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Human colorectal disorders in the digestive tract are recognized by reference colonoscopy. *e current system recognizes cancer
through a three-stage system that utilizes two sets of colonoscopy data. However, identifying polyps by visualization has not been
addressed.*e proposed system is a five-stage system called ColoRectalCADx, which provides three publicly accessible datasets as
input data for cancer detection. *e three main datasets are CVC Clinic DB, Kvasir2, and Hyper Kvasir. After the image
preprocessing stages, system experiments were performed with the seven prominent convolutional neural networks (CNNs) (end-
to-end) and nine fusion CNN models to extract the spatial features. Afterwards, the end-to-end CNN and fusion features are
executed.*ese features are derived from DiscreteWavelet Transform (DWT) and Vector Support Machine (SVM) classification,
that was used to retrieve time and spatial frequency features. Experimentally, the results were obtained for five stages. For each of
the three datasets, from stage 1 to stage 3, end-to-end CNN, DenseNet-201 obtained the best testing accuracy (98%, 87%, 84%),
((98%, 97%), (87%, 87%), (84%, 84%)), ((99.03%, 99%), (88.45%, 88%), (83.61%, 84%)). For each of the three datasets, from stage 2,
CNN DaRD-22 fusion obtained the optimal test accuracy ((93%, 97%) (82%, 84%), (69%, 57%)). And for stage 4, ADaRDEV2-22
fusion achieved the best test accuracy ((95.73%, 94%), (81.20%, 81%), (72.56%, 58%)). For the input image segmentation datasets
CVC Clinc-Seg, KvasirSeg, and Hyper Kvasir, malignant polyps were identified with the UNet CNN model. Here, the loss score
datasets (CVC clinic DB was 0.7842, Kvasir2 was 0.6977, and Hyper Kvasir was 0.6910) were obtained.

1. Introduction

Health is of utmost importance for mankind. Good health
practices are essential for the survival of the human race.
However, owing to environmental pollution and personal
habits of human beings, their health is adversely affected [1].
According to statistics from various Indian health organi-
zations, 22% of patients seek medical treatment at least
thrice a year for related health problems. Carcinomas are
ranked as the most important health disorder and a haz-
ardous evil [2].

*e carcinoma affects the inner cell of the human body
and develops exponentially, damaging the entire affected
organ. Progressive growth damage to the human body can lead
to life-threatening situations. *ere are many types of carci-
nomas that affect organs [3]. Cancers that are hazardous to
human organs include breast cancer, prostate cancer, cancer of
Basel cells, skin cancer (melanoma), lung cancer, leukemia,
lymphoma, and colon cancer. *is dangerous affliction in-
vades organ tissues and causes potentially fatal conditions [4].
Furthermore, blood cells are ineffective in defending against
this malady and cannot protect organs from damage.

Hindawi
Computational Intelligence and Neuroscience
Volume 2022, Article ID 4325412, 29 pages
https://doi.org/10.1155/2022/4325412

mailto:ar9488@srmist.edu.in
https://orcid.org/0000-0002-3237-2859
https://orcid.org/0000-0002-6160-1374
https://orcid.org/0000-0002-4427-1078
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2022/4325412


Colorectal carcinoma is the most hazardous and irritable
disease of the gastrointestinal tract. *is condition can have
devastating effects on a person’s daily routine. *is disease
affects food digestion and creates severe gastric problems,
which then create critical bowel problems. *is cancer is
caused by human eating and consumption patterns. *e
disease is associated with the brain as too many psycho-
logical thoughts can also affect the human colon. Seven lakh
people are diagnosed annually with colorectal cancer, and
the morality rate is approximately 525,000 worldwide [5].
*ose suffering from severe problems, such as gastric issues,
aged 50 years and over must get themselves tested via co-
lonoscopy screening technology.

Colonoscopy is the most advanced screening technology
and is 95% acceptable. *is test method, with a number of
video graphs and frames captured, examines the entire large
intestine, which is approximately five feet long and three
inches wide. In the videos and images captured using this
technique, every inch is scanned for disease diagnosis [6].
*is screening procedure is performed by gastroenterolo-
gists, and videos are obtained and photographic images are
analyzed by radiologists. *e average acquisition time is
between 30 minutes and one hour. Early detection and rapid
diagnosis of these medical conditions provide the appro-
priate solutions for treatment [7–10].

*e videos and the photographic images obtained thus
are presented as datasets. Researchers conducting colorectal
cancer research organize data and store them on a website
for public access. *e computer-aided diagnosis system
(CADx) [11, 12] diagnoses health problems using computers
with technologies such as artificial intelligence (AI). Deep
learning (DL) is a subset of AI technology that is key in
CADx systems, with which every image is skillfully con-
sidered and the image characteristics are extracted for
further experimentation. Publicly available colonoscopy
datasets such as CVC Clinic DB, Kvasir2, and Hyper Kvasir
provide inputs for CADx [13, 14]. CADx works with the
appropriate deep learning technologies (DLTs). *e system
referenced in this article is ColoRectalCADx.

*e ColoRectalCADx system works entirely with DL
that can recognize carcinoma using an innovative archi-
tecture. For medical colonoscopy motion images, we use
CNN as a suitable network [15]. CNN works well as a
classifier and feature extractor. *is article demonstrates
how the key elements of the system elaborately interact with
CNN [16, 17].

*e main objective of this research study is as follows:

(i) Design the colorectal cancer recognition system
through a five-stage system.

(ii) *e early stage of detection is the classification of
images through a colonoscopy using seven different
CNNs.

(iii) *e next phase of the system presents nine fusion
models of the CNN and obtains the most accurate
model for cancer classification using three datasets.

(iv) In addition, end-to-end CNN and fusion models
represent transfer learning with discrete transform

wavelet (DWT) and support vector machine clas-
sification (SVM). *is classification determines the
most appropriate model for cancer recognition.

(v) To accurately identify a cancer polyp for malignant
recognition, a visualization technique such as se-
mantic segmentation using the UNet CNNmodel is
used in a later stage.

1.1. Organization of the Study. *e rest of the study is or-
ganized as follows. Section 2 provides an overall literature
review and Section 3 provides the materials and explains the
methods. Section 4 discusses the results and Section 5
concludes the study.

2. Related Work

Previously, colorectal cancer was identified using different
approaches. In these approaches, an architecture had to be
developed to build a system. *is system considered various
elements of the structure. For every structure, the docu-
mentation related to the concept must be examined. Dif-
ferent articles are reviewed on the different blocks with their
merits and demerits. *e optimal approach is coming up
with an appropriate article to identify colorectal cancer.
Table 1 represents the literature related to the addressed
concept.

3. Materials and Methods

*emain objective is to build a system to uncover colorectal
disease as carcinoma with automatic and skilled recognition
of eases.

Flow diagram: the flow diagram for the proposed Col-
oRectalCADx [28, 29] system with the explanation of each
stage is shown in Figure 1.

*e three remarkable datasets that are backed up to the
local servers are recovered, and each dataset is saved in a
particular folder as CVC Clinic DB, Kvasir2, and Hyper
Kvasir. *ese files constitute 2, 8, and 23 classes corre-
sponding to their labels. Labeled folders contain colonos-
copy images. As the recovered images are in various image
sizes, they are resized into the 224× 224 pixels size images
using the inputs for CNN experiments. *ese augmented
techniques are applied to resize images, with a zoom range of
0.4, a rotation range of 15, and a horizontal flip. Aug-
mentation enhances the image quality of the input image. In
additionally, the input images in the 2-, 8-, and 23- class
datasets are divided into training and testing datasets with a
70 : 30 ratio:

(i) In addition, the proposed automatic and effective
CADx system called ColoRectalCADx is entirely
dependent on the five stages for classifying and
discovering colorectal carcinoma polyps.

(ii) *e first stage classifies and extracts the features of
the seven end-to-end CNNs.

(iii) In the second stage, CNNs are responsible from
end to end and fusion CNNs are associated with
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Table 1: Literature survey.

Author Year Advantages Limitations

Souaidi and
Ansari [18] 2022

(i) To detect abnormalities in the polyp region of WCE
and colonoscopy localization and visualization
proposal.

(i)*ere is no discussion of the numerous CNNmodels.

(ii) Here a detector for deep polyps, such as MP-FSSD,
is suggested. (ii) Only CNN models like VGG-16 are used.

(iii) In this polyp detection work, VGG-16 backbones
are used.

(iii) OnlyWCE and CVC clinic DB dataset are reviewed
for polyp recognition.

Nisha and
Palanisamy [19] 2022

(i) We automatically detect colorectal polyps with
image enhancement.

(i) *is method is only effective for a limited number of
CNN models.

(ii) *e proposed work is the dual CNN path for
classifying polyps and nonpolyps’ patches in
colonoscopy images.

(ii) *is method is not discussed except with a CNN
model.

(iii) To enhance the image, the dual-path CNN and
sigmoid classifier is used to efficiently detect polyps.

(iii) Only two sets of colonoscopy image data were
proposed, such as CVC clinic DB and ETIS-Larib
datasets.

(iv) *e proposed method is promising, and detects
with accuracy of 99.60% and 90.81% with CVC clinic
DB and ETIS-Larib datasets, respectively.

(iv) Images in the datasets are enhanced owing to which
the accuracy of polyp detection will reduce.

(v) *e number of images is increased or live image
datasets are used, and the suggested method for its
operation is not addressed.

Guo et al. [20] 2022

(i) *e two major challenges for the segmentation of
colonoscopy image polyps are blurred boundaries and a
close resemblance between the polyps and surrounding
tissue.

(i) Here, five datasets are tested with a new UnX
methodology, so it takes a long time to obtain the
results.

(ii) *is system proposed a new transformer-based
encounter network known as the uncertainty
eXploration (UnX).

(ii) *e precision levels of the results are good, but
obtaining results is time-consuming.

(iii) With this method, the system identified the
uncertainty areas of polyps.

(iii) *e complexity of the system is increased while
comprehension of the system is much more tedious to a
layman.

(iv) *is removes the uncertain elements of the images
and emphatically recognizes the level of precision of
malignant polyps.

(iv) *ere are inconsistent color distributions in the
colonoscopy image system that displays poor results.

Yeung et al. [21] 2021

(i) *e concept here is the segmentation of polyps and
the identification of malignant polyps.

(i) With the five datasets, each image segmentation
entails considerable time to obtain the results.

(ii) *e proposed method is CNN based on double
attention for segmenting polyps using Focus-UNet.

(ii) Visualization quality may be good for certain
datasets.

(iii) *is system combines efficient attention based on
the spatial channel into a single focus gate selective deep
learning of polyp characteristics.

(iii) *e proposed focus-UNet system should have been
upgraded to a lightweight design.

(iv) Here for experimentation with the proposed
methodology, inputs are provided using five
colonoscopy datasets.

(iv) It is a complicated system.

(v) *e obtained results, such as the dice similarity
coefficient, are 0.941 and 0910.

Attallah and
Sharkas [22] 2021

(i) Proposed a system called Gastro-CADx to classify
several gastrointestinal diseases using deep learning
approaches.

(i) Two datasets named dataset I and II, which are
Kvasir and Hyper Kvasir, are used to assess the
performance of Gastro-CADx.

(ii) *ere are three phases to this system. *ese four
different CNNs are used as feature extractors to extract
spatial functionality.

(ii) However, this system has not been used on the
numerous datasets.

(iii) *e properties extracted in the first stage are
applied to the discrete wave transform (DWT) and the
discrete cosine transform (DCT), which are used to
extract temporal-frequency and spatial-frequency
features.

(iii) *e system is not even under discussion for the
semantic segmentation concept for locating and
identifying malignant polyps.
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classification using support vector machines
(SVM). SVMs are effective for large dimensions
and multiclass problems. *e kernel function
used to map the characteristic space into a new
domain that can easily discriminate between
classes of a dataset. *erefore, it is widely used
with the huge DL feature dimension, extracted
from CNN.

(iv) *e third stage is transfer learning of various end-
to-end CNNs with DWT, which is combined with
the SVM multi-class classification for extracting
temporal and spatial features.

(v) *e fourth stage is the transfer learning of the
fusion CNNs with DWT, followed by combining
with the SVM multi-class classification for
extracting temporal and spatial features.

Table 1: Continued.

Author Year Advantages Limitations

Jha et al. [23] 2021

(i) *e design is the detection, localization, and
segmentation of polyps in real-time.

(i) *e system uses more than just a single dataset for
experimentation and recognizing malignant polyps.

(ii) *is work calls for deep learning in technology. (ii) *e system provides moderate results (not highly
accurate).

(iii) *e proposed solution to retrieve polyps from
colonoscopy images developed ColonSegNet, which is a
decoder-encoder architecture.

(iii) Architecture is complex to comprehend for laymen.

(iv) detection, location, and segmentation are evaluated
using standard computer vision measures.
(v) *e system has a high processing rate of 182.38
frames per second.

Ahraf et al. [24] 2020

(i) Suggested automated classification as a new
technique for illustrating medical images using deep
learning technology.

(i) Vast data of colonoscopy images are classified with
different convolutional neural networks and the results
are achieved differently.

(ii) It helps to categorize the diverse medical images of
several organs of the body.

(ii) *e notions of interest are not addressed here and
this has to be comprehensively addressed.

(iii) It contains a summary of data and other health
image classification applications, which support
radiologists’ efforts to improve diagnosis.

Poudel et al. [25] 2020

(i) Provides a good architecture for classifying
endoscopic images using an expanded efficient
convolutional neural network.

(i) However, colorectal disorders are classified using
convolutional neural networks.

(ii) Proposed an architecture to classify endoscopic
images using an effective convolutional neural network
(CNN).

(ii) However, algorithms integrated with the various
algorithms are compared with certain parameters.

(iii) *is is a highly accessible domain of assessing
deeper layers by accumulating and reducing the
expansion factor of spatial elements.

(iii) *e results obtained are regarded as the most
accurate and best algorithm for the identification of
colorectal cancer (CRC).

(iv) *e investigator compares and evaluates the
methodology using a variety of parameters.

Zhou and Gao
[26] 2019

(i) Here we discuss how CNN technologies enable
intelligent recognition of medical motion images.

(i) However, there are no discussions on obtaining
colorectal medical images from the colonoscopy
screening images.

(ii) Now large-scale intelligent recognition of medical
motion images is assisted by CNN algorithms.

(ii) *ere is no explanation of the procedure to retrieve
and categorize and then convert to results based on
their image characteristics.

(iii) Here, the features of the dense trajectory are
initially learned followed by the features of depth, and
the dense path functions are merged into the DL
methods.

(iii) *e techniques involved are time-consuming and
require extensive computer statistics.

(iv) Finally, extreme learning is functional in CNN
where the descriptions of the bottom layer to the top
layer are determined for medical image recognition

Yang et al. [27] 2019

(i) Proposed a health-based device for categorizing and
segmenting CT images for lung disease and
hemorrhagic stroke, termed HTSCS for Health Images.

(i) *is technique provides an advanced method of
categorization and segmentation using art.

(ii) Internet Health of-*ings (IHoT) uses transferable
model learning, based on deep learning concepts with
traditional methodologies for the best precision for
medical image classification and segmentation

(ii) *is Internet of medical *ings has worked with
various IoT devices with the connection of computed
tomography devices.
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(vi) At each stage, performance parameters such as
accuracy are recovered and compared with other
parameters, and the best model for the ColoR-
ectalCADx system is found.

(vii) *e fifth stage is the most efficient technique for
semantic segmentation of input images and in-
volves identifying the exact malignant polyp with
the UNet CNN model [30].

*e CADx is designated as ColoRectalCADx, which is
developed for carcinoma recognition block diagram, as il-
lustrated in Figure 2, and the detailed explanation as follows
in a step-by-step manner.

3.1. Colonoscopy. People with gastrointestinal problems are
referred by a gastroenterologist, who may suggest the co-
lonoscopy procedure to diagnose the disease. Colonoscopy is
the procedure of screening the entire large intestine under
local anesthesia administered to the patient. *e procedure
inserts the illuminated colonoscope equipped with the front-
end camera into the large intestine through the rectum. It
takes videography and photographs at various positions
throughout the large colon and a certain area of the small
colon [31].*is procedure takes about an hour.*e obtained
videos and the photographic images are analyzed and saved
on local servers.

3.2. Dataset. *ere are input datasets to support deep
learning studies. *is study uses publicly accessible datasets.
*e ColoRectalCADx system uses three datasets labeled as
CVC-Clinic DB, Kvasir2, and Hyper Kvasir labeled.

*e CVC Clinic DB dataset included 2 classes such as
labeled polyps and nonpolyp [32]. *e sample images of the
CVC Clinic DB dataset are shown in Figure 3.

*e Kvasir2 dataset includes eight labeled classes, labeled
as Dyed-Lifted Polyps, Dyed-Resection Margins, Esoph-
agitis, Normal-cecum, Normal-cecum, Normal-z-line,
Polyps, and Ulcerative Colitis [33, 34]. *e sample images of
the Kvasir2 dataset are shown in Figure 4.

*eHyper Kvasir Labeled dataset includes as lowerGI tract
and upper GI tract and these two classes of datasets are further
classified and labeled as 23 classes named as barrettes, barrettes-
short-segment bbps-0-1, bbps-2-3, cecum, dyed-lifted-polyps,
esophagitis-a, esophagitis-b-d, hemorrhoids, esophagitis-a, il-
eum, impacted-stool, polyps, pylorus, retroflex-rectum, ret-
roflex-stomach, ulcerative-colitis-grade-0-1, ulcerative-colitis-
grade-1, ulcerative-colitis-grade-1-2, ulcerative-colitis-grade-2,
ulcerative-colitis-grade-2-3, ulcerative-colitis-grade-3, z-line
[35, 36]. *e sample images of the Hyper Kvasir dataset are
shown in Figure 5.

Each labeled class has different number of images of
different sizes. *e various image sizes are scaled to
224× 224 pixels. *is image size is provided as input to the
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Figure 1: *e flow diagram of the colorectalCADx system.
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next stage of the CNN experimental procedures. *e dataset
is divided into training and testing with the 70 : 30 ratio.

3.3. Convolutional Neural Networks. CNNs are used to solve
classification problems in healthcare computing. *ey play a
key role as the main element of the ColoRectalCADx system.
*is system works entirely with CNN, whose Figure 6depicts
input data images, convolution, pooling, activation, drop-
out, and fully connected layers [37–40]. *is system

elaborately works with seven different pretrained CNNs as
end-to-end CNNs. *ey are AlexNet, DarkNet-19, ResNet-
50V2, DenseNet-201, EfficientNetB7, VGG-16, and VGG-
19. In addition to these end-to-end CNNs, the fusion of these
end-to-end CNNs is being considered for further experi-
mentation. Every fusion CNN is worked as the one specified
model [41–45]. Here nine fusion models are presented in
Table 2 with their suggested new names.

Each CNN fusion model combines end-to-end CNN
models [46], and the combination is used for later
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Figure 2: Proposed colorectalCADx block diagram.
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experiments involving training and testing. Short names are
suggested for each fusion pattern for significant compre-
hension, and these names are used throughout the article.
*e CNN used for the classification of the input image
datasets is illustrated in Figure 6. CNN input is taken as
input image datasets; these are CVC Clinic DB, Kvasir2, and
Hyper Kvasir images. *ese images are applied to the
convolution layer to retrieve the features of the images.
Furthermore, the image features obtained from the previous
layer are sent to the maximum pooling layer to filter the
image values. Inthe fully connected neural network. Lastly,
the final layer is the SoftMax layer to classify the multi-class
classification in order to distinguish the classes in the input
images. It is possible to find whether the input image is polyp
or nonpolyp.

Each end-to-end and fusionmodel has a specific advantage
in the classification of the input medical colonoscopy motion
images. *is DL technique is advantageous for recognizing
colorectal carcinomas. *is provides the key perceptional view
to identify the diseases effectively and efficiently. A recent study
has found that CNNs can be far deeper, more precise, and
efficient for learning where smaller connections are made
between the layers near the input and those adjacent to the
output.*e number of total parameters for the end-to-end and
proposed fusionCNNs and the number of trainable parameters
are presented in Table 3.

*e experimental activity with the proposed ColoR-
ectalCADx system involved the system with the oldest and
most efficient CNN model AlexNet to the latest

EfficientNetB7 model, and experiments that involved fewer
layers to the highest number of layers.

All experiments on end-to-end and dichotomous fusion
CNNs applied transfer learning for further exploration to
extract features. *e CNN features map the captured results
by applying filters to a dataset input image. In transfer
learning, one of the network layers is transferred and
replaced with other. Transfer learning implies using the
pertinent parts of a predetermined machine learning (ML)
model and applying it to a new problem. For the model to
work, new aspects are added to solve a specific task. With the
transfer of a layer, CNN performance changes in the form of
classification results. *e main evidence of the transfer of
learning is a model formed on one dataset and transferring
one’s knowledge to another [57–60]. To recognize objects
with a CNN, the primary convolutional layers of the network
are restricted, forming only the last layers that make a
prediction.

3.4. Discrete Wavelet Transform (DWT). *e DWT is a
discretely transformed wavelet [61, 62]. *e wavelet trans-
form breaks down a function into wavelets. A wavelet is a
wave oscillation that is localized through time. Its properties
include scale and location. *e scale sets the wavelet “fre-
quency” and the location sets the wavelet “time.” Frequency
is inversely proportional to time. Scale is represented in
squished and stretched format. *e wavelets distinguish
themselves as continuous and discrete. *e formula for the
discrete wavelet transform is as follows:

Table 2: Fusion models and their suggested names.

Fusion model Suggested name
AlexNet +DarkNet-19 +ResNet-50v2 +DenseNet-201 + Efficientnet-B7 +VGG-16 +VGG-19 ADaRDEV2-22
ResNet-50v2 +DensNet-201 + EfficientNet-B7 +VGG-16 +VGG19 RDEV2-22
AlexNet +DarkNet-19 +DenseNet-201 +ResNet-50V2 ADaDR-22
AlexNet +DarkNet-19 +ResNet-50V2 ADaR-22
DarkNet-19 +ResNet-50V2 +DenseNet-201 DaRD-22
AlexNet +DarkNet-19 ADa-22
ResNet-50V2 +DenseNet-20 RD-22
AlexNet +DenseNet-201 AD-22
DarkNet-19 +ResNet-50V2 DaR-22

Convolution +
Nonlinearity

Convolution + Pooling Layers Fully Connected Layers Nx Binary Classification

Pnon polyps

PpolypsPolyps

Non
Polyps

Max Pooling Vec

***

Figure 6: CNN architecture.
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T (m, n) � 
∞

−∞
x(t)φm,n(t)dt, (1)

where Tm,n is the time function of the DWT and x (t) is the
time period.

Discrete wavelet transforms can retrieve local spectral and
temporal information simultaneously. Functionally, DWTs
are represented with different kinds of characteristic forms of
access and depend on the application. *e characteristic
functional forms are depicted and shown in Figure 7. *e
figure depicts the Discrete Wavelet Transform (DWT) family.
*e DWT family is classified as Haar, Daubechies, Coeflet,
and Discrete Meyer. Haar is the easiest and the squarest
waved. Daubéhies wavelets are continuous and asymmetric
waveforms. Coeflet is a symmetric waveform. Discrete Meyer
wavelets are continuous and symmetric. In all of the
abovementioned forms for our experimentation, the square
wave “haar” was used to extract the features.

*e ColoRectalCADx system works with each CNN
from end to end, while fusion is transfer learning with DWT.
Minimizing features is an important procedure in input
image datasets for medical colonoscopy. It is the essential
stage for the transfer learning process to reduce features.
DWTis applied in the retrieval of spatial and temporal image
features from input images. *is application concept
removes the Max Pool layer from the CNN and replaces it
with DWT. *is can concatenate all the different DWT
outputs CA (approximation coefficient vector) and CD
(detail coefficient vector), and they are depicted as low-pass
and high-pass wavelet signals and combined into one
channel. Continuous input image signals are considered,
and the system transfers the CNN layers into the DWTs and
finds the best precision from all CNN models. *en, the
DWT “haar” family is considered for the CNN training.
Furthermore, the output of the DWT is applied to the SVM
for the multi-class classification process.

3.5. Support Vector Machines (SVMs). SVM is an algorithm
in ML under supervised learning used for classification,
regression, and selection of outliers. *is algorithm creates

the hyperplane that separates the data into various classes. It
selects a hyperplane with the maximum possible boundary
between media vectors within the given dataset. *e SVM
recovers the maximum marginal hyperplane. It further
generates hyperplanes for enhanced class isolation. It works
on binary classification and multiclass classification [63–65].

In the ColoRectalCADx system, the CNN must convert
to SVM. Inside a parameter named kernel_regularizer, the l2
standard is used, and the linear function is passed as the
activation function in the final output layer. For multi-class
classification, we should use SoftMax as an activation
function for SVM [66–68]. *e application of the loss is the
“squared hinge” for the multiclass classification. *erefore,
the last layers of the CNN are responsible for the changes;
the linear SVM is represented, and the final accuracies of all
the CNN from end-to-end and fusion are obtained.

3.6. Semantic Segmentation. In the semantic segmentation of
an image, each pixel of an item belongs to the special class to
which the same label is assigned. *is task categorizes each
pixel into an image with preset classes. Semantic segmentation
depends on the mask concept, including edge detection. It
brings together parts of the image belonging to the same class.

*e ColoRectalCADx system integrates the UNet ar-
chitecture with data scaling and patch extraction with the
three Clinic-Seg, KvasirSeg, and Hyper Kvasir colonoscopy
datasets to extract malignant polyps.*is system can achieve
an overall high accuracy for polyp detection, suggesting the
importance of using UNet CNN structure with the necessary
hyperparameters.

In the proposed ColoRectalCADx system, U-net is used
to segment medical colonoscopy motion images [69]. *e
UNet structure for semantic segmentation is shown in
Figure 8. Its structure may be widely assumed to be a tail
encoder network by a decoder network. Semantic seg-
mentation is the outcome of this network:

(i) *e encoder is the beginning of the framework.
Typically, it is a pretrained classification network
[70]; it applies convolution blocks trailed by a

Table 3: *e number of parameters of CNNs.

CNN architecture models Introduced year Total params Trainable params Nontrainable params Layers
AlexNet [47, 48] 2012 2,81,02,775 2,80,81,639 21,136 23
DarkNet-19 [49] 2017 1,60,45,847 1,60,32,983 12,864 19
ResNet-50v2 [50, 51] 2016 2,59,33,975 23,69,175 2,35,64,800 50
DenseNet-201 [52, 53] 2018 1,94,29,463 11,07,479 1,83,21,984 201
Efficientnet-B7 [54] 2019 6,55,73,799 14,76,119 6,40,97,680 813
VGG-16 [55] 2014 1,53,14,391 5,99,703 1,47,14,688 16
VGG-19 [56] 2014 2,06,24,087 5,99,703 2,00,24,384 13

Proposed fusion models

ADaRDEV2-22

2022

19,10,28,063 7,02,94,911 12,07,33,152
RDEV2-22 14,68,78,383 2,61,79,231 12,06,99,152
ADaDR-22 8,94,87,664 4,75,66,880 4,19,20,784
ADaR-22 2,59,33,000 23,68,200 2,35,64,800
DaRD-22 6,13,99,840 1,95,00,192 4,18,99,648
ADa-22 4,41,26,048 4,40,92,048 34,000
RD-22 4,53,61,624 34,74,840 4,18,86,784
AD-22 4,75,16,384 2,91,73,264 1,83,43,120
DaR-22 4,19,67,694 1,83,90,030 2,35,77,664
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pooling, which is max pooling, and down samples to
encode the input colonoscopy medical motion im-
ages into feature depictions at multiple different
levels.

(ii) *e decoder is the latter end of the frame. It se-
mantically projects the discriminatory characteris-
tics (lower resolution) learned by the encoder on the
pixel space, resulting in higher image pixels to obtain

db 4 db 16

coif 1

sym 8

bior 3.1

haar

sym 4

bior 1.3

Figure 7: Families belonging to the DWT.
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Figure 8: Semantic segmentation using UNet.
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a solid classification. *e decoder involves up
sampling and concatenating followed by coherent
convolution processes.

Up sampling in CNN is used for classification and object
detection architecture, to reinstate the reduced feature map
to the actual original size of the medical colonoscopy motion
images, and consequently increase the feature dimensions.
Up sampling is also discussed for transposed convolution,
up convolution, or deconvolution.

*e results of the investigation using the proposed
ColoRectalCADx system thus far are presented herein. All
experiments are conducted with the system hardware
specifications and the software used for the work is pre-
sented in Table 4.

In the proposed ColoRectalCaDx system, datasets are an
essential component. *e datasets used are CVC Clinic DB,
Kvasir, and Hyper Kvasir, and the datasets are depicted with
2, 8, and 23 classes, respectively. Each class stores medical
colonoscopy motion images, which are accessible for CNN
training. Details of the datasets and hyperparameters are
presented in Table 5.

For all datasets, experimental research with end-to-end
and fusion CNNs are also tested with transfer learning by
DWT, followed by SVMs. For experiments with adjusted
hyperparameters, the specific hyperparameters for the entire
ColoRectalCADx system are provided in Table 6.

4. Results

*e ColoRectalCADx system comprises five stages. In each
stage, several experiments are conducted for the recognition
of colorectal carcinoma. *e experimental results for all
stages are presented in the following sections.

4.1. Stage 1: Experimentation of End-to-EndCNNs. In stage 1,
all the experiments are conducted for the seven end-to-end
CNNmodels—AlexNet, DarkNet-19, ResNet50V2, DenseNet-
201, EfficientNetB7, VGG-16, and VGG-19. All CNN models
were trained with the CVC Clinic DB, Kvasir2, and Hyper
Kvasir datasets. *e experimental results are presented in
Tables 7–9.*e illustration of the results for all CNNmodels is
presented using graphs and is shown in Figures 9–11.

According to the CVC clinic DB dataset results among
all the seven CNN models, the DenseNet-201 achieved the
highest accuracy of 98%.

According to the Kvasir 2 dataset results, the DenseNet-
201 outperformed the six other CNN models with an ac-
curacy of 87%.

According to the Hyper Kvasir dataset results, the
DenseNet-201 outperformed the six other CNNmodels with
an accuracy of 84%. Based on all datasets tested in stage 1,
the DenseNet-201 CNN model showed the highest accuracy
among all seven CNNs.

4.2. Stage 2: Experimentation of End-to-EndCNNs andFusion
of CNNs with SVM. In stage two, experiments were per-
formed with the seven end-to-end CNNs and nine fusion

CNNs for all three datasets. Here, additionally, seven end-to-
end CNNs and nine fusion CNNs were combined with the
linear SVM classification. All experiment results are pre-
sented in Tables 10–15. *e illustration of the second stage
experimentation results is also presented in the graphs as
shown in Figures 12–17.

According to the CVC Clinic DB dataset results among
all the seven CNN models, the DenseNet-201 achieved the
highest training, testing, SVM training, and SVM testing,
and area under curve (AUC) results were 97.7%, 98.0%,
95.64%, 97.0%, and 98.06%, respectively.

According to the CVC Clinic DB dataset results, among
all the nine fusion CNNmodels, the ADaDR-22 CNN fusion
model achieved the highest training, testing, SVM training,
and SVM testing, and the AUC results were 92.5%, 93.0%,
95.3%, 97.0%, and 93.22%, respectively.

In DenseNet-201, the nonpolyps class demonstrated lower
performance with the support of 257 images, while the polyps
class demonstrated 96% accuracy with 259 images. In the
ADaDR-22 CNN fusion model, the nonpolyps class demon-
strated lower performance with the support of 257 images, while
the polyps class demonstrated 100% accuracy with 259 images.

According to the Kvasir 2 dataset results, among all the
seven CNN models, the DenseNet-201 model achieved the
highest training, testing, SVM training, and SVM testing,
and AUC results with 82.2%, 87.0%, 78.89%, 87.0%, and
98.95%, respectively.

According to the Kvasir 2 dataset results among all the
seven CNN models, the DaRD-22 CNN fusion model
achieved the highest training, testing, SVM training, and
SVM testing, and Area under the curve (AUC) with 81.6%,
82.0%, 78.39%, 84.0%, and 97.91%, respectively.

In DenseNet-201, some classes demonstrate lower per-
formance accuracy with 300 images and normal-cecum
polyps, and ulcerative-colitis class demonstrates equal and
>90% accuracy with 300 images. In the DaRD-22 CNN
fusion model, some classes demonstrate lower performance
accuracy with 300 images, and normal-cecum, normal-py-
lorus, ulcerative-colitis classes demonstrate equal and >90%
accuracy with 300 images.

In the Hyper Kvasir dataset, the DenseNet-201 model
has the best training, testing, SVM training, and SVM
Testing, and AUC results of 77.1, 84.0, 75.9, 84.0, and
94.48%, respectively.

In the Hyper Kvasir dataset, the DaRD-22 CNN fusion
model achieved the highest training, testing, SVM training,
and SVM testing, and AUC results of 69.4, 69.0, 64.6, 57.0,
and 80.7%, respectively.

Table 4: System specifications.

System Precision tower T5810
Company Dell
Processor Intel® Xeon® CPU core i7 E5-2630
Speed 2.20GHz
RAM 32GB
GPU GPU NVIDIA Xp.
Software environment Google Colab Pro with python 3.7.12
Software Python packages Keras and TensorFlow 2.7.0

Computational Intelligence and Neuroscience 11



In theHyper Kvasir dataset, the CNNDenseNet-201model
demonstrated no (zero) performance for some classes with
fewer images. *e classes bbps-0-1, bbps-2-3, cecum, pylorus,
retroflex-stomach, and ulcerative-colitis-grade-3 demonstrated
equal and >90% accuracy with 194,345,303,300,230 and 40
images, respectively. In Hyper Kvasir dataset, the DaRD-22
CNN fusion model shows no (zero) performance for some
classes with fewer images. *e classes polyps, pylorus, and
retroflex-stomach demonstrated equal and>90% accuracywith
309,300, and 230 images, respectively.

4.3. Stage3:ExperimentationofEnd-to-EndCNN+DWT+SVM.
Stage three experiments involved seven end-to-end CNNs
and nine fusion CNNs for all three datasets. Here transfer
learning was applied to all seven end-to-end CNNs with
DWT combined with the linear SVM classification. All
experiment results are presented in Tables 16–18. *e il-
lustration of the second stage experimentation results is also
presented in the graphs as shown in Figures 18–20.

According to the CVC Clinic dataset, the DenseNet-201
model achieved the highest accuracy for DWT-training,
DWT-testing, DWT-SVM training, and DWT-SVM testing,
and the DWT-Area under curve (AUC) results were 97.33,
99.03, 95.37, 99.0, and 99.03%, respectively.

According to the Kvasir 2 dataset, the DenseNet-201
model achieved the highest accuracy for DWT-training,
DWT-testing, DWT-SVM training, and DWT-SVM testing,
and the DWT-Area under curve (AUC) results were 81.01,
88.45, 80.53, 88.00, and 99.04%, respectively.

According to the Hyper Kvasir dataset, the DenseNet-
201 model achieved the highest accuracy for DWT-training,
DWT-testing, DWT-SVM training, and DWT-SVM testing,
and the DWT-Area under curve (AUC) results were 77.71,
83.61, 78.17, 84.00, and 93.39%, respectively.

4.4. Stage 4: Experimentation of Fusion CNNs +DWT+SVM.
Stage four experiment involved nine fusion CNNs for all
three datasets. Here transfer learning was applied to all seven
fusion CNNs with DWT using a combination of the linear
SVM classification. *e results of all the experimentations
are presented in Tables 19–21. *e illustration of the second
stage experimentation results is also presented in graphs, as
shown in Figures 21–23.

According to the CVC Clinic DB dataset, the DaRD-22
model achieved the highest DWT-training, DWT-testing,
DWT-SVM training, and DWT-SVM testing, and the
DWT-Area under curve (AUC) results were 95.46, 96.70,
93.86, 96.00, and 96.70%, respectively.

According to the Kvasir dataset, the DaRD-22 model
achieved the highest DWT-training, DWT-testing, DWT-
SVM training, and DWT-SVM testing, and the DWT-Area
under curve (AUC) results were 78.52, 80.37, 77.01, 82.00,
and 97.81%, respectively.

Table 5: Training and testing split of three datasets.

Datasets Training set Validation set Test sets Total images
CVC-clinic DB [32] 900 102 516 1518
Kvasir2 [33, 34]. 5120 480 2400 8000
Hyper Kvasir Labeled [35, 36]. 7470 634 2577 10681

Table 6: Hyperparameters for colorectalCADx system.

Dataset Epochs Batch sizes Learning rate Optimizer Momentum Dropout
CVC clinic DB 10 16 0.0001 sgd 0.9 0.5
Kvasir2 10 64 0.0001 sgd 0.9 0.5
Hyper Kvasir labeled 10 64 0.0001 sgd 0.9 0.5

Table 7: End-to-end CNN for CVC clinic DB.

End-to-end CNNs Accuracy in %
AlexNet 73.00
DarkNet-19 68.00
ResNet-50v2 89.00
DenseNet-201 98.00
Efficientnet-B7 91.00
VGG-16 83.00
VGG-19 86.00

Table 8: End-to-end CNN for Kvasir 2.

End-to-end CNNs Accuracy in %
AlexNet 74.00
DarkNet-19 32.00
ResNet-50v2 83.00
DenseNet-201 87.00
Efficientnet-B7 77.00
VGG-16 74.00
VGG-19 67.00

Table 9: End-to-end CNN for hyper kvasir.

End-to-end CNNs Accuracy in %
AlexNet 71.00
DarkNet-19 43.00
ResNet-50v2 78.00
DenseNet-201 84.00
Efficientnet-B7 75.00
VGG-16 75.00
VGG-19 65.00
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According to the Hyper Kvasir dataset, the ADaRDEV2-
22 model achieved the highest DWT-training, DWT-testing,
DWT-SVM training, and DWT-SVM testing, and the
DWT-Area under curve (AUC) results were 69.54, 72.56,
70.44, 58.00, and 82.30%, respectively.

*e results of the entire ColoRectalCADx system were
compared with the three-stage GastroCADx proposed in 2021.
Results for all three datasets are shown in Table 22. In Gas-
troCADx, the systemwas compared with the four models from
end-to-end CNN; however, in ColoRectalCADx, it was
compared with seven models from end-to-end CNN. Gas-
troCADx demonstrated that the ResNet-50 was the most
suitable model, and for the ColoRectalCADx system,

DenseNet-201 was the best model. By comparison, the two
systems were almost identical, but the two differed in task
behavior. Different system models such as Ensemble Classifier,
DP-CNN, and MP-FSSD are discussed starting in 2021 and
2022 and compared with ColoRectalCADx. *is proposed
system obtained precisions of 98%, 88%, and 84%, respectively.

According to the classification results of the CVC Clinic
DB, Kvasir2, and Hyper Kvasir datasets, the best accuracies
were obtained with the DenseNet-201 for end-to-end CNNs.
*e CNN DaRD-22 and ADaRDEV2-22 fusion models were
the most appropriate models for this proposed colorectal
cancer identification system. *e information accordingly
provided with TP (True Positive), TN (True Negative), FP

END-TO-END CNNS (KVASIR2 DATASET)

AlexNet
DarkNet-19

74
.0

0%

32
.0

0%

83
.0

0%

87
.0

0%

77
.0

0%

74
.0

0%

67
.0

0%

ResNet-50v2

DenseNet-201
EfficientNet-B7

ACCURACY

VGG-16

VGG-19
Linear (DenseNet-201)

Figure 10: End-to-end CNN for Kvasir 2 graphical results.
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(False Positive), and FN (False Negative).*e corresponding
confusion matrices were formed based on the classes de-
scribed for each dataset. CVC Clinic DB constituted 2
classes, Kvasir2 comprised 8 classes, and Hyper Kvasir
comprised 23 classes. An n× n matrix summarizes the
success of the predictions of a classification model, i.e., the
correlation between the label and the classification of the
model. A matrix formed as a confusion matrix indicates that

every row is a real/true class and every column is a predicted/
estimated class. *e actual values were compared against the
planned values. *erefore, for the right-hand side models,
many elements are expected along the diagonal. Here, the
confusion matrix was normalized, so the value of 1 was
accepted as the highest value along the diagonal. Our model
depicts that all the classes possess values near 1 along the
diagonal. Using the high-performance CNNs with the

Table 10: Comparison accuracies of the end-to-end and fusion CNNs of CVC clinic DB dataset.

Accuracy in % (training) Accuracy in % (testing) SVM in % (training) SVM in % (testing) AUC in %
End-to-end CNNs
AlexNet 74.64 73.00 57.83 59.00 73.40
DarkNet-19 81.61 68.00 78.65 78.00 68.38
ResNet-50v2 88.61 89.00 92.53 89.00 89.18
DenseNet-201 97.78 98.00 95.64 97.00 98.06
Efficientnet-B7 83.36 91.00 73.40 84.00 90.52
VGG-16 82.38 83.00 85.59 88.00 82.73
VGG-19 80.87 86.00 80.60 84.00 85.88
Fusion CNNs
ADaRDEV2-22 94.9 95.0 95.0 97.0 94.56
RDEV2-22 90.1 95.0 69.2 95.0 94.97
ADaDR-22 92.5 93.0 95.3 97.0 93.22
ADaR-22 77.1 79.0 79.9 79.0 78.64
DaRD-22 88.8 92.0 89.4 92.0 91.65
ADa-22 77.4 82.0 75.9 64.0 82.18
RD-22 96.1 97.0 94.2 96.0 96.51
AD-22 50.1 50.0 68.7 54.0 50.00
DaR-22 81.9 85.0 86.2 78.0 85.46

Table 11: Comparison of precision and support of CVC clinic DB classes.

Classes
High performed CNN models

DenseNet-201 ADaDR-22 SupportPrecision Precision
Nonpolyps 0.97 0.91 257
Polyps 1 0.96 259

Table 12: *e comparison accuracies of the end-to-end and fusion CNNs of Kvasir 2 dataset.

Accuracy in % (training) Accuracy in % (testing) SVM in % (training) SVM in % (testing) AUC in %
End-to-end CNNs
AlexNet 71.54 74.00 36.02 31.00 96.89
DarkNet-19 73.00 32.00 77.11 43.00 87.58
ResNet-50v2 67.95 83.00 62.52 84.00 98.03
DenseNet-201 82.20 87.00 78.89 87.00 98.95
Efficientnet-B7 62.14 77.00 54.16 68.00 97.16
VGG-16 54.29 74.00 69.66 77.00 96.79
VGG-19 51.04 67.00 62.52 72.00 95.68
Fusion CNNs
ADaRDEV2-22 82.04 83.00 80.46 85.00 98.52
RDEV2-22 68.04 76.00 74.75 81.00 97.32
ADaDR-22 80.79 74.00 76.84 80.00 97.31
ADaR-22 71.54 68.00 69.29 75.00 93.82
DaRD-22 81.64 82.00 78.39 84.00 97.91
ADa-22 57.79 60.00 53.92 48.00 93.52
RD-22 64.95 66.00 67.70 75.00 94.75
AD-22 66.23 50.00 63.75 64.00 87.21
DaR-22 62.54 70.00 65.11 60.00 94.95
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particular dataset, it was observed that the confusion ma-
trices with values near 1 have the best-classified classes. *e
high-performance CNN confusion matrices corresponding
to the greatest accuracies for the classes are presented in
Figure 24.

To estimate algorithm recognition performance, the
algorithms with other medical motion colonoscopies image
datasets were compared with CNN algorithms. *e medical
motion image recognition ratio results and the ROC curves
of the different CNN algorithms obtained the best accuracies
with the DenseNet-201 for end-to-end CNNs and fusion
CNN’s DarD-22 for the first two datasets and the Hyper
Kvasir dataset ADaRDEV2-22 provided the highest accu-
racy. *e ROC curves are presented and illustrated in
Figure 14. *ese recognition rate curves, within this multi-
class classification of the system, can be obtained at different
accuracy levels. Based on the accuracies of the CNN and the
ROC of the image classes, the accuracy class is represented
and the class with the best accuracy is determined and
presented in the graphs. *ese graphs are drawn against the
TP (True Positive) rate and the FP (False Positive) rate.

Here, the CVC Clinic DB dataset, DenseNet-201 and the
DaRD-22, presented approximately 99% to 100% accuracy

of the two classes. Furthermore, in the Kvasir dataset,
DenseNet-201 presented 99% to 100% accuracy and the
DarD-22 approximately 97% to 100% accuracy given for
eight classes. *e Hyper Kvasir labeled dataset as DenseNet-
201 presented 55% to 100% accuracy, and ADaRDEV2-22
presented approximately 23% to 100% accuracy given for 23
classes. In this integrated CNN, the four classes, which were
misclassified, presented extremely inferior outputs.

*e corresponding ROC curves for the three datasets are
illustrated in Figure 25.

4.5. Stage 5: Semantic Segmentation Using UNet. *is is the
final stage of the ColoRectalCADx system for identifying and
recognizing the real polyps, which are malignant, with the
three types of the datasets: CVC Clinc-Seg, KvasirSeg, and
Hyper Kvasir segmentation. *e three datasets provide
inputs to the ColoRectalCADx system, one after another,
which is incorporated with the UNet CNN structure. *e
UNet works as the CNNwith an encode-decoder network. A
learning rate of 0.001 is provided, the batch size of the images
is 64, and the number of epochs is 40. *e resultant training
and testing losses are presented in Table 23.

Table 13: Comparison of precision and support of Kvasir 2 classes.

Classes
High performed CNN model

DenseNet-201 DaRD-22 SupportPrecision Precision
Dyed-lifted-polyps 0.78 0.81 300
Dyed-resection-margins 0.87 0.82 300
Esophagitis 0.79 0.73 300
Normal-cecum 0.97 0.92 300
Normal-pylorus 0.91 0.95 300
Normal-z-line 0.78 0.72 300
Polyps 0.9 0.76 300
Ulcerative-colitis 0.93 0.92 300

Table 14: Comparing accuracies of the end-to-end and fusion CNNs of Hyper Kvasir dataset.

Accuracy in % (training) Accuracy in % (testing) SVM in % (training) SVM in % (testing) AUC in %
End-to-end CNNs
AlexNet 71.74 71.00 10.75 11.00 96.70
DarkNet-19 75.56 43.00 77.93 60.00 87.05
ResNet-50v2 61.30 78.00 71.06 78.00 94.81
DenseNet-201 77.12 84.00 75.94 84.00 94.48
Efficientnet-B7 58.29 75.00 53.76 70.00 94.05
VGG-16 54.48 68.00 70.41 75.00 93.73
VGG-19 49.97 65.00 63.29 70.00 91.60
Fusion CNNs
ADaRDEV2-22 69.2 68.0 67.8 63.0 83.0
RDEV2-22 56.8 60.0 64.8 69.0 80.8
ADaDR-22 55.6 51.0 59.1 62.0 80.1
ADaR-22 61.8 55.0 62.5 63.0 80.2
DaRD-22 69.4 69.0 64.6 57.0 80.7
ADa-22 57.5 36.0 48.3 36.0 75.5
RD-22 54.6 57.0 56.1 61.0 78.2
AD-22 63.8 62.0 62.5 65.0 77.4
DaR-22 62.7 60.0 57.5 54.0 82.1
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FUSION CNNS (CVC CLINIC DB-2ND STAGE)
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Figure 13: Comparing accuracies of fusion CNNs with CVC clinic DB dataset.

Table 15: Comparison of precision and support of Hyper Kvasir classes.

Classes
High performed CNN models

DenseNet-201 DaRD-22 SupportPrecision Precision
Barretts 0 0 13
Barretts-short-segment 0 0 16
Bbps-0-1 0.93 0.87 194
Bbps-2-3 0.96 0.87 345
Cecum 0.9 0.51 303
Dyed-lifted-polyps 0.81 0.21 301
Dyed-resection-margins 0.81 0.48 297
Esophagitis-a 0.46 0 121
Esophagitis-b-d 0.63 0 78
Hemorrhoids 0 0 6
Ileum 0 0 3
Impacted-stool 0.85 0 40
Polyps 0.82 0.93 309
Pylorus 0.94 0.91 300
Retroflex-rectum 0.89 0.86 117
Retroflex-stomach 0.99 0.99 230
Ulcerative-colitis-grade-0-1 0 0 11
Ulcerative-colitis-grade-1 0.5 0 61
Ulcerative-colitis-grade-1-2 0 0 4
Ulcerative-colitis-grade-2 0.54 0.69 133
Ulcerative-colitis-grade-2-3 0 0 9
Ulcerative-colitis-grade-3 1 0 40
z-line 0.69 0.53 280
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Figure 12: Comparing accuracies of end-to-end CNNs with CVC clinic DB dataset.
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For each of the three datasets, the original images with
the corresponding image masks of the malignant polyps are
recognized accurately with training losses. *e final pre-
dicted polyp obtained from the ColoRectalCADx system is
shown in Figure 26.

*e system accurately and efficiently identified malig-
nant polyps among all the input datasets with different
polyps. *e predicted polyp is the actual recognition of the
malignant polyps.*e corresponding loss and epochs graphs
are shown in Figure 27.
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Figure 14: Comparing accuracies of end-to-end CNNs with Kvasir 2 dataset.
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Figure 15: Comparing accuracies of fusion CNNs with Kvasir 2 dataset.
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Figure 16: Comparing accuracies of end-to-end CNNs with Kvasir 2 dataset.
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Figure 17: Comparing accuracies of fusion CNNs with Kvasir 2 dataset.

Table 16: Comparison accuracies of the end-to-end of CVC clinic DB dataset.

DWT
End-to-end CNN Accuracy in % (training) Accuracy in % (testing) SVM in % (training) SVM in % (testing) AUC in %
AlexNet 77.67 52.13 70.64 68.00 51.94
DarkNet-19 85.23 86.04 83.27 77.00 86.05
ResNet-50v2 90.39 96.13 90.48 95.00 96.32
DenseNet-201 97.33 99.03 95.37 99.00 99.03
Efficientnet-B7 84.34 90.69 71.80 71.00 90.68
VGG-16 80.69 82.36 84.88 86.00 82.33
VGG-19 78.65 86.43 80.78 88.00 86.44

Table 17: Comparison accuracies of the end-to-end Kvasir 2 dataset.

DWT
End-to-end CNN Accuracy in % (training) Accuracy in % (testing) SVM in % (training) SVM in % (testing) AUC in %
AlexNet 69.72 47.50 45.44 36.00 92.92
DarkNet-19 74.26 65.66 74.15 57.00 96.10
ResNet-50v2 66.12 83.20 74.15 83.00 98.09
DenseNet-201 81.01 88.45 80.53 88.00 99.04
Efficientnet-B7 61.67 78.45 54.16 70.00 97.36
VGG-16 57.24 73.87 71.32 78.00 96.63
VGG-19 50.11 69.00 63.83 77.00 95.79

Table 18: Comparison accuracies of the end-to-end of Hyper Kvasir dataset.

DWT
End-to-end CNN Accuracy in % (training) Accuracy in % (testing) SVM in % (training) SVM in % (testing) AUC in %
AlexNet 74.62 58.54 10.75 11.00 95.61
DarkNet-19 76.32 50.70 78.15 51.00 93.72
ResNet-50v2 62.84 79.32 72.84 79.00 94.94
DenseNet-201 77.71 83.61 78.17 84.00 93.39
Efficientnet-B7 57.84 75.02 50.51 68.00 92.86
VGG-16 53.59 68.29 69.44 75.00 93.25
VGG-19 49.45 64.96 62.85 71.00 92.09

18 Computational Intelligence and Neuroscience



END-TO-END CNNS (DWT+SVM) CVC CLINIC DB-3ND STAGE)
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Figure 18: Comparing accuracies of DWT end-to-end with CVC clinic DB dataset.
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Figure 19: Comparing accuracies of DWT end-to-end with Kvasir 2 dataset.

Table 19: *e comparison accuracies of the fusion CNNs of the CVC clinic DB dataset.

DWT
Fusion CNNs Accuracy in % (training) Accuracy in % (testing) SVM in % (training) SVM in % (testing) AUC in %
ADaRDEV2-22 94.84 95.73 92.62 94.00 95.73
RDEV2-22 97.24 98.00 93.42 95.00 98.06
ADaDR-22 93.77 95.54 91.99 93.00 95.54
ADaR-22 84.16 89.53 89.32 93.00 89.52
DaRD-22 95.46 96.70 93.86 96.00 96.70
ADa-22 83.10 88.37 70.37 67.00 88.38
RD-22 97.24 98.44 94.48 96.00 98.45
AD-22 90.57 95.93 92.88 96.00 95.92
DaR-22 88.43 93.60 91.28 93.00 93.59
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Figure 20: Comparing accuracies of DWT end-to-end with Hyper Kvasir dataset.
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Table 20: Comparison accuracies of the fusion CNNs of the Kvasir 2 dataset.

DWT
Fusion CNNs Accuracy in % (training) Accuracy in % (testing) SVM in % (training) SVM in % (testing) AUC in %
ADaRDEV2-22 79.61 81.20 79.79 81.00 98.34
RDEV2-22 71.01 77.66 75.57 80.00 97.81
ADaDR-22 80.52 82.29 79.31 82.00 98.33
ADaR-22 64.77 57.79 62.24 64.00 93.93
DaRD-22 78.52 80.37 77.01 82.00 97.81
ADa-22 64.84 57.79 53.99 44.00 90.14
RD-22 68.88 70.29 70.23 76.00 96.54
AD-22 75.27 76.83 74.66 65.00 97.49
DaR-22 67.62 70.83 63.97 63.00 95.50

Table 21: Comparison accuracies of the fusion CNNs of the Hyper Kvasir dataset.

DWT
Fusion CNNs Accuracy in % (training) Accuracy in % (testing) SVM in % (training) SVM in % (testing) AUC in %
ADaRDEV2-22 69.54 72.56 70.44 58.00 82.30
RDEV2-22 60.0% 62.41 62.38 66.00 88.16
ADaDR-22 50.87 56.36 56.43 60.00 81.95
ADaR-22 63.44 60.19 62.68 48.00 79.06
DaRD-22 65.53 57.20 59.02 60.00 80.54
ADa-22 60.82 37.02 57.63 37.00 82.70
RD-22 53.23 55.96 52.01 54.00 77.34
AD-22 57.97 48.36 52.32 36.00 74.53
DaR-22 57.79 55.27 56.88 50.00 77.34
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Figure 21: Comparing accuracies of DWT fusion CNN with CVC clinic DB dataset.
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Figure 22: Comparing accuracies of DWT fusion CNN with Kvasir 2 dataset.
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Figure 23: Comparing accuracies of DWT fusion CNN with Hyper Kvasir dataset.

Table 22: Comparison of results related studies for CVC clinic DB, Kvasir 2 , and Hyper Kvasir datasets with previous state-of-the-art
methods.

Dataset Author Method Accuracy in %

CVC clinic DB

Attallah and Sharkas [22] GastroCADx —
Liew et al. [71] Ensemble classifier (ResNet50+Adaboost) 97.91

Sharma et al. [72] Ensemble classifier 98.3
Nisha and Palanisamy [19] DP-CNN 99.60
Souaidi and Ansari [18] MP-FSSD 91.56

Ours ColoRectalCADx (proposed) 99.00

Kvasir2
Attallah and Sharkas [22] GastroCADx 97.3
Sharma et al. (2022) [72] Ensemble classifier 97

Ours ColoRectalCADx (proposed) 88.00

Hyper Kvasir Attallah and Sharkas [22] GastroCADx 99.7
Ours ColoRectalCADx (proposed) 84.00
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Figure 24: Confusion matrices of (a) CVC clinic DB dataset. (b) Kvasir 2. (c) Hyper Kvasir.
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Figure 25: ROC curves of (a) CVC clinic DB dataset. (b) Kvasir 2. (c) Hyper Kvasir labeled.

Table 23: Parameters of UNet for semantic segmentation.

Dataset Epochs Learning rate Batch size Train loss Test loss Total time taken for model (s)
CVC clinic DB 40 0.001 64 0.2998 0.7842 862.61
Kvasir2 40 0.001 64 0.412 0.6977 1477.32
Hyper Kvasir 40 0.001 64 0.4005 0.691 1374.04
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Figure 26: Semantic segmentation for predicted polyps. (a) CVC clinic DB. (b) Kvasir2. (c) Hyper Kvasir.
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Figure 27: Loss graph. (a) CVC clinic DB. (b) Kvasir2. (c) Hyper Kvasir.
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5. Conclusion

*is study explores how the three public datasets operate
using the ColoRectalCaDx deep learning concept. *e CVC
Clinic DB, Kvasir, and Hyper Kvasir datasets are considered
as inputs, and the system operates at five stages to obtain the
results. *e system starts at stage one with seven end-to-end
CNNs such as AlexNet, DarkNet-19, ResNet50V2, DenseNet-
201, EfficientNetB7, VGG-16, and VGG-19. Before pro-
ceeding to step two, the end-to-end CNNs are fused into nine
different CNNs. In step two, end-to-end CNNs and fusion
CNNs are transfer learned with SVM. In the third step of the
system, the DWTis transfer learned with end-to-end CNNs to
extract the spatial and temporal features from the CNN. *e
same features are also derived from the nine fusion CNNs in
the fourth step. In this system, performance is achieved in
stages as results are aggregated. *e results presented in a
tabular form are compared, and the best final CNN model is
developed to identify colorectal carcinomas of the system.
Experimentally, the results were obtained for the 5 stages. For
each of the three datasets, from stage 1 to stage 3 end-to-end
CNN, DenseNet-201 obtained the best testing accuracy (98%,
87%, 84%), ((98%, 97%), (87%, 87%), (84%, 84%)), ((99.03%,
99%), (88.45%, 88%), (83.61%, 84%)). For each of the three
datasets, in stage 2, CNN DaRD-22 fusion obtained the best
test accuracy ((93%, 97%) (82%, 84%), (69%, 57%)). And for
stage 4, ADaRDEV2-22 fusion achieved the best test accuracy
((95.73%, 94%), (81.20%, 81%), (72.56%, 58%)). Once the
results were achieved, the DenseNet-201 turned out to be the
best end-to-end CNN model. *e CNN DaRD-22 and
ADaRDEV2-22 fusion models are the most appropriate
models for this proposed colorectal cancer identification
system. *e final step of the system involves identifying
malignant polyps in medical colonoscopy datasets. Among all
three dataset images, semantic segmentation using the UNet
CNN structure detects malignant polyps. *e loss score for
CVC clinic DB was 0.7842, for Kvasir2 by 0.6977, and Hyper
Kvasir by 0.6910. Semantic segmentation identified polyps
from the original frame with the intended malignant polyps.

In future work, we will consider applying the proposed
system to all clinical colonoscopy motion video datasets. In
the proposed system, the videos have multiple frames, thus
such a video is represented with the highest number of
images. *ese videos are represented in frame form. *ese
images are categorized by perfect CNN and then visualize
the polyps in colonoscopy motion videos with improved
system representation for segmentation with good accuracy.

Data Availability

Data are publicly available from the following websites:
Dataset 1 was obtained from https://www.kaggle.com/
datasets/balraj98/cvcclinicdb. Dataset 2 was obtained
fromhttps://datasets.simula.no/kvasir/. Dataset 3 was ob-
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