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Abstract

Background: Genotyping and whole-genome sequencing data have been generated for hundreds of thousands of
cattle. International consortia used these data to compile imputation reference panels that facilitate the imputation
of sequence variant genotypes for animals that have been genotyped using dense microarrays. Association studies
with imputed sequence variant genotypes allow for the characterization of quantitative trait loci (QTL) at nucleotide
resolution particularly when individuals from several breeds are included in the mapping populations.

Results: We imputed genotypes for 28 million sequence variants in 17,229 cattle of the Braunvieh, Fleckvieh and
Holstein breeds in order to compile large mapping populations that provide high power to identify QTL for milk
production traits. Association tests between imputed sequence variant genotypes and fat and protein percentages
in milk uncovered between six and thirteen QTL (P < 1e-8) per breed. Eight of the detected QTL were significant in
more than one breed. We combined the results across breeds using meta-analysis and identified a total of 25 QTL
including six that were not significant in the within-breed association studies. Two missense mutations in
the ABCG2 (p.Y581S, rs43702337, P = 4.3e-34) and GHR (p.F279Y, rs385640152, P = 1.6e-74) genes were the
top variants at QTL on chromosomes 6 and 20. Another known causal missense mutation in the DGATIT
gene (p.A232K, rs109326954, P = 8.4e-1436) was the second top variant at a QTL on chromosome 14 but its allelic
substitution effects were inconsistent across breeds. It turned out that the conflicting allelic substitution effects resulted
from flaws in the imputed genotypes due to the use of a multi-breed reference population for genotype imputation.

Conclusions: Many QTL for milk production traits segregate across breeds and across-breed meta-analysis has greater
power to detect such QTL than within-breed association testing. Association testing between imputed sequence variant
genotypes and phenotypes of interest facilitates identifying causal mutations provided the accuracy of imputation is high.
However, true causal mutations may remain undetected when the imputed sequence variant genotypes contain flaws. It
is highly recommended to validate the effect of known causal variants in order to assess the ability to detect true causal
mutations in association studies with imputed sequence variants.
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Background

Whole-genome sequencing data have been generated for
a large number of cattle from diverse breeds. Many of the
sequenced cattle were selected in a way that they account
for a large proportion of the genetic diversity of the entire
population in order to ensure that the information content
of the sequencing data is high [1]. This so-called “key-an-
cestor’-approach reveals most polymorphic sites that seg-
regate within breeds, at least the not too rare ones [2].
The availability of a comprehensive catalogue of sequence
variants that segregate within and across breeds proved to
be useful to pinpoint deleterious mutations particularly
for monogenic traits [3, 4].

International consortia such as the 1000 bull genomes
project (http://www.1000bullgenomes.com/) collected se-
quencing data from hundreds to thousands of individuals
in order to characterize sequence variation that segregates
within and across populations [5]. The fifth run of the 1000
bull genomes project provided genotypes at 39 million
polymorphic sites for 1577 individuals that represent the
most important dairy and beef breeds in the world. Refer-
ence panels that include sequence information from many
breeds allow us to impute sequence variant genotypes at
high accuracy for animals that have been genotyped using
dense microarrays [6, 7]. Association studies with imputed
sequence variant genotypes may facilitate to pinpoint causal
mutations for complex traits [7, 8].

Although sequence-based association studies uncov-
ered many QTL (e.g., [9-11]), our knowledge regarding
their molecular-genetic underpinnings is still limited be-
cause the characterization of putatively causal variants
was rarely attempted (e.g., [5, 12, 13]). Sequence-based
association studies typically reveal nearly identical P
values for many adjacent variants that are in high linkage
disequilibrium (LD). Such a pattern prevents differenti-
ation between true causal mutations and anonymous
markers that are in LD with them. Because many QTL
for complex traits reside in non-coding regions of the
genome, a functional prioritization of significantly asso-
ciated sequence variants is not always possible [14].

Association studies that include animals from different
breeds may improve the resolution of QTL mapping
because LD is conserved only over short distances across
breeds [15]. However, trait definitions and data recording
methods need to be standardized across breeds in order to
allow for multi-breed association testing [16]. When
restricted access to individual-level data precludes multi-
breed association testing, meta-analysis enables us to com-
bine summary statistics of association studies across popu-
lations thereby providing high power to detect QTL [17].

In this paper, we report on association studies between
imputed sequence variant genotypes and two dairy traits
in 17,229 cattle from three breeds. Meta-analysis of asso-
ciation studies across breeds allowed us to characterize
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25 QTL for fat and protein percentages in milk at nucleo-
tide resolution.

Methods

Genotyped animals of the target populations

All genotype data were obtained from breeding organiza-
tions and no new samples were genotyped in this study.
The target populations consisted of 1646 Braunvieh (BV),
6778 Fleckvieh (FV) and 8805 Holstein (HOL) bulls that
had (partially imputed) genotypes at 573,650, 603,662 and
564,374 autosomal single nucleotide polymorphisms
(SNPs). A subset of the animals (214 BV, 1475 FV and 345
HOL) was genotyped using the Illumina BovineHD (HD)
bead chip that comprises 777,962 SNPs. All other animals
were genotyped using the Illumina BovineSNP50 Bead
chip (50 K) that comprises 54,001 (version 1) or 54,609
(version 2) SNPs. The 50 K genotypes were imputed to
higher density using a combination of Beagle [18] and
Minimac [19] (HOL, FV) or Flmpute [20] (BV) as de-
scribed previously [3, 21]. To improve the accuracy of im-
putation, we increased the size of the reference panel by
including HD genotypes of another 2070 FV and 842 BV
cattle that were available from previous projects. However,
these 2912 cattle were not considered for association
analyses.

Sequenced reference animals

Two already existing reference panels were used to im-
pute sequence variant genotypes for the animals of the
target populations. Sequence variant genotypes for 8805
HOL cattle were imputed using a multi-breed reference
population that consisted of 1147 cattle including 59 BV,
213 FV and 312 HOL cattle that were available from the
fourth run of the of the 1000 bull genomes project [5].
The sequencing reads were aligned to the UMD3.1 bo-
vine reference genome using the BWA-MEM algorithm
[22, 23]. Single nucleotide polymorphisms, short inser-
tions and deletions were genotyped for all sequenced an-
imals simultaneously using a multi-sample variant
calling approach that was implemented with the mpileup
module of SAMtools [24] and that is described in Daet-
wyler et al. [5]. The sequence variant genotypes of 1147
reference animals were filtered to include 29,460,467
autosomal sequence variants with a minor allele fre-
quency (MAF) greater than 0.0013 (i.e., the minor allele
was observed at least four times).

Sequence variant genotypes for 1646 BV and 6778 FV
cattle with (partially imputed) HD genotypes were im-
puted using a multi-breed reference population that con-
sisted of 1577 animals that were included in the fifth run
of the 1000 bull genomes project. The raw sequencing
data were processed as described above. The sequence
variant genotypes of 1577 reference animals were filtered
to include 28,542,148 autosomal sequence variants that
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segregated in 123, 279 and 451 sequenced animals of the
BV, FV and HOL breed, respectively.

A total of 24,180,002 sequence variants were a com-
mon subset of both reference panels. Sequence variant
genotypes were imputed separately for each breed using
a pre-phasing-based imputation approach that was im-
plemented in the Minimac [25] software tool. Haplotype
phases for the reference animals were estimated using
Beagle (version 3.2.1) [18] (HOL) or Eagle (version 2.3)
[26] (FV, BV). Sequence variants that were located be-
tween 71 and 78 Mb on chromosome 12 or between 23
and 30 Mb on chromosome 23 were not considered for
association testing because the accuracy of imputation
was very low within both segments [7].

Within-breed association testing

Association tests between imputed sequence variants
and fat (FP) and protein percentages (PP) in milk were
carried out for each breed separately using a variance
components-based approach that was implemented in
the EMMAX software tool and that accounts for popula-
tion stratification and relatedness by fitting a genomic
relationship matrix [27]. A genomic relationship matrix
was built for each breed based on (partially imputed)
HD genotypes using the method of Yang et al. [28] that
was implemented in the plink (version 1.9) software tool
[29]. Daughter yield deviations (DYDs) for FP and PP
with an average reliability of 0.92 (+0.04) were the re-
sponse variables in FV. Estimated breeding values (EBVs)
with an average reliability of 0.89 (+0.12) and 0.95
(+0.03) were the response variables in BV and HOL. The
phenotypic correlation between FP and PP was 0.53,
0.64 and 0.69 in BV, FV and HOL cattle. Predicted allele
dosages were used as explanatory variables for the asso-
ciation tests. Sequence variants with P values less than
1le-8 were considered as significantly associated.

Identification of QTL that segregate within and across
breeds

Genomic regions with significantly associated variants
were inspected manually. Genes that were annotated
within 1 Mb intervals centered on the top variant were
extracted from the UMD3.1 annotation of the bovine
genome [30] using the Reference Sequence database
(RefSeq release 82) from the National Center for Bio-
technology Information (NCBI) and compared to known
QTL for bovine milk production traits using literature
review. Genomic regions were considered as across-
breed QTL when significantly associated sequence vari-
ants (P < le-8) were located within a 1 Mb interval cen-
tered on top variants that were detected at P < le-8 in
another breed.
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Meta-analysis of FP and PP across three breeds

Estimated allelic substitution effects and corresponding
standard errors from the within-breed association stud-
ies (see above) were divided by phenotypic standard de-
viations in order to standardize the results of the
association studies across breeds. Variants with an effect
size greater than five standard deviations were not in-
cluded in the meta-analysis (most of these variants also
had low MAF and the large effect possibly results from
erroneously imputed alleles). The number of variants
that were excluded because they had an effect size
greater than five standard deviations varied across
breeds and traits and it ranged from 13,461 to 22,079.
Meta-analysis was performed using an inverse variance-
based approach that takes into account sample size, al-
lelic substitution effect and standard error [17]. Hetero-
geneity of the effect sizes across breeds was evaluated
using Cochran’s Q test [31] that was also implemented
in the METAL software package [17]. The functional
consequence of significantly associated sequence vari-
ants was predicted using the Variant Effect Predictor tool
from Ensembl [32]. Variant-specific estimates of Fgt
were calculated for 25 QTL and whole genome sequence

. . 2 .

variants using Fgy = m, where s is the sample
variance of allele frequency between breeds, p is the
mean allele frequency across breeds and r is the number

of breeds [33, 34].

Validation of 25 QTL in another population

A validation population that consisted of 1839 FV cows
was genotyped at 777,962 SNPs using the HD bead chip.
Haplotype phases were estimated using Beagle [26]. Se-
quence variant genotypes were imputed using Minimac
[19] considering 1147 animals from the fourth run of
the 1000 bull genomes project as a reference population
(see above). EBVs for FP and PP with an average reliabil-
ity of 0.50 (£0.03) were used as response variables for
the association tests using the EMMAX [27] software
tool as described above. Variants that had P values less
than 0.05 and allelic substitution effects that were in the
same direction as in the meta-analysis were considered
to be validated in the cow population.

Results

Genotypes for more than 28 million sequence variants
were imputed for 17,229 progeny-tested bulls of the BV,
FV and HOL cattle breeds using a population-based
genotype imputation approach. Following genotype im-
putation, we considered 18,063,587, 19,021,606 and
17,318,499 imputed sequence variants that had MAF
greater than 0.005 in BV, FV and HOL, respectively, for
association testing. Between 32.4 and 35.1% of the im-
puted sequence variants had MAF less than 0.05 (see
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Additional file 1: Figure S1). The estimated mean (and me-
dian) accuracy of imputation (r*-values from Minimac) was
0.78 (0.96), 0.80 (0.97) and 0.79 (0.99) in BV, FV and HOL,
respectively, and 85.4, 86.7 and 83.6% of the variants were
imputed at an estimated accuracy greater than 0.3.

Within-breed association studies for fat and protein
percentages in milk
Association tests between imputed sequence variants
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variants were significant for both traits and 5543, 15,348
and 21,502 were significant for at least one trait in BV,
FV and HOL, respectively.

Six, thirteen and twelve QTL, respectively, were de-
tected in BV, FV and HOL cattle (Fig. 1). Eleven QTL
were detected in one breed, five and two QTL were
detected in two and three breeds, respectively (see
Additional file 2: Table S1). However, the top variants
at QTL that were significant in more than one breed

and FP and PP were carried out separately for each  differed for all but one QTL; rs385640152 was the

breed. The number of associated sequence variants was
higher in HOL and FV than BV which was likely be-
cause of a greater sample size in HOL and FV (BV:
1646, FV: 6778, HOL: 8805); 3249, 11,939 and 15,857
sequence variants were associated (P < le-8) with FP in
BV, FV and HOL, respectively, and 2296, 6515 and
15,674 were associated with PP. The difference in the
number of significant variants per trait is mostly attrib-
utable to the properties of individual QTL regions. This
is exemplified by the DGATI QTL on BTA14, which has
a more pronounced effect on FP than PP. In FV and
HOL, respectively, 10,046 and 13,401 variants at the
proximal region (<10 Mb) of chromosome 14 were asso-
ciated (P < 1le-8) with FP whereas only 2799 and 9493
variants were associated with PP. Two, 3106 and 10,029

top variant for a QTL on chromosome 20 in all three
breeds analysed.

Although more than 32% of the sequence variants had
MATF between 0.005 and 0.05 (see above), only six (19%)
QTL had MAF less than 0.05 (see Additional file 2: Table
S1). QTL with MAF less than 0.05 were not detected in
BV likely because the number of genotyped animals was
too low to detect low-frequency QTL.

435 and 201 sequence variants, respectively, were sig-
nificant (P < 1e-8) for FP and PP in all three breeds ana-
lysed. Nineteen variants that were associated with FP in all
breeds were located on chromosome 5 within the 5'-up-
stream sequence or intronic regions of MGST1 (micro-
somal glutathione S-transferase 1). Another 415 variants
that were significant for FP in all three breeds were located
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on chromosome 14 between 1,322,209 and 3,382,844 bp.
In FV and HOL, several variants with P values less than
5e-306 (ie., the smallest possible P value that can be
obtained using the EMMAX software tool) including the
p.-A232K-variant (rs109326954) in the DGAT1 (diacylglyc-
erol O-acyltransferase 1) gene were located within this
segment. When variants with P values less than 5e-306
were ranked according to their t values (i.e., regression
coefficient divided by its standard error), rs109326954 was
the second top variant in FV and its t-value (53.06) was
only slightly less than the top variant (¢t = 53.08,
rs209876151 at 1,800,439 bp). In HOL, the t-value of
rs109326954 was 2.7 points less than the top variant
(rs110568020 at 1,699,681 bp). rs109326954 was not sig-
nificant for FP in BV. At a QTL on chromosome 20, the
p.F279Y-variant (rs385640152 at 31,909,478 bp) in the
GHR (growth hormone receptor) gene was the top variant
in all three breeds analysed.

221 non-coding sequence variants that were located
between 87,154,594 and 87,434,710 bp on chromosome
6 and rs385640152 in the GHR gene were significant for
PP in all breeds analysed.

Considering the allelic substitution effects of 18,063,587,
19,021,606 and 17,318,499 sequence variants in BV, FV
and HOL, respectively, the correlation between FP and PP
was 0.52, 0.61 and 0.53. The correlation between the FP
and PP allelic substitution effects of 19 detected QTL was
0.81 (Fig. 2). The largest effects were detected for three
QTL on chromosomes 14, 20 and 6 that encompassed the
DGAT1, GHR, ABCG2 (ATP binding cassette subfamily G
member 2) and CSN1S1 (casein alpha sI) genes. The QTL
on BTA14 encompassing the DGATI gene had larger
effects on FP than PP whereas the effects of the QTL on
BTA6 and BTA20 were more pronounced for PP than FP.

Multi-breed meta-analysis uncovers six additional QTL
Meta-analysis of the within-breed association studies
across three breeds revealed 16,086 and 14,020 sequence
variants that were significantly associated (P < le-8) with
EP and PP, respectively (see Additional file 3: Table S2 &
Additional file 4: Table S3). 23,786 variants were signifi-
cant for at least one trait and 6320 variants were signifi-
cant for both traits. The significant sequence variants
clustered at 25 QTL including six that did not meet the
significance threshold (P < 1e-8) in any of the within-
breed association studies (Table 1, Fig. 3).

The top variants at most QTL (20/25) had MAF
greater than 0.005 in all three breeds analysed. However,
the power of the within-breed association studies was
likely not sufficient to detect all of them at P < 1e-8 (see
Additional file 5: Table S4). Seven QTL showed evidence
of across-breed heterogeneity of the allelic substitution
effects at P < 0.05. The genetic differentiation of the
three breeds was greater at 25 QTL (Fst = 0.079) than
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Fig. 2 Effect of 31 QTL on fat and protein percentages in milk. Allelic
substitution effects of six, thirteen and twelve QTL, respectively, that
were detected in HOL (grey), FV (green) and BV (blue) cattle. The allelic
substitution effects of the top variants were divided by phenotypic
standard deviations to standardize QTL effects across breeds

J

24,180,002 genome-wide sequence variants (Fst = 0.059)
indicating that at least some QTL were targets of
recent selection.

The top variants at 19 QTL had MAF greater than
0.01 in a validation population that consisted of 1839 FV
cows. The allelic substitution effects of 16 variants had P
values less than 0.05 in the validation population and
were in the same direction as in the meta-analysis (see
Additional file 6: Table S5).

The most significantly associated variant at a QTL on
chromosome 6 was a known causal mutation for milk
production traits (p.Y581S, rs43702337 at 38,027,010 bp,
P = 4.3e-34) in the ABCG2 gene [35]. The serine-
encoding C-allele had a frequency of 0.008 in HOL and
it decreased FP and PP (Fig. 3d, Table 1). The serine
variant did not segregate in the BV and FV bulls that
had imputed sequence variant genotypes.

The p.F279Y-variant in the GHR gene (rs385640152
at 31,909,478, P = 1.6e-74) was the top variant at a
QTL on BTA20. Consistent with previous findings,
the tyrosine-encoding T-allele decreased FP and PP in
all three breeds analysed [8, 36]. The frequency of the
tyrosine variant was 0.06, 0.05 and 0.15 in BV, FV
and HOL (see Additional file 2: Table S1). The
p.S18 N variant (rs136247583) in the PRLR (prolactin
receptor) gene [37] was polymorphic in the three
breeds analysed and the frequency of the asparagine
variant was 0.87 (HOL), 0.25 (FV) and 0.14 (BV).
However, rs136247583 was neither associated with FP
and PP in the meta-analysis (Pgp = 0.82, Ppp = 0.06)



Pausch et al. BMC Genomics (2017) 18:853

Page 6 of 11

40
30
o
S
=20
D
ke}
0
10
0
meta
BV
FV
HOL
ANDOVOONNOTNONANDNNDOMAOOVNOTONN
OCO—FTAUN—T—OTODNO~ANNONONOITONND
LNOCOMMOMUOOLVW—OANNONONITIITINDOND
—ONOOOONTOOO~VONDWO O 00O
STTOANDTOAMODRONMNNOMOVO—ANNONM
SN ON—O—LOAN0ODNWNMO 0 OMN LD O
TOTOUNOONOD—OONTFT =N ONOOD—
IR -NOTOFRUNCQUNNNNNGT
TOOTODOOOT. It~ OO IONOAND
— [te) -~ -+ +—r-adaadadN
=

ABCG2, DGATT and GHR genes

Fig. 3 Meta-analysis of fat and protein percentages in milk across three cattle breeds. (@) Composite manhattan plot that shows the association
of 26/473,121 imputed sequence variants with FP and PP in the meta-analysis. The composite manhattan plot summarizes the results of the
meta-analyses, i.e., each dot shows the more significant P value that was observed across both traits. Red colours represent sequence variants
with P values less than 1e-8. The y-axis is truncated at —log10(1e-40). (b) Quantile-quantile plot of the meta-analyses. Grey and cyan colour represent
P values of 26,473,121 imputed sequence variants for FP and PP, respectively. The y-axis is truncated at —log10(1e-10). (c) Overview of 25 QTL that were
significant at P < Te-8 in the meta-analysis and within-breed association studies. Filled squares indicate that QTL were significant in the
respective analysis. The labels at the x-axis represent the positon of the top variant at each QTL. (d) Allelic substitution effects of 25 OTL
on FP and PP. The QTL effects are given in phenotypic standard deviations. Bold type indicates three causal missense mutations in the

P T

o

IS

N

+ fat percentage
+ protein percentage
i T T T 1

4 6 8
Expected -log10(P)

Observed -log10(

o

1¢]

Fat 15 DGAT1:p.A232K

percentage

1.0

1028
2.6

05 1.0 1.5
Protein
percentage

= % &
£
GHR:p.F279Y_0 5
o

ABCG2:p.Y581S

-1.5

nor in any of the within-breed association studies
(Pgp > 0.17, Ppp > 0.15).

A QTL on chromosome 1 was associated with FP in
the meta-analysis but not in the within-breed association
studies. Six imputed sequence variants that were located
downstream of the SLC37A1 (solute carrier family 37
member 1) gene had P values less than le-8. The vari-
ants associated with FP were in immediate vicinity to a
QTL for phosphorus concentration in milk that was de-
tected in an Australian Holstein cattle population [13].
The top variant (rs136426342 at 144,441,562 bp) of the
meta-analysis was less than 75 kb away from two vari-
ants in high LD (rs109254133 at 144,367,474 bp and
rs208161466 at 144,377,960 bp) that were plausible
causal mutations in Holstein cattle [13]. However, their
P values (P = 3.2e-7 and P = 8.0e-7) were higher than
the P value (8.6e-9) of the top variant.

The meta-analysis revealed three distinct QTL on
chromosome 5; 590 significantly associated sequence vari-
ants were located between 75,633,853 and 75,790,113 bp.
This interval encompassed the NCF4 (neutrophil cytosolic
factor 4) and CSF2RB (colony stimulating factor 2 receptor
beta common subunit) genes, which we did not consider
as candidate genes for milk production traits. However,

the top variant was less than 20 kb downstream of the
translation end of the TST (thiosulfate sulfurtransferase)
gene, which we considered as a functional candidate gene.
Another QTL on BTA5 encompassed 1916 significantly
associated sequence variants that were located between
88,235,301 and 98,233,638 bp. The effect of his QTL was
more pronounced on FP than PP in all three breeds
analysed. The most significantly associated variant
(rs209372883 at 93,948,357 bp, P = 9.8e-100) was located
in the second intron of the MGSTI gene. However, the
top variant at that QTL differed across breeds. Another
QTL on BTA5 encompassed 36 significantly associated
sequence variants that were located between 118,086,877
and 118,264,313 bp including a missense mutation
(p-R355C) in the TBC1D22A (TBC1 domain family mem-
ber 22A) gene. However, the P value of the missense
mutation was clearly higher (P = 3.2e-9) than the most
significantly associated non-coding variant (rs384440535
at 118,100,512 bp, P = 3e-12).

The allelic substitution effects of most QTL were in
the same direction for FP and PP (Table 1). However,
two QTL on chromosomes 19 and 27 were highly sig-
nificantly associated with FP (P < 5.9e-16) but not with
PP (P > 0.1). The top variants at these QTL were located
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Table 1 Top variants at 25 QTL for fat and protein percentages in milk
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QTL  Top variant Fat percentage Protein percentage
Chr  Position NCBI rs-ID Alternate  Candidate  Allele Effect direction (and Preta Allele Effect direction (and Preta
allele gene(s) substitution evidence of heterogeneity) substitution evidence of heterogeneity)

effect across three populations® effect across three populations®

(+standard (+standard

error) error)
1° 1 144,441,562 15136426342 G SLC37A1 —0.05 (£0015) — (044) 1.2e-03 —-0.09 (x0016) — (0.37) 8.5e-09
2 3 15,540,709 15207616487 C —0.19 (£0.038) - (0.11) 5.6e-07 —0.49 (+0.05) — (0.26) 3.0e-22
3 3 34,387,618 rs109030498 T 0.06 (+0.014) +++ (0.18) 9.1e-05 0.14 (£0.016) +++ (0.88) 1.1e-17
4° 4 56,528,040 rs381550282 A 0.08 (+0.022) +++ (0.61) 2.0e-04 0.15 (+£0.024) +++ (0.74) 2.5e-10
5¢ 5 75656328 5210334611 T TST —0.11 (£0.019) — (0.27) 6.1e-09 —0.15 (£0.021) — (0.48) 6.2e-13
6 5 93,948,357 15209372883 C MGST1 -0.34 (£0016) — (1.1e-3) 98e-100  —0.17 (£0.018) — (0.23) 6.3e-21
7 5 118,100,512 15384440535 T TBCID22A —0.07 (£0.015)  + — - (0.09) 1.1e-05 —0.12 (£0.017) — (0.28) 3.0e-12
8 6 38027,010  rs43702337  C ABCG2 —066 (£0.075)  7?-(1) 1.1e-18 —1.13 (£0.093)  7-(1) 4.3e-34
9 6 87,154,594 rs109193501 G CSNIST 0.10 (£0.016) +++ (1.5e-4) 4.1e-10 0.30 (+0.018) +++ (9.1e-3) 49e-68
10 10 46,550,543 15208077205 A 0.15 (+£0.023) +++ (0.68) 3.7e-10 0.22 (+£0.025) +++ (0.51) 8.2e-18
" " 103,296,192 15381989107 C PAEP —0.14 (x0.013) — (1.0e-3) 6.1e-27 —0.05 (£0014) — (043) 6.8e-04
125 14 1,802,266 1109326954 A DGAT1 1.58 (£0.02) —++ (1.9e-12) 84e-1436 091 (+0.024) —++ (2.3e-5) 1.9e-308

1,800,399 rs208317364 A 1.59 (£0.02) —++ (2.8e-14) 12e-1437 091 (£0.024) —++ (6.2e-6) 1.1e-308

13 14 66,871,289 15439256148 C —0.29 (+0.037) + —-(0.25) 44e-15 —0.51 (£0.048) — (0.50) 1.6e-26
14 15 53,938,718 rs386031410 A —0.17 (£0.034) + —-(0.25) 8.1e-07 —0.31 (x0.037) + —-(043) 6.3e-17
15¢ 15 74,830,325 142364320 T —0.09 (x0014) — (092) 2.1e-10 -002 (+0.016) + —-(0.68) 0.13
16 16 1,607,723 15382661583 T —0.19 (£0.022) — (0.33) 1.3e-17 —031 (£0.024) — (0.27) 1.6e-38
17 16 67735669  rs385934483 A —0.1 (£0013)  —(0.28) 1.9e-13 —007 (£0.015)  — (0.09) 5.8e-06
18 19 51386735 5137372738 T FASN -0.11 (£0013) — (0.22) 59e-16 0.01 (£0.014) +++ (0.96) 072
19 20 31909478  rs385640152 T GHR —0.39 (£0.028) — (4.1e-4) 29e-45 —0.56 (£0.031) — (0.19) 1.6e-74
20 24 58,811,405 rs380879212 A LMANT 0.07 (£0.016) +++ (0.59) 4.5e-05 0.14 (£0.017) +++ (0.91) 1.9e-15
21 25 27,926,446 1801168123 A 0.27 (+0.09) 7++ (044) 2.6e-03 0.55 (+£0.093) 7++ (045) 4.5e-09
22 27 36,221,754 15208624037 G AGPAT6 —0.12 (+0.015) — (0.002) 6.1e-16 —-0.03 (£0016) — (0.39) 0.11
23 28 35,868,970 NA A MBL1 0.17 (x£0.054) 74+7(1) 1.7e-03 042 (+0.056) T+ (P=1) 7.1e-14
245 29 9,576,277 15384716744 T 0.06 (+0.015) +++ (0.07) 6.1e-05 0.14 (£0.016) +++ (0.01) 1.1e-16
25 29 41,836,992 1471090482 G —0.16 (+0.04) 7-(1) 5.8e-05 —0.35 (£0.045) 77-(1) 6.6e-15

2 Populations in order are BV, FV and HOL; '+ and ‘~‘denote positive and negative substitution effects of the alternate allele. ?’ indicates that the variant did not segregate in
the respective population. The P value of Cochran’s Q test for heterogeneity of the effect sizes across breeds is given in parentheses
® The P value of the top variant (rs208317364) was only slightly less than for a known causal variant (rs109326954) in the DGATT gene with a major effect on milk composition

in cattle. For completeness, the effect of rs109326954 is shown as well
€ QTL was not significant at P < Te-8 in the within-breed analyses

in intronic regions of the FASN (fatty acid synthase) and
AGPAT6 (I-acylglycerol-3-phosphate O-acyltransferase
6) genes.

Conflicting effects of a known causal variant across
breeds

The p.A232K-variant (rs109326954) in the DGAT1 gene
was the second top variant in the FP meta-analysis and
its P value (8.4e-1436) was marginally higher than the
top variant (rs208317364 at 1,800,399 bp, P = 1.2e-
1437). However, the allelic substitution effect of
rs109326954 was not consistent across three breeds ana-
lysed. While the lysine variant increased FP and PP in
FV and HOL, it decreased both traits in BV. The effect
of rs109326954 on FP and PP was significant in FV and
HOL but not in BV cattle (P > 0.2). The lysine variant
had a frequency of 0.08, 0.09 and 0.26 in the BV, FV and

HOL animals, respectively, that had imputed genotypes.
The allele frequency was similar in the sequenced FV
(0.06) and HOL (0.30) animals. However, it was only
0.004 in 123 sequenced BV animals (i.e., only one animal
was heterozygous). Moreover, the accuracy of imput-
ation (r’-value from Minimac: 0.02) was very low for
rs109326954 in BV cattle. Taken together, these findings
indicate that the imputed genotypes at rs109326954
were flawed in BV which caused the conflicting allelic
substitution effects.

Discussion

Our meta-analysis of association studies for FP and PP
across three cattle breeds discovered 25 QTL including
six that were not detected at P < le-8 in the within-
breed analyses. Our findings show that including data
from several breeds can increase the power of association
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studies with imputed sequence variant genotypes which
agrees with van den Berg et al. [15]. The power to detect
QTL may be even greater in multi-breed association stud-
ies [38]. However, access to individual-level genotype data
was restricted in our study which prevented us from ana-
lyzing raw data from all three breeds simultaneously. The
imputation reference panels and imputation software dif-
fered across the three breeds analyzed, which might affect
the power of our meta-analysis. Considering that our
study included sequence variant genotypes of more than
17,000 animals, the identified QTL are likely to be the
major genetic determinants of milk production traits in
BV, FV and HOL cattle. We may have missed QTL with
small effects because we applied a rather conservative
significance threshold in the meta-analysis. Applying a
less stringent threshold and QTL mapping approaches
that consider all variants simultaneously may reveal
such QTL [39].

We identified a number of QTL for milk production
traits that were previously detected in several cattle
breeds, e.g., QTL that were located nearby the SLC37A1,
MGSTI1, ABCG2, CSN1S1, PAEP (progestagen associated
endometrial protein), DGAT1, FASN, GHR and AGPAT6
genes [5, 7, 8, 12, 13, 21, 35, 40, 41]. Using imputed se-
quence variant genotypes, Daetwyler et al. [5] identified
a QTL for FP in early lactation in FV and HOL cattle
that encompassed the AGPAT6 gene. Our meta-analysis
also identified significantly associated sequence variants
(including the variants reported by Daetwyler et al. [5])
in the region 5 -upstream of the AGPAT6 gene corrob-
orating that this region controls milk fat content in dairy
cattle. However, our within-breed analyses did not detect
that QTL in HOL and FV cattle at P < 1le-8, although
the animals of our study were from the same popula-
tions and our sample size was two and four times
greater compared to Daetwyler et al. [5]. While Daetwy-
ler et al. considered phenotypes for FP in early lactation
as response variables, we used phenotypes for FP across
the entire lactation. Milk fat content is under different
genetic control across the lactation cycle [42] and the
findings of Daetwyler et al. [5] and our study indicate
that sequence variation nearby AGPAT6 primarily con-
trols fat content in early lactation which agrees with an
expression maximum of AGPAT6 at an early stage of
lactation [43].

Two well characterized missense mutations in the
ABCG?2 [35] and GHR [36] genes were the top variants at
QTL on chromosomes 6 and 20, respectively, demonstrat-
ing that causal mutations can be readily identified in asso-
ciation studies with imputed sequence variant genotypes.
Moreover, another well-characterized missense mutation
in the DGATI gene [44, 45] was the second top variant at
a QTL on chromosome 14 and its P value was only mar-
ginally higher than the top variant. Considering that the
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meta-analysis revealed three known causal mutations as
the top (or second top) variants, it is likely that true causal
mutations for milk production traits were among the sig-
nificantly associated sequence variants detected at other
QTL. However, most associated variants resided in non-
coding regions of the genome and a functional
characterization of such variants was not attempted in our
study. Nevertheless, including the trait-associated se-
quence variants of our meta-analysis in genomic predic-
tions may improve the reliability of genomic breeding
values for dairy traits in cattle also for breeds other than
BV, FV and HOL [46-48].

A well-characterized causal mutation (p.A232K,
rs109326954) in the DGATI gene [44, 45] was the sec-
ond top variant at a QTL on chromosome 14. In agree-
ment with previous findings [8, 44, 45], the lysine
variant was associated with higher FP and PP in FV and
HOL. However, it had conflicting effects in BV cattle. A
criterion for causality is consistency of allelic substitu-
tion effects across breeds. Strictly applying this criterion
would lead to the exclusion of the p.A232K-variant as a
plausible causal mutation. Closer inspection of the geno-
types revealed that the lysine variant had a frequency of
0.004 and 0.08, respectively, in 123 sequenced and 1646
imputed BV animals. According to previous studies, the
alanine variant is (nearly) fixed in BV cattle [45, 49],
which corroborates that the genotypes of the sequenced
reference animals are correct. Since the p.A232K was
imputed at very low accuracy (r* = 0.02), it is likely that
the conflicting allele frequencies and allelic substitution
effects resulted from flaws in the imputed genotypes. Ex-
cluding variants with low r*-values would have removed
the p.A232K variant from the BV population [50]. How-
ever, using too stringent cutoff values also carries the
risk to exclude from the data well-imputed genotypes
[50, 51]. Thus, we decided not to filter the imputed se-
quence variants based on their r>-values. We used refer-
ence populations that included animals from diverse
populations to impute sequence variant genotypes. Multi-
breed reference panels include many sequence variants
that are not polymorphic in the target population(s).
While multi-breed reference panels may enable us to
impute genotypes at high accuracy (e.g., [6, 7, 52]),
our findings also show that they may promote the
imputation of alleles that do not segregate in the tar-
get population. Our findings indicate that it might be
advisable to compile breed-specific imputation refer-
ence panels that include animals from diverse breeds
but only variants that segregate in the sequenced ani-
mals from the target breed [7, 53]. Such an approach
would likely remove from the data a significant pro-
portion of variants with flaws in the imputed genotypes
[53]. However, this approach is only applicable when
many individuals of the target breed have already been
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sequenced in order to determine which sequence variants
segregate in the population of interest.

Not all QTL identified in the meta-analysis (Table 1)
were significant in all breeds. This could be because a
QTL does not segregate in the three breeds analyzed or
because we lacked power to show that it was significant
at P < le-8 particularly if it had a low frequency [54]. At
five QTL, the top variant was not polymorphic in all
breeds and so most likely the QTL does not segregate in
those breeds. In addition, DGATI had one very rare al-
lele in BV which was likely to be imputed erroneously.
Apart from these six QTL, there is only one case where
the QTL does not have an effect in the same direction
in all breeds for the more significant trait. This suggests
that most detected QTL segregate in all three breeds
even though they were not significant in the within-
breed analysis.

The correlation between the effects of these QTL on
FP and PP is a little surprising because the pathways for
fat and protein synthesis in milk are quite different. One
reason for this correlation is a QTL that affects milk vol-
ume without an equally large change in fat or protein
yield and hence changes both PP and FP in the same dir-
ection. ABCG2 and GHR might be examples of this [35,
36]. Some QTL which have a functional role in fat syn-
thesis (DGATI1, AGPAT6, FASN) have a bigger effect on
FP than PP but still have an effect on PP except for
FASN. Conversely, CSN1SI and PAEP encode major
milk protein components yet they affect both traits in
our study. Perhaps the correlation between PP and FP is
due in part to competition for substrate between lactose
synthesis (which drives milk volume) and fat or protein
synthesis so that an increase in either fat or protein can
cause a decrease in volume as seen in the case of
DGATI [44, 45].

Conclusions

Many QTL for milk production traits segregate across cat-
tle breeds and meta-analysis of association studies across
breeds has greater power to detect such QTL than within-
breed association analyses. Sequence variants that are as-
sociated with dairy traits often reside in non-coding re-
gions of the genome. True causal variants at milk
production QTL can be readily identified in association
studies with accurately imputed sequence variant geno-
types. However, using reference panels that include ani-
mals from many breeds to impute sequence variant
genotypes for GWAS populations may also promote the
imputation of alleles that are actually not polymorphic in
the target population. Such flaws in the imputed sequence
variant genotypes can cause inconsistency of allelic substi-
tution effects of true causal mutations across breeds
thereby complicating the differentiation between true
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causal mutations and neutral sequence variants that are in
LD with them.

Additional files

Additional file 1: Figure S1. Allele frequency distribution of imputed
sequence variants. Blue, green and grey, respectively, represent the
proportion of imputed sequence variants in BV, FV and HOL for ten allele
frequency classes. (TIFF 318 kb)

Additional file 2: Table S1. Most significantly associated variants at 19
QTL. Chromosomal position (UMD3.1) and allelic substitution effect of the
alternate allele of the most significantly associated variant at six, thirteen
and twelve QTL, respectively, that were detected in BV, FV and HOL
cattle. The allelic substitution effects were divided by phenotypic
standard deviations. Coloured background indicates variants that were
top variants within a 1 Mb region. Please note that the causal mutation
in the DGATT gene (Chr14:1,802,266) is presented for the sake of
completeness although it was not the most significantly associated
variant in any breed. (XLSX 45 kb)

Additional file 3: Table S2. Sequence variants associated (P < 1e-8)
with fat percentage. Chromosomal positon (UMD3.1) and P values of
16,086 sequence variants that were significantly associated with fat
percentage in the across-breed meta-analysis. (CSV 330 kb)

Additional file 4: Table S3. Sequence variants associated (P < Te-8)
with protein percentage. Chromosomal positon (UMD3.1) and P values of
14,020 sequence variants that were significantly associated with fat
percentage in the across-breed meta-analysis. (CSV 289 kb)

Additional file 5: Table S4. Characteristics of 25 QTL in three breeds
analysed. Frequency of 25 QTL in the BV, FV and HOL cattle breeds. The
Fst value indicates the variant-specific genetic differentiation across
breeds. The P value of the top variant is given for the more significant
trait. The position refers to the UMD3.1 assembly of the bovine genome.
(XLSX 44 kb)

Additional file 6: Table S5. Association of the top variants at 25 QTL
with FP and PP in 1839 FV cows. Characteristics of the top variants at 25
QTL in a validation population of 1839 FV cows. Bold type and ‘NA’
indicates P values less than 0.05 and variants that were not polymorphic
in the FV cows, respectively. (XLSX 39 kb)
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