1953), represents the difference between the worth of coali-
tions which contain the element and the worth of coalitions which do
not contain it.

More formally, in a system composed of N={1,……,n} elements
performing a task, it is possible to define a coalition S, where S⊆N, and
a performance score v(S), which is a real number representing the per-
formance measured for the perturbation configuration in which all the
elements in S are intact and the rest perturbed. The definite value in
game theory and economics for this type of coalitional game is the
Shapley value (Shapley, 1953). Themarginal importance of player i to a
coalition S, with i ∉S, is represented as Δi(S)=v(S∪{i})−v(S). The
Shapley value of each player i∈N is defined by Eq. (1), where ℜ is the
set of all n! orderings of N and Si(R) is the set of players preceding i in
the ordering R.

γiðN; vÞ ¼ 1=n!
X

R∈ℜ
ΔiðSiðRÞÞ ð1Þ

If we consider that all the players are arranged in some order (all or-
ders being equally likely), the Shapley value can be seen as themarginal
importance of a player i to the set of players that precede it. Here, a con-
figuration is a binary vector of length n, with ci=1 if i∈S or ci=0 if i∉S,
i.e., an indicator vector for the unperturbed elements. For a more de-
tailed description of the MSA see Keinan et al. (2004a).
When all possible 2N perturbation configurations are known, the
Shapley value can be computed using Eq. (1), or as a summation over
all 2N configurations, weighted by the number of possible ordering of
the elements (Full Information MSA). If the full set of all binary lesion
configurations cases with corresponding performance scores (256 con-
figurations in the present study) is not known, it can be obtained with
the help of a predictive algorithm as described in Section 2.3, resulting
in a complete-predicted dataset and Predicted MSA values. By applying
the leave-one-out approach, we computed the average MSA contribu-
tions across 77 predictions of the complete 256 behavioral scores for
the left hemisphere and 72 predictions for the right hemisphere.

2.5. Regional interactions: redundancies and synergies

Lesion inferences, in addition to identifying the contributions of indi-
vidual elements, may also be used to investigate interactions among el-
ements. In particular, such interactions can reveal functional
redundancies between regions that indicate functional overlap, as well
as synergistic relations. In order to describe the two-dimensional func-
tional interactions between elements within the framework of MSA,
we need to define the following quantities. The Shapley value of ele-
ment i in the subgame of all elements without j is given byγi; jðN; vÞ. In-
tuitively, it represents the average marginal importance of element i
when element j is lesioned. In the same way, we can define the Shapley
value of element j in the subgame of all elementswithout i byγ j;iðN; vÞ. If
we jointly consider the two elements i and j, as if they form a unique,
joined element, it is possible to define the averagemarginal importance
of this element with γ(i,j). Then, the two-dimensional interaction be-
tween elements i and j can be defined as

Ii; j ¼ γði; jÞ � γi; j � γ j;i ð2Þ

which quantifies how much the average marginal importance of the
two joined elements is larger or smaller than the sum of the average
marginal importance of each of them when the other one is perturbed.
This is a symmetric definition, Ii,j = Ij,i. Thus, the interaction value indi-
cates howmuch thewhole (i.e., the contribution of the joined pair of re-
gions) is greater than the sum of the parts (i.e., the sum of the individual
functional contributions). When the interaction is negative, there exists
a redundancy or (partial) functional overlap between the two elements.
By contrast, when the interaction is positive, the two elements jointly
perform better than individually, which indicates a synergistic interac-
tion. These relations also provide an indication on the choice of regions
of interest in the lesion analysis, because regions with redundant inter-
actions could be merged or reshaped, while synergistically interacting
regions should be kept separate. See Keinan et al. (2004a) for further
details.

2.6. Comparison approaches of lesion inference

Initially, we visualized the distribution of stroke lesions using two
different approaches. The first onewas Lesion Overlap, which is a widely
used, straightforward assessment of lesion patterns, e.g. Karnath et al.
(2001), based here on the MNI atlas. Specifically, it shows the overlap
(in %) between the voxels defined in the MNI ICBM152 structural atlas
space and the patient-specific acute ischemic stroke lesion. The second
approach, Median VOI Lesion Overlap, is identical to Lesion Overlap, but
is based on VOIs, rather than voxels. It shows the normalized overlap
of lesionswithin the parcellation of the 2× 8VOIs inMNI ICBM152 stan-
dard atlas space. The two overlay measures allow a straightforward as-
sessment of relative lesion size and frequency (Fig. 2). However, it needs
to be pointed out that lesion overlays are insufficient for drawing reli-
able inferences from lesion data (Rorden and Karnath, 2004). Therefore,
we only used them for an initial visualization of the lesion patterns and



Fig. 2. LesionOverlap inMNI152 standard atlas space. From top to bottom, representation ofMNI atlas (we selected three representative slices from theMNI atlas that covered all structural
regions), Lesion Overlap andMedian VOI Lesion Overlap, in neurological convention.While the lesion overlap focuses at the scale of voxels, median VOI lesion overlap shows the relative
(median percentage) infarction within the confines of the predefined 2 × 8 VOIs.

Table 1
Clinical and imaging data of the present study.

N Mean Minimum Maximum 95% CI Standard
deviation

Female gender 70 (47%)
NIHSS 148 8.9 0 21 8–9.8 5.62
Time to MRI
[min]

148 269 10 720 237–300 194.64

Age at onset [y] 148 64.1 23 98 61.7–66.7 15.18
DWI lesion
volume [ml]

148 19.4 0 179 14.7–24.1 29.93
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performed detailed comparisons of theMSA outcomes usingmore prin-
cipled approaches.

In particular, we compared the functional contributions indicated by
MSAwith those shown by three alternativemethods of lesion inference.
It is worth noting that, in contrast to MSA, these three methods do not
require the complete-predicted dataset, but can also be applied to the
sample datasets (original or binary). The first approach, Voxel-based
Lesion SymptomMapping (VLSM) (Bates et al., 2003) was originally in-
troduced at voxel level. Presently, it was applied to VOIs, preserving the
acronym VLSM for Volume-based Lesion Symptom Mapping. The VLSM
approachmakes use of binary information about the intactness or lesion
of each VOI. The binary-sample dataset was obtained by using amedian
threshold for each VOI, as explained in Section 2.3. We separately ana-
lyzed left- and right-brain-damaged patients and performed a VLSM
analysis by computing a t-score for each VOI, assessing differences in
the performance scores of patients in which a particular VOI was either
lesioned or intact. As performance score v of each case i, we considered
the inverse of the global NIHSS (vi = max(NIHSS) − NIHSSi). Subse-
quently, we applied VLSM also to the complete-predicted dataset de-
scribed in Section 2.3.

The second comparison method was the approach of VOI-based Le-
sion Symptom Correlation (VLSC). The correlation between relative (or
absolute) lesion size and global NIHSS is a straightforward metric that
provides helpful preliminary information about the relationship be-
tween lesions of individual regions and behavior, similar to VLSM. How-
ever, while VSLM makes use of binarized data, the VLSC is computed
from the original-graded dataset, considering only the non-zero lesion
cases (i.e., cases inwhich theVOIs have any damage) and corresponding
NIHSS.We used Spearman rank correlations, in linewith the ordinal na-
ture of the present data. To explore the potential influence of the factor
of total lesion volume on these correlations, we also performed partial
correlations for all VOIs using total lesion size as a control.

The third method was the newly devised Multi-Area Pattern
Prediction (MAPP) approach which represents one possible way to
compareMSA andMVPA (Smith et al., 2013) outcomes.While not iden-
tical to MVPA, this analysis is performed in the same spirit. MAPP
operates by computing the leave-one-out cross-validation for each
hemisphere, as described in Section 2.3, but with eight different
datasets, obtained respectively by removing each single VOI one at a
time. As for the VLSM, MAPP makes use of the binary-sample dataset
and the corresponding performance scores. Specifically, the RMSE is
computed for eight different datasets composed each of 77 cases for
the left hemisphere and 72 cases for the right hemisphere (as described
in Section 2.3), but each comprising seven VOIs instead of eight. In this
way, it is possible to obtain ameasure of how “important” eachVOI is for
the prediction procedure (i.e., by its individual contribution to the pre-
diction error). Specifically, we computed a Δprediction_error for each VOI,
as the difference between the RMSE computed without the single VOI
and the RMSE computed with the complete set of all VOIs.

3. Results

3.1. Data overview

In Table 1 we present clinical and imaging data for all patients in-
cluded in the study (N = 148 patients).

The VOIs used in the study are indicated in Fig. 1. Fig. 2 shows the
MNI atlas and the outcomes of the Lesion Overlap and Median VOI Le-
sion Overlap approaches, using neurological convention. The lesion
overlays (relative across all cases) indicated that maximally 25% of all
patients had a lesion in a given voxel and that all VOIs were damaged,
to different extent. The measures also indicated that, on a relative
scale, the subcortical regions were most frequently affected, especially
in the right hemisphere. This hemispheric difference was even more
pronounced in the VOI-based overlap.

Fig. 3 shows the absolute and relative lesion sizes of the 2 × 8 VOIs in
all 148 patients together with the associated behavioral scores (global
NIHSS). The absolute lesion size, in panel (a), was graded from zero to
a value of 13,202, which represents the maximum number of lesioned
voxels of a VOI in the dataset, while the relative lesion size of VOIs, in
panel (b), was graded from 0 to 100%. The NIHSS ranged from zero to
21, where 0 indicates the absence of behavioral deficits and 21 indicates
themost severe impairment found in the patient sample, out of a possi-
ble maximum score of 42.



Fig. 3. Lesion size of VOIs and associated NIHSS. (a) Absolute and (b) relative lesion size (in % of lesioned voxels) of 2 × 8 VOIs and associated global NIHSS values for 148 patients. In each
panel, the color scale indicates on its left axis the absolute (graded from zero to 13,202) or relative (graded from 0 to 100%) lesion size and on the right axis the range of associated NIHSS
values (from zero to 21). The 148 cases (indicated by patient ID) were separated into left- and right-hemispheric lesions by sorting in descending order the difference between total lesion
size in the left and right hemispheres.

88 M. Zavaglia et al. / NeuroImage: Clinical 9 (2015) 83–94
Apparent are the clear segregation into left- and right-hemispheric
lesions and the general correlation of lesion size with NIHSS, with
higher scores being associated with larger lesions.

As a baseline for the subsequent lesion correlation analysis, we com-
puted the Spearman rank correlation between global NIHSS and total le-
sion size, calculated separately for the 77 left and 72 right hemisphere
lesion cases, as the sum of relative or absolute values of lesioned voxels
over all VOIs. The rank correlation between total absolute lesion size and
NIHSS was 0.42 (p = 1.32 × 10−4) and 0.42 (p = 2.52 × 10−4) for the
left and right hemisphere, respectively. The correlation between total
relative lesion size and NIHSS was 0.54 (p = 3.74 × 10−7) and 0.46
(p = 4.54 × 10−5) for the left and right hemisphere, respectively.
3.2. MSA functional contributions

Fig. 4 shows the normalized mean MSA contribution values for the
inverse global NIHSS. As left- and right-hemispheric lesions were strict-
ly separated in the present patient sample, contributions of VOIs were
computed separately for the left and right hemisphere. Standard devia-
tion bars were derived from the leave-one-out technique during the
prediction of performance scores (cf. Section 2.4). Positive contributions
indicate that VOIs contribute to the success of the performance of a task.
Thus, if they are lesioned, the performance is lowered. By contrast,
Fig. 4. Relative functional contributions indicated byMSA. NormalizedmeanMSA contribution
cases, using the binary dataset for the prediction of all performance scores corresponding to the f
correction) are shown in gray (all contributions are significant except for right temporal lobe)
negative contribution values imply that regions may be hindering the
performance of a task.

MSA indicated that all contributions (except for the right temporal
lobe) were significantly different from zero, performing a t-test against
the alternative of zero mean (after Bonferroni correction, adjusted
p b 0.0063). Subcortical regions, such as the bilateral caudate and left
insula, together with the bilateral parietal and frontal lobes, were in-
ferred to make the strongest contributions to brain functions as
reflected in the NIHSS, while negative contributions were seen for the
right putamen and left thalamus. In other words, lesions in the caudate,
insula, parietal or frontal lobes contributed most strongly to the neuro-
logical symptoms as assessed by the NIHSS, while lesions in the right
putamen and left thalamus were contributing less to the behavioral
score.
3.3. Regional interactions

Based on the MSA values, functional interactions were computed
from the lesion data. Fig. 5 shows the mean functional interactions
based on the contribution values for the global inverse NIHSS pictured
in Fig. 4. The quantities are mean values, computed from the contribu-
tions values obtained with the leave-one-out technique. For the left
hemisphere, the strongest positive interactions that are significantly
values (±SD) for inverse global NIHSS, computed separately for left- and right-sided lesion
ull lesion configuration set by linear kernel SVM. Significant contributions (after Bonferroni
.



Fig. 5. Functional interactions among VOIs. Matrix representation of (symmetric) mean functional interactions of (a) left and (b) right VOIs. The color scales indicate the range of variation
of left (a) and right (b) mean functional interactions. In (a), all interactions are significantly different from zero (after Bonferroni correction), except between parietal–occipital, parietal–
putamen and parietal–temporal regions (represented as gray entries in the matrix). In (b), all interactions are significantly different from zero (after Bonferroni correction), except be-
tween temporal–occipital, temporal–thalamus, thalamus–parietal, thalamus–putamen regions (represented as gray entries in the matrix).
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different from zero (after Bonferroni correction, adjusted p b 0.0018)
were between the insula and putamen, insula and parietal cortex, thal-
amus and caudate, thalamus and parietal cortex, as well as the frontal
and occipital cortex. The strongest negative interactions, indicating
functional redundancies, were found between the parietal cortex and
caudate, as well as the frontal cortex and caudate. For the right hemi-
sphere, the strongest positive interactions significantly different from
zero (after Bonferroni correction, adjusted p b 0.0018) were found be-
tween the caudate and frontal cortex, caudate and insula, and frontal
cortex and putamen. The strongest negative interactions were found
between the frontal cortex and insula, thalamus and parietal cortex,
respectively.

3.4. Comparison approaches of lesion inference

Fig. 6 shows the outcomes of the Multi-perturbation Shapley value
Analysis (same quantities as depicted in Fig. 4), Volume-based Lesion
SymptomMapping andVOI-based Lesion SymptomCorrelation, applied
separately to the left- and right-hemispheric datasets and shown in the
reference space of the MNI atlas, using neurological convention. Black
stripes indicate VOIs without a significant value.

VLSM was applied to the binary-sample dataset, and the resulting
t-score is represented for each VOI. It is interesting to note that after
Bonferroni correction (adjusted p b 0.0063), lesions of right VOIs appear
to have no significant effect on the performance score (indicated by
Fig. 6. Comparison approaches of lesion inference. Comparison based on the MNI atlas (we sele
tween correlation coefficients computedwith VOI-based Lesion SymptomCorrelation, t-scores o
values for global inverse NIHSS obtained with MSA. The color map is the same for all measures
overlapping black grid), while lesions of the caudate, insula, putamen
and frontal lobe in the left hemisphere have a highly significant relation
with behavior.

The VLSC, represented by the Spearman rank correlation coefficient
between relative lesion size (excluding zero lesions) and global NIHSS
for each VOI, is represented in the bottom row. Correlations that were
significantly different from zero (p b 0.05) existed with relative lesions
of the bilateral caudate, left insula, left putamen, and right frontal lobe.
Interestingly, the left VOIs showed higher correlations than the right
ones. Moreover, correlations of absolute lesion size of the left insula
(ρ=0.42, p= 0.0022), left caudate (ρ=0.50, p= 0.0018) and left pu-
tamen (ρ=0.50, p=0.0008)withNIHSSwere higher than the baseline
correlation of the total absolute left lesion size with NIHSS (ρ = 0.42,
p= 1.32 × 10−4; Section 3.1). As indicated by the color scale, the corre-
lation coefficients showed a similar pattern as the VLSM t-scores.

The baseline correlations of total (absolute and relative) lesion size
with NIHSS (Section 3.1) indicated that total lesion volume may be an
important confound in the analysis. In order to take this factor into ac-
count, we performed control calculations using partial correlations for
all VOIs instead of bivariate correlations, with total absolute lesion size
as a control factor. These calculations (shown in the Supplementary
Material) indeed reduced the partial correlations as compared to the bi-
variate correlations when taking into account total lesion size. More-
over, the previously significant bivariate correlation of right frontal
cortex with NIHSS was no longer significant. Generally, however, the
cted 3 slices from theMNI atlas that are representative to cover all structural regions) be-
btainedwith Volume-based Lesion SymptomMapping and normalizedmean contribution
, but at different scales. Black stripes indicate VOIs without a significant value.
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patterns of bivariate and partial correlations were very similar (Supple-
mentary Fig. S1). Thus, the analyses appear to reveal meaningful func-
tional contribution patterns of the VOIs despite confounding total
lesion size.

The overall distribution of contribution values in the color-maps for
the different methods (MSA, VLSM, VLSC) shows similar trends, with
strong values for subcortical VOIs in the left hemisphere and left frontal
cortex, suggesting strong contributions to the global behavioral score.
On the other hand, there are clear differences between the maps,
with, for example, high contributions of the right thalamus and right pa-
rietal cortex in the MSA, which do not appear as strongly in VLSM and
VLSC. Moreover, the right putamen shows negative contributions in
the MSA. Finally, we also computed the relative importance of VOIs for
the accurate prediction of NIHSS from themulti-regional lesion patterns
using the MAPP approach (results shown in Supplementary Material in
Fig. S2).

3.5. Comparison of indicators of functional contributions

In order to obtain a more comprehensive overview of the functional
contributions indicated by different lesion inference methods, Fig. 7
shows the normalized indicators of functional contributions (VLSM,
VLSC, MAPP and MSA) for both hemispheres, sorted by increasing
range of variation among them (VLSM-complete andMSA-complete in-
dicators were computed as mean values over 77 (for left) and 72 (for
right) leave-one-out predictions). The contribution values in each
approach were normalized, by the sum of all regional contributions, to
yield relative functional contributions.

The values of contributions obtained with MSA are the same as
depicted in Fig. 4 and in the first row of Fig. 6. VLSM values were com-
puted both for the complete-predicted dataset (VLSM-complete) with
the leave-one-out technique as for MSA contributions, and for the
binary-sample (VLSM-sample) dataset, as in Fig. 6. By contrast, VLSC,
which uses graded lesion information, was calculated only for the
original-sample (VLSC-sample) dataset, as in Fig. 6. MAPP contributions
were calculated for the binary-sample (MAPP-sample) dataset and are
also shown in Fig. S2 of the Supplementary Material. Note that in
Fig. 7, all indicators are normalized, for comparison.

We also computed the Pearson correlation coefficients between
the different indicators. For the left hemisphere, correlations that
were significantly different from zero were between VLSM-complete
and MSA-complete (r = 0.97, p b 0.05), between VLSM-sample and
VLSC-sample (r = 0.87, p b 0.05), between VLSM-sample and
VLSM-complete (r = 0.83, p b 0.05), between VLSM-sample and
Fig. 7. Comparison of indicators of functional contributions. Normalized indicators of functional
ing range of variation, for left and right hemispheres.
MSA-complete (r = 0.84, p b 0.05) and between VLSM-complete and
VLSC-sample (r = 0.74, p b 0.05). The correlations between MSA-
complete and VLSC-sample and all correlations between MAPP-
sample and other indicators were not significantly different from
zero (p N 0.05). For the right hemisphere, correlations that were sig-
nificantly different from zero existed between VLSM-complete and
MSA-complete (r = 0.95, p b 0.05), between VLSM-complete and
VLSC-sample (r = 0.73, p b 0.05), between MSA-complete and VLSC-
sample (r = 0.70, p b 0.05), between VLSM-complete and MAPP-
sample (r = 0.74, p b 0.05) and between VLSC-sample and MAPP-
sample (r= 0.89, p b 0.05). As shown in Fig. 7 and indicated by the cor-
relation coefficients, the outcomes of VLSC-sample and VLSM-sample
calculations were similar to each other, but mostly different from the
MSA contributions. The results of the VLSM-complete compared to the
VLSM-sample approach showed a highly significant relation with be-
havioral deficits for lesions of the bilateral caudate, parietal and frontal
lobes, aswell as lesions of the thalamus in the right hemisphere and insula
in the left hemisphere. The results indicated that subcortical VOIs tended
to have a larger range of variation across the five indicators (especially in
the right hemisphere) and that the use of a complete set of lesion config-
urations for the VLSM approach produced similar contribution values as
for the MSA (also confirmed by the high correlation coefficient), that
however differed from the indicators computed on the original-sample
dataset (VLSM-sample, VLSC-sample and MAPP-sample). This finding
suggests that biases inherent to sample datasets may be ameliorated by
taking into account all theoretically possible lesion configurations.
4. Discussion

In the present study, we systematically applied theMSA approach to
an extensive stroke patient dataset and compared the method with
other established lesion inference approaches. The results demonstrat-
ed characteristic functional contributions, particularly of subcortical
structures, to basic behavioral functions as captured by the NIHSS, and
show similarities as well as systematic differences between the MSA
and established lesion inference approaches. This study extends a previ-
ous proof-of-concept study by Kaufman et al. (2009), in which the
authors applied MSA to CT lesion data and line bisection test scores of
23 right-hemisphere stroke patients, by presently using a substantially
larger patient sample (148 cases) in conjunction with a comprehensive
clinical stroke score. Moreover, here we computed and discussed func-
tional interactions derived from MSA, and performed a comparison of
MSA outcomes with those from several other approaches.
contributions, computed for sampled and complete-predicted datasets, sorted by increas-
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4.1. Main findings of the MSA approach

For all large-scale VOIs of the present study, contributions computed
with MSA were significantly different from zero (with the exception of
the right temporal lobe). In particular, subcortical regions, such as the
bilateral caudate and insula, together with the parietal and frontal
lobes, were inferred to make the strongest contributions to behavior
as captured in the NIHSS. Interestingly, MSA also revealed negative con-
tributions, specifically from the right putamen and left thalamus.

Motor symptoms (facial palsy together, weakness of arms and legs)
result in high score values on the NIHSS and explain up to 18 of 42 pos-
sible score points. Thus, as described previously, we would expect high
contribution values in VOIs that comprise the pyramidal tract as well as
cortical brain regions involved in motor function, for example, primary
and secondary motor areas (Menezes et al., 2007; Zhu et al., 2010;
Cho et al., 2007). This aspect may explain the strong contribution of
the bilateral frontal VOI which comprises cortical motor brain areas in
our analysis. The strong contribution of the left insula reflects the asso-
ciation of insular infarction with stroke severity that has been reported
in Fink et al. (2005). Insular infarction is frequently observed in the con-
text of large non-lacunar stroke and, thus, often comes alongwith larger
stroke volumes that cause greater neurological deficits, due to proximal
MCA occlusion.

Regarding the strong contribution of the caudate nucleus observed
in the present analysis, there are only few studies investigating isolated
caudate infarctions (Kumral et al., 1999). However, we suggest that the
effects observed with our results might stem from involvement of the
internal capsule, more specifically the “genu” that contains cortico-
bulbar tracts connecting primary motor areas to the nuclei of cranial
nerves, which are involved in motor function and language perfor-
mance, among other functions. Damage to both the genu of the internal
capsule and parts of the caudate would specifically occur in proximal
MCA occlusions, where the lateral lenticulostriate artery supporting
both structures is blocked. Once again, we would, therefore, at least in
part observe an effect of proximal MCA occlusions that mostly involve
the basal ganglia including the caudate nucleus (Cheng et al., 2011).

We noted stronger contribution values for left hemispheric VOIs.
These values could be related to the fact that larger infarctions of the
left (dominant) hemisphere and MCA territory cause disturbances of
speech, whereas right-sided cortical infarctions aremore often associat-
ed with spatial neglect. This imbalance might have been promoted by
the design of the NIHSS that awards 7 out of 42 points on abilities that
require verbal skills (Woo et al., 1999), so that aphasia, whichmost fre-
quently occurs in left hemispheric stroke, leads to comparatively high
NIHSS values, while neglect, most frequently resulting from right hemi-
spheric stroke lesions, only scores amaximumof 2 points on the NIHSS.

Moreover, we observed the highest contribution values for subcorti-
cal structures, which may be partly explained by the definition of VOIs
used in the current analysis. Particularly, the basal ganglia VOI (puta-
men, caudate) as defined in theMNI atlas comprise adjacentwhitemat-
ter brain areas such as the internal capsule, and it is well known that
stroke lesions affecting the internal capsule often result in severe
motor symptoms (Fries et al., 1993; Lee et al., 2005). Moreover, strong
contributions of subcortical regions may also relate to the distribution
of acute MCA strokes, which mainly involve subcortical structures
while the frequency of involvement decreases towards the cortical
brain areas as shown in the regional distribution of lesions in our sample
as well as in previous reports (Cheng et al., 2011). Finally, this finding
may reflect aspects of brain architecture that concentrate strategic
fiber tracts in small vicinities in subcortical brain regions, which may
result in severe symptoms even in case of small lesion volumes. We
also identified specific differences as to the contribution of homologous
brain regions in the left and right hemisphere. This observation may
partly result from the asymmetric representation of left and right hemi-
spheric brain functions in the NIHSS, but might also point towards spe-
cific lateralized features of brain organization.
The exact MSA approach requires full information of all 2N binary
brain state configurations, where N is the number of regions of interest,
with corresponding performance scores. Thus, ideally, one would have
available information from2N patients, whose lesion patterns are all dif-
ferent from each other. These numbers quickly increase with the num-
ber of elements of interest, restricting the maximum number of VOIs
used in the analysis. In the present study, we chose a set of eight
large-scale, well-defined VOIs for each hemisphere that are readily
available in the MNI atlas and that provide a complete, non-
overlapping parcellation of the brain. Some of these VOIs include
gray as well as white matter. In part, these VOIs are quite large and
encompass numerous functionally relevant but disjoint brain areas
(e.g., frontal cortex). As a result, the functional contributions that we
identified represent the sum of functional contributions of gray matter
regions comprised by the VOI as well as white matter tracts running
through them.

We also identified VOIs with negative contributions to the NIHSS
sum score, particularly the right putamen and left thalamus, a finding
that is not readily explained in the context of acute stroke. As the thala-
mus is mainly supplied by the posterior cerebral artery/basilary artery
(Schmahmann, 2003), combined damage to the thalamus and internal
capsule is less common. This fact might in part explain the negative
contribution of the thalamus at least on the left side. Amore speculative
interpretation would be that involvement of multiple subcortical
components (that is, infarction of the caudate nucleus as well as
the thalamus) would activate networks of subcortical-cortical re-
gions via release from inhibition, leading to lower clinical impair-
ment. Similar effects can be seen in virtual lesion experiments
involving TMS (Hilgetag et al., 2001). However, given the limitations
of the VOIs used in our study, one needs to be cautious in interpreting
these preliminary results. Further studies are necessary that apply the
MSA approach to refined VOIs, which are more specifically tailored to
the studied behavioral performance and also take into account gray as
well as white matter parcellations.

A refinement of the VOIs can start from inspecting the functional
interactions. Regions that show redundant interactions are partly func-
tionally overlapping and may be merged or redrawn into more appro-
priate functional parcels. On the other hand, regions that show
synergistic interactions should be kept separate. Interestingly, there
were differences between the significant interactions among VOIs in
the left and right hemispheres, which may be due to the lateralization
of functions assessed by theNIHSS. In the present analysis, the strongest
redundant interactions were between the caudate and the frontal and
parietal lobes in the left hemisphere, and between the frontal lobe and
parietal lobe, insula and thalamus in the right hemisphere. These re-
gions have largely independent lesion patterns, as shown by an absence
of significant correlations between the relative lesion patterns (Fig. S3 in
Supplementary Material). This observation suggests that the functional
overlap indicated by the redundant functional interactions is not just
due to lesion pattern covariance, perhaps induced by placement in the
same infarct territory, but reflects genuine functional overlap.

4.2. Advantages and drawbacks of different lesion inference methods

One aim of this study was to compare inferences made by MSA to
other lesion inference methods. It should be emphasized that a direct,
quantitative comparison of the accuracy and reliability of the different
methods in inferring functional contributions is impossible without
ground truth knowledge about the actual contributions, which are un-
known for this clinical sample. Therefore, an objective evaluation of
the relative performance of different lesion analysis approaches needs
be performed in a separate project, in which the ground truth contribu-
tions can be defined a priori (Mah et al., 2014). However, while the
current study cannot directly evaluate the relative accuracy of the ap-
proaches, it shows the variety in functional contributions that are com-
puted by different inference techniques. While the overall pattern of
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contributions was comparable among the different approaches, there
were also remarkable differences. In order to understand these findings,
one needs to take into account methodological differences between the
approaches as well as general limitations of lesion inferences.

The use of clinical data typically carries a sample bias. In fact, while
MSA as used in this work is based on the complete-predicted dataset
containing all possible lesion states, VLSC, VLSM orMAPP do not require
such a complete dataset, but use the original-sample and binary-sample
datasets. As discussed, we applied VLSM also to the complete-predicted
dataset and compared the results with theMSA contributions. For VLSC
it was not possible to use the complete-predicted dataset, because the
correlations are necessarily computed on the graded data. Similar to
theMSA, the approach of VLSC confirmed the pivotal role of subcortical
regions aswell as the general predominance of left-hemispheric regions
in the functions assessed by NIHSS; but, differently from MSA, bilateral
thalamus and occipital lobe were not significantly correlated with the
global NIHSS. Also, MAPP showed similar results compared to MSA, es-
pecially in right hemisphere, but also differences, such as the role of pa-
rietal lobe in left hemisphere. The results of VLSC, MAPP and VLSM
applied to sample datasets showed similar results to each other, as
well as a general difference in comparison with MSA contributions.
The fact that VLSM, VLSC and MAPP do not use the complete space of
configurations means they are subject to sample biases, potentially
resulting in false positives and negatives. However, when VLSM was
applied to the complete-predicted dataset, it showed similar results as
theMSA,with significant functional contributions for the left subcortical
regions and the left frontal cortex as well as the right caudate, frontal,
parietal cortex and thalamus. These results demonstrate that the use
of a complete set of lesion casesmay lead to results that are less affected
by a potential sample bias.

A further estimation bias is intrinsic to methods that compute bivar-
iate contributions or correlations. This bias could be corrected, for exam-
ple, by using partial correlations (Baba et al., 2004) among the VOIs and
additional factors, rather than bivariate correlations. The partial correla-
tion results would quantify the degree of association between lesion
size in a VOI and the behavioral scores, while accounting for the influ-
ence of further variables (e.g., variation of lesion size in other regions)
on this relationship. Such corrections would require a more elaborate
statistical analysis as part of the VLSM and VLSC approaches, which usu-
ally is not performed in these analyses, but is already intrinsic to the
multivariate MSA and MAPP approaches.

Generally, MSA possesses some appealing features compared to
alternative inference methods. MSA uses a principled mathematical
approach that makes the assignment of contributions to regions trans-
parent, compared to the assignment of values in machine learning
approaches. Moreover, MSA takes into account all regions and their in-
teractions, unlike bivariate approaches such as VLSMandVLSC, and pro-
vides an exact and unique assignment of contribution values if all lesion
configurations are known.

However,MSA also has drawbacks compared to alternativemethods
of lesion inference. The main disadvantage is the preparation of the
complete lesion dataset that is typically required by the algorithm, po-
tentially resulting in a prediction bias from themachine-learning estima-
tion of a complete dataset of 2N lesion states and corresponding scores.
VLSM and VLSC, instead, do not require the prediction of performance
scores for all possible configurations, and therefore can also be applied
to a larger number of VOIs, or to lesion data sampled at the voxel
level. However, variants of theMSA approach exist that are based on in-
complete samples of the space of all lesion configurations (Keinan et al.,
2006). The applicability of this modified approach to problems involv-
ing up to 100 nodes has been demonstrated (Keinan et al., 2006); how-
ever, it still remains a challenge to scale the approach to the number of
elements involved in voxel-based approaches.

Finally, a problem common to all methods is due to the fact that clin-
ical data used in lesion inference analyses may suffer from a selection
bias. This bias arises when only patients with functional deficits are
included in the analysis, while ignoring subjects with lesions but with-
out deficits. However, the latter cases are essential for excluding the re-
dundant contributions of some of the lesioned structures that are
damaged as a consequence of an infarct, but may not actually be causal-
ly contributing to behavioral deficits. In lesion studies of specific deficits,
such as aphasia or spatial neglect, this bias can be controlled by includ-
ing brain-damaged patients without the specific syndrome under con-
sideration; for instance, stroke patients that are aphasic but have
intact spatial attention could be included in a neglect study. However,
such a balancing of the patient sample is difficult when using broad,
multifunctional clinical scores such as theNIHSS. Therefore, all function-
al inferences in the present study, including the ones made by MSA,
suffer from a bias towards false positives.

4.3. Further limitations

It should be emphasized that only diffusion-weighted MRI datasets
were used in this study for lesion delineation and subsequent analysis.
In the setting of an acute stroke, brain cells located within a lesion
visible in diffusion-weighted MRI are typically assumed to represent
the infarct core, which is not salvageable. Complementary to this ap-
proach, perfusion-weighted MRI is used to obtain knowledge about
the hypoperfused tissue. The volumetric mismatch between these two
lesions can be used as a surrogate for the ischemic penumbra. Brain
cells in this region are assumed to be salvageable, if reperfusion is
achieved. However, it is still a matter of debate to what extent brain
cells in this area are still functional. For example, Marshall et al.
(2001) found that the residual function of brain cells variedwith the ab-
solute cerebral blood flow pattern. It could be hypothesized that the dif-
fusion lesions used in the present study underestimate the extent of
inactivated brain cells and, thus, do not completely explain the function-
al deficit. Although it would be interesting to explore this issue in more
detail, it needs to be highlighted that, in contrast to the characterization
of lesions in diffusion-weighted MRI datasets, which is straightforward,
the optimal definition of the hypoperfused tissue is still a matter of de-
bate. Particularly, several sets of different perfusion parameters and
thresholds have been proposed for the definition of the hypoperfused
tissue (Forkert et al., 2013). Thus, the choice of the perfusion parameter
(e.g., cerebral blood flow or time-to-peak) and threshold used for iden-
tification of the hypoperfusionmay considerably influence the outcome
of all lesion mapping techniques, while it remains unclear if all brain
cells within the hypoperfused brain tissue are indeed inactive brain
cells. Therefore, a perfusion lesion may overestimate the functionally
relevant lesion. In contrast to this, one can be confident that cells within
the diffusion lesion are inactive. Ultimately, the use of verymany differ-
ent configurations of focal diffusion lesions as in the present study
might approximate the same configuration space as that resulting
from large perfusion lesions, due to the use of the lesion overlapmedian
value for binarization of lesioned brain regions, as perfusion lesions are
typically located around the diffusion lesion, but are larger. In conclu-
sion, although the issue of characterization of stroke lesions by diffusion
versus perfusion imaging needs to be analyzed in more detail in further
studies, we are confident that the present analysis already provides
worthwhile knowledge about the functional importance of different
brain regions.

4.4. General conclusions

TheMSA approach allows the objective, game-theory based compu-
tation of regional causal contributions to brain function. In the present
study, we demonstrated that MSA can be applied to clinical datasets
for stroke lesions, to reveal characteristic contribution patterns of
large-scale VOIs to a broad range of behavioral and cognitive functions
as reflected in the NIHSS. The results deepen the understanding of the
functional impact of regionally specific brain lesions to the NIHSS and,
thus, contribute to the use of this scale in clinical practice and research.
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We showed that alternative measures of lesion inference produce
broadly similar functional contributions, but differ in the detailed rank-
ing of contributions. The comparison of indicators of functional contri-
butions derived from the original, restricted as well as the predicted
complete sets of lesion configurations also revealed differences. In com-
parison to other techniques, the MSA approach, as employed here, has
the practical limitation that it needs to be computed from the complete
space of all combinations of intact or lesioned regions. This requirement
can be satisfied through the combination of the approachwith a predic-
tive algorithm for deriving the scores corresponding to all possible le-
sion configurations from the known configurations, at the expense of
a prediction bias. We also identified points for further research, such
as the selection of VOIs that requires further refining.

In summary, we suggest that MSA can be used as a valid alternative
to established lesion inference approaches, due to its robust intrinsic
mathematical basis and its potential to overcome biases of bivariate
associations inherent in alternative approaches. The present prelim-
inary results indicate the potential of the MSA approach for improv-
ing the understanding of the localization of essential brain functions
as well as providing useful guidance for stroke patient treatment and
rehabilitation.
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