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Background
Docking tools for predictive modeling are widely used for building candidate protein–
ligand complexes, the pocket location of a specific protein and the synthesis guidance of 
lead compound in the field of biochemical computation. These applications of docking 
tools benefit from two primary docking practices: protein–ligand docking and virtual 
screening [1]. The protein–ligand docking illustrates how a ligand may bind, and it gives 
the prediction of the pose for one or several ligands binding to a given macromolecule. 

Abstract 

Background:  A high-quality docking method tends to yield multifold gains with half 
pains for the new drug development. Over the past few decades, great efforts have 
been made for the development of novel docking programs with great efficiency and 
intriguing accuracy. AutoDock Vina (Vina) is one of these achievements with improved 
speed and accuracy compared to AutoDock4. Since it was proposed, some of its vari-
ants, such as PSOVina and GWOVina, have also been developed. However, for all these 
docking programs, there is still  large room for performance improvement.

Results:  In this work, we propose a parallel multi-swarm cooperative particle swarm 
model, in which one master swarm and several slave swarms mutually cooperate and 
co-evolve. Our experiments show that multi-swarm programs possess better docking 
robustness than PSOVina. Moreover, the multi-swarm program based on random drift 
PSO can achieve the best highest accuracy of protein–ligand docking, an outstanding 
enrichment effect for drug-like activate compounds, and the second best AUC screen-
ing accuracy among all the compared docking programs, but with less computation 
consumption than most of the other docking programs.

Conclusion:  The proposed multi-swarm cooperative model is a novel algorithmic 
modeling suitable for protein–ligand docking and virtual screening. Owing to the exist-
ing coevolution between the master and the slave swarms, this model in parallel gen-
erates remarkable docking performance. The source code can be freely downloaded 
from https://​github.​com/​li-​jin-​xing/​MPSOV​ina.
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With regards to whether a ligand can bind, it involves the virtual screening [2], which 
docks, ranks and refines an extensive library of compounds against a specific target to 
determine their worthiness as drug candidates.

Over the past few decades, amounts of efforts have been made for the development 
of accurate and efficient docking tools, some of which are Autodock Vina  [3], Auto-
dock4  [4], GWOVina  [5] and PSOVina  [6]. In Autodock Vina (Vina), Markov Chain 
Monte Carlo (MCMC) is used as the global optimizer, which randomly mutates the 
most acceptable current solution to find the next worthier configuration. Broyden-
Fletcher-Goldfard-Shanno (BFGS) plays the role of local search, which further exploits 
for more optimal solutions based on the results obtained by the global search of MCMC. 
In the other leading docking programs, there are similar executions with Vina, i.e., com-
bining global and local algorithms. Autodock4 adopts a hybrid optimization method of 
global genetic algorithm (GA) and local Solis and Wets method. By using the grey wolf 
optimizer  [7] (GWO) for global search and the BFGS for local search, GWOVina dis-
plays comparable docking performance with Vina but 2–7 times faster. The PSOVina [6] 
was developed by replacing the Monte Carlo method with particle swarm optimization 
(PSO) [8], achieving significant improvement for protein–ligand docking and compara-
ble performance of virtual screening at five-to-six folds speedup state. Nevertheless, it 
has been observed from our experiments that the docking performance of PSOVina is 
considerably constrained by the fully parallel implementation.

The PSO method has been widely used for docking, since it has few parameters to 
adjust and its easy implementation. However, as Angeline pointed out [9], it is challeng-
ing for the canonical PSO to achieve a good balance between exploration (i.e. global 
search) and exploitation (i.e. local search) during the search process. To further improve 
the algorithmic search performance, a variety of strategies have been proposed, for 
examples, the adaptive parameters setting based on diversity control [10], social learning 
tactics [11], multi-swarm coevolution [12] and novel update equation for particles [13].

In this paper, based on the canonical PSO and random drift PSO (RDPSO), we pro-
pose a novel multi-swarm coevolution strategy with a master–slave model. In this 
model, there are one master swarm and multiple slave swarms, each slave devoting its 
best experience to the individual particle of the master swarm to promote the particle’s 
personal experience, and the master swarm passing back the particle’s personal experi-
ence to the corresponding slave swarm for further enhancing the slave’s exploration. It is 
verified by our experiments that the proposed multi-swarm model is more suitable for 
the complete parallelism than PSOVina, which makes the fully parallel implementation 
of the algorithm outperform Vina, PSOVina and GWOVina in terms of docking accu-
racy and screening capability whose quantity equals to Exhaustiveness parameter value.

Methods
Canonical and random drift PSO

The canonical PSO simulates the social behavior of bird flocking and fish schooling while 
searching for foods. The particle in PSO, like that fish or bird, represents a natural agent 
that possesses social behaviors. Examples of social behaviors include (1) improving the 
estimation accuracy of particle themselves to expected levels and (2) interacting with 
their neighborhood. For a PSO with N  particles and a D-dimensional search problem, 
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the i-th particle at the n-th iteration has the velocity vector, the current position and 
the personal best (pbest) position with best fitness value obtained by the particle since 
initialization, represented as Vi,n = (V 1
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where ω , called inertia weight, is generally set to linearly decrease from 0.9 to 0.4 [14]. 
ri,n and Ri,n are random numbers uniformly distributed on the interval of [0,1]. c1 and c2 
are acceleration factors that are generally both set to be 2 as recommended by Shi and 
Eberhart [15].

Motivated by the trajectory analysis of PSO and the movement of electrons in a metal 
conductor placed in an external electric field, random drift particle swarm optimiza-
tion, which uses a novel equation for updating the particle, has been proven to have bet-
ter performance than the canonical PSO in most cases  [13]. The update equations for 
RDPSO are expressed as:

where Cj
n is the component in the j-th dimension of the mean best (mbest) position 
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is a sequence of random numbers with standard normal distribution and γ j

i,n is a random 
number uniformly distributed between 0 and 1. α > 0 and β > 0 are known as the ther-
mal and drift coefficients, respectively. It is recommended that α decreases linearly from 
0.9 to 0.3 and β is constantly 1.45 [13].

Multi‑swarm cooperative model

In the canonical PSO, the search of particles is guided by self-cognitive and social expe-
riences in order that they can move to promising regions. Such kind of mechanism is 
inspired by the social behavior of the mutual cooperation between individuals in a bird 
flock. However, in nature, besides the above individual cooperation within the same spe-
cies, there is also another pervasive cooperation between different species, namely, the 
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symbiosis cooperation, which can be divided into three types [16] (i.e. mutualism, com-
mensalism and parasitism). Mutualism means that both species benefit from their inter-
relationship. Motivated by the mutualistic relationship, we propose a novel multi-swarm 
coevolution scenario in this paper. In our scenario, there are multiple slave swarms and 
one master swarm. The slave swarms are originated from the subswarms of PSOVina, 
but a little different. As illustrated in the left part of Fig.  1, the optimization popula-
tion of PSOVina is composed of multiple same-sized subswarms, where the quantity of 
subswarm is equal to the value of exhaustiveness parameter. The number of particles 
in every subswarm is denoted by the num_particles parameter, and all the subswarms 
share the same gbest position. Unlike being subject to the only one gbest position in 
PSOVina, in our model shown as the right plot in Fig. 1, these slave subswarms possess 
their own gbest positions and evolve independently, which can be regard as original spe-
cies. On the other hand, the master swarm is a new subswarm appended to our optimi-
zation population, and it essentially plays the role of another species and co-evolves with 
the original species.

The core of the mutualistic coevolution is the information exchange between the 
gbest experience of slave swarms and the pbest experience of the master swarm. Dur-
ing the co-evolution process, the slave swarms explores the whole solution space, 
while the master swarm exploits for solutions with higher precision. Each subswarm 
has access to slave-subswarm’s gbest and master-subswarm’s pbest information, and 
at the beginning of each iteration, there is a comparison between the values of slave-
subswarm’s gbest fitness (gbest fitness of slave swarm) and master-subswarm’s pbest 
fitness (pbest fitness of master swarm) firstly executed. Referring to the exchanging 
arrows in Fig. 1, if the slave-subswarm’s gbest fitness is worse than the corresponding 
master-subswarm’s pbest fitness, the slave swarm substitutes slave-subswarm’s gbest 
position with master-subswarm’s pbest position (red arrows) to enhance the slave’s 
exploration and exploitation for promising solutions. Similarly, if slave-subswarm’s 

Fig. 1  From the canonical model of PSOVina to our coevolution master–slave model. The arrows between 
master and slave subswarms represent the exchange between slave-subswarm’s gbest position and 
master-subswarm’s pbest position, and the rest arrows stand for the transferring from the best solution of 
corresponding swarms to the gbest position. More details are shown in the Support Information
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gbest fitness in the master swarm is better than the master-subswarm’s pbest fitness, 
slave-subswarm’s gbest position overrides master-subswarm’s pbest position (black 
arrows). That is, the master swarm makes use of the knowledge of slave swarms to 
improve its own exploitation ability. Overall, the mechanism of information exchange 
among coevolutionary subswarms makes the algorithm achieve an advanced balance 
between exploration and exploitation.

In our slave-master model, the slave swarms are all manipulated by the canonical PSO 
to supply the appropriate disturbance for algorithmic search. By utilizing the chaos-
embedded PSO and random drift PSO for the guidance of master swarm, respectively, 
two docking tools are developed, called MPSOVina and MRDPSOVina, respectively.

Algorithmic implementation details
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The previous section mentions the co-evolution between subswarms. In this section, 
the implementation details of single subswarm are illustrated. As the outlined above, 
the update procedure of a slave or master subswarm is marked by rectangle boxes. In 
each iteration, all the subswarm particles will utilize the global search method (PSO/
RDPSO) to update their current positions. While for the local BFGS, each particle has 
only 6% possibility to employ it, since BFGS is very time-consuming. In slave swarms, 
the canonical PSO method changes all the components of particles’ current positions 
according to the Eqs. (1, 2). The current positions of the same particle between two adja-
cent iterations may be significantly different. The particles of slave swarms are able to be 
very randomly distributed in the entire solution space, and the slave swarms can effec-
tively accomplish the exploration for solution space. In each iteration of a master swarm, 
the global search method only mutates one random component of a particle’s current 
position and thus the particle’s position can only be modified slightly. Using this manner, 
a particle in a master swarm, after absorbing the pbest experience of corresponding slave 
swarm, can readily develop better solutions around its pbest. Furthermore, the Markov 
mutation used in Vina is also employed in the master swarm, with the 0.001/M possibil-
ity to mutate one component of particles’ current position. This operation can gener-
ate more slight disturbance for pbest and gbest positions, which helps to obtain a better 
final solution.

Early experiments lead us to set the algorithmic parameters as follows. In canoni-
cal PSO, ω linearly decreases from 0.9 to 0.4, c1 , c2 , ri,n and Ri,n are all set as same 
value in PSOVina. c1 and c2 are equal to 0.99. ri,n and Ri,n are chaos-embedded 
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random numbers between 0 and 1. The chaos-embedded PSO has exactly the same 
parameters with PSOVina. In RDPSO, α decreases linearly from 1.0 to 0.2, and β is 
decreases linearly from 1.5 to 1.15.

Datasets and experimental setups

To evaluate the performance of the proposed docking program in terms of pose pre-
diction, the PDBbind core set v.2016 was utilized, which was systematically selected 
from the PDBbind refined set through a non-redundant sampling procedure and 
used as the dataset in CASF-2016 [17]. The core set collects 285 groups of protein–
ligand complexes with high-precision resolution and provides the structural infor-
mation of their separated proteins and ligands, all of which can be downloaded from 
http://​www.​pdbbi​nd-​cn.​org. Moreover, we employed the cross-docking experiments 
on 8 protein-target families of CDK2, ESR1, F2, MAPK14, MMP8, MMP13, PDE4B 
and PDE5A from the Sutherland-crossdock-set, in which all the testing items are 
listed in the appendix reported by Dr. Jeff Sutherland  [18]. Considering the rela-
tively limited power of computation, 30 items in each of CDK2 (82 structures) and 
F2 (72 structures), as well as all the items available in the Protein Data Bank [19] for 
the rest families (< 30 structures) were selected and used for the crossing-docking 
executions.

The Database of Useful Decoys-Enhanced (DUD-E) was designed to benchmark 
the performance of virtual screening. In DUD-E, there are 22,886 active ligands and 
innumerable inactive ligands against 102 protein targets  [20]. The inactive ligands, 
called decoys, have different topologies with active ligands but similar physicochem-
ical properties that determine the protein–ligand interactions. Specifically, molecu-
lar weight, hydrogen bond acceptors and donors, and calculated log P dominate the 
van der Waals force, hydrogen-bonding and hydrophobic interaction, respectively. 
Therefore, it is challenging for docking tools to distinguish the real positive and pos-
itive-like ligands. In this work, since screening thousands of ligands against each tar-
get would expend large amounts of computational time, we only employed the four 
smallest subsets (ampc, cxcr4, cp3a4 and kif11) of DUD-E to compare the screening 
effectiveness of different docking tools.

Our docking experiments were implemented on the computational nodes of a 
cluster server with 240 processors of Intel(R) Xeon(R) E5–2620 based on a Centos 
7.6.1810 Linux platform. All the docking simulations were performed according to 
the following three main steps, namely, preparation of the proteins and ligands, gen-
eration of the docking configuration files, and execution of the docking experiments. 
The input PDBQT files of protein and ligand were generated by prepare_protein4.
py and prepare_ligand4.py, supplied by the AutoDock Tools. All the input parame-
ters included the docking configuration files are identically default unless otherwise 
specified. In our docking experiments, all the specified parameters are illustrated as 
follows. The box size was 22.5 Å × 22.5 Å × 22.5 Å, the box center was the geometric 
center of the crystallized ligand, and the number of CPUs was set to different values 
to satisfy different experimental requirements.

http://www.pdbbind-cn.org
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Performance metrics

Generally, the root mean squared deviation (RMSD) is used to estimate the prediction 
accuracy for binding poses of ligands, which reveals the overall difference of atomic 
positions (3D-coordinates of the ligand molecule) between prediction and co-crystalli-
zation. The RMSD calculation adopted in this paper is based on the heavy atoms of the 
ligand and excludes the consideration for structural symmetry. Only when RMSD is less 
than 2 Å, the predicted structure can be regarded as a successful docking. In this work, 
to reasonably assess the actual prediction accuracy, we conducted 10 groups of repeti-
tive docking experiments and calculated the statistical results (e.g., mean RMSD, mean 
energy) of 10 docking repeats relative to the best-scored conformations for each testing 
item. The appraised error of the mean RMSD was obtained by 2000 rounds of bootstrap-
ping  [21]. The Wilcoxon signed-rank test undertaken at a 5% level of significance  [22] 
was used to estimate the existence of significant difference between the RMSD-related 
results obtained by two docking programs.

The virtual screening is aimed to screen drug-like ligands from libraries of com-
pounds. The evaluation for virtual screening performance is typically based on the list 
of compounds with binding energy ranked from low to high. A cutoff is set to categorize 
the compounds in the list as actives with lower energy and decoys with higher energy. In 
general, the larger number of truly active compounds, with lower energy than the cutoff, 
implies the higher screening capacity for a docking tool. Based on different cutoff set-
tings, receiver operating characteristic (ROC) curves of docking tools can be created by 
plotting the false positive rate (FPR) against the true positive rate (TPR). In this paper, 
we utilized the area under the ROC curve (AUC) to assess the quality of virtual screen-
ing methods, whose value of 1.0 represents perfect classification ability, whereas 0.5 
indicates random prediction [6]. Another performance metrics for virtual screening is 
the enrichment factor (EF) [6], expressed as follows:

where the topx% ranked compounds are logically clustered as actives. The EFx% is the 
concentration of the true activates among the topx%-scoring docking hits compared to 
their concentration throughout all the screened ligands. The larger value of EFx% indi-
cates better ability to find the true activates.

Results and discussion
Docking accuracy with different number of CPUs

In Vina and Vina-based programs, the actual parallel environment is dependent on 
the number of subswarms (specified by the exhaustiveness parameter), and the num-
ber of used CPUs (determined by the CPU parameter as well as the current avail-
able CPUs in computational machine). If the number of CPUs is larger than or equals 
to the number of subswarms (hereinafter named as adequate-CPU mode), each sub-
swarm can be executed on one CPU, and thus all the subswarms can be run in par-
allel. On the contrary, if the number of used CPUs is not enough to support all the 
subswarms running simultaneously (the inadequate-CPU mode), part of subswarms 

(6)EFx% =
topx% actives

topx% ligands

/

total actives

total ligands
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firstly implements in parallel and then the remaining unevolved subswarms will 
orderly substitute the previously terminated subswarms.

Figure 2 is derived from the docking experimental results obtained by PSOVina and 
multi-swarm programs in the execution environment of 1, 4, 10 and 20 CPUs (orderly 
correspond to A to D of Fig. 2). In Fig. 2A, PSOVina and our multi-swarm programs 
constantly ran in inadequate-CPU mode (no consideration of exhaustiveness = 1), 
and these docking programs exhibited the overall comparable docking performance. 
Moreover, it is obvious that the RMSD-results obtained by our proposed programs in 
Fig. 2A was worse than those in the other three subplots of Fig. 2, since there did not 
exist mutual beneficial cooperation between master swarm and slave swarms for the 
MPSOVina and MRDPSOVina in serial mode.

In Figs. 2B–D, for our proposed programs, there were not only individual particles’ 
chasing for gbest position within subswarms, but also mutual promotions between 
slave swarms and the master swarm, which significantly improved the docking per-
formance. For the PSOVina in Fig. 2B–D, its performance lagged far behind that of 
the multi-swarm programs in adequate-CPU mode. The reason may be that the par-
ticles in all subswarms in PSOVina are simultaneously attracted by a single gbest and 
the whole swarm is very likely to be trapped in a local optimum. However, as shown 
in Fig.  2B, C, when the PSOVina was in inadequate-CPU mode, its docking results 
were much better than those in adequate-CPU mode, which may be attributed to the 
continued search by the bran-new subswarms, that is, the unevolved subswarms wait-
ing for idle CPUs. Nevertheless, the results obtained by PSOVina in inadequate-CPU 
mode were still comparable to those obtained by our model.

Fig. 2  The docking comparison of PSOVina and multi-swarm programs with different number of CPUs. A, B, 
C and D sub-plots are for 1, 4, 10 and 20 CPUs, respectively
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Summarizing the above analysis, we can conclude that the docking performance of 
PSOVina excessively reckons on the number of CPUs, for the PSOVina only behaves 
well in inadequate-CPU mode. As a comparison, the MPSOVina and MRDPSOVina 
have outstanding docking performance in both inadequate- and adequate-CPU modes, 
indicating the good robustness of our proposed model.

Docking performance for pose prediction

In this section, the default exhaustiveness value was set as 8, and most of the compared 
programs were run on 10 CPUs (adequate-CPU mode), only except the PSO-c4 and 
MRDPSO-c4 which are the PSOVina and the MRDPSOVina using 4 CPUs (inadequate-
CPU mode), respectively. There were 12 × 8 = 96 wolves used in GWOVina, 8 × 8 = 64 
particles in PSOVina, and 8 × 8 = 64 particles in the proposed multi-swarm programs.

Table  1 illustrates the overall accuracy, binding energy, P-value and running time 
obtained by all the compared docking programs. According to the results of mean 
RMSD value and mean success rate, MPSOVina and MRDPSOVina were able to achieve 
the most accurate docking prediction, followed by MRDPSO-c4 and PSO-c4, and finally 
Vina, PSOVina and GWOVina. This indicates that the master–slave mode can improve 
the pose prediction accuracy to a large extent. With regards to the binding energy, Vina 
obtained the lowest binding energy, followed by GWOVina and multi-swarm programs, 
and then PSOVina and PSO-c4. The proposed multi-swarm programs performed better 
than the classical Vina in terms of RMSD accuracy, but Vina generated the energy pre-
diction of stronger binding, which might mainly be attributed to the poor effectiveness 
of scoring function. The calculated P-values reveal that MRDPSOVina had the signifi-
cant difference with Vina, PSOVina, GWOVina and MRDPSO-c4, but was equivalent to 
PSO-c4 and MPSOVina. The PSO-c4 ran in inadequate-CPU mode and, according to the 
analysis in the previous section, it should obtain the comparable docking performance 
with MRDPSOVina. The reason why the docking results of MPSOVina and MRDPS-
OVina were similar may be that MPSOVina and MRDPSOVina both adopted the same 
search algorithms in the slave subswarms. With regards to the running time, which was 
estimated by docking experiments on the same computational node, MPSOVina and 
MRDPSOVina were consistently a little slower than PSOVina, but about 2 times and 

Table 1  Overall prediction accuracy, binding energy and running time comparison of Vina, 
PSOVina, GWOVina MPSOVina and MRDPSOVina

a The unite of mean binding energy is Kcal mol−1

b P-value is calculated by comparing two sets of mean RMSD results obtained by the MRDPSOVina and another docking 
method, respectively

Mean RMSD (Å) Mean succ (%) Mean energy a P-value b Mean time (s)

Vina 2.521 ± 0.328 64.35 − 8.680 2.73e-10 39.77

PSO-c4 2.283 ± 0.262 66.67 − 8.402 0.081 8.17

PSOVina 2.787 ± 0.274 59.47 − 8.274 3.99e-9 3.91

GWOVina 2.411 ± 0.317 65.72 − 8.671 2.87e-11 8.25

MPSOVina 2.133 ± 0.264 70.53 − 8.594 0.27 4.27

MRDPSO-c4 2.189 ± 0.272 69.75 − 8.572 0.0015 6.08

MRDPSOVina 2.056 ± 0.259 71.05 − 8.607 – 4.28
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9 times faster than GWOVina and Vina, respectively. Additionally, PSO-c4 was slower 
than MRDPSO-c4, and they both took more time than PSOVina and MRDPSOVina.

The box-and-whisker and violin plots in Fig.  3 visualize the RMSD-result distribu-
tion of testing PDBbind dataset obtained by each docking program (all RMSD values 
are shown in Additional file  1: Table  S2). Our proposed docking programs had lower 
box height and shorter whisker line than the other compared programs, which indicates 
that multi-swarm programs had the relatively more intensive RMSD distribution, that is, 
better docking stability than the others. In the violin plots, the width of a violin on a cer-
tain RMSD represents the occurrence frequency of the RMSD value in all RMSD results. 
The more violin areas mean more distribution of testing items. A horizontal line of 2 Å 
is created, and the violins give the distribution details of RMSD results. Above 2 Å line, 
there is more area of violin in PSO-c4 and PSOVina than the other docking tools, which 
represents more distribution of failed docking items for PSO-c4 and PSOVina than 
the other docking programs. On the other hand, it can be obviously observed that the 
RMSD results of our multi-swarm programs have more testing items distributed below 
the 2 Å line, which indicates the overall higher accuracy of these programs. Besides, the 
multi-swarm programs have the similar violin shapes, that is, comparable RMSD-result 
distribution and docking stability. Among the multi-swarm programs, MRDPSOVina 
has the most intensive RMSD distribution, especially below the 4 Å, which indicates the 
most stable and best docking effect.

The red asterisk notations and the bold lines in Fig.  3 stand for the averages and 
medians of RMSD results of each docking program, respectively. It is no doubt that the 
RMSD locations of red asterisk notations in Fig. 3 is consistent with the RMSD values in 
Table 1. In terms of the value of RMSD medians, only the PSOVina is beyond the 2 Å, so 
it docked over a half of the testing items as failed dockings and yielded the worst docking 
prediction among all the compared docking programs.

Fig. 3  The box-and-whisker and violin plots for average RMSD comparison of all testing items obtained 
by Vina, GWOVina, PSOVina and multi-swarm programs. The dotted line is the dividing line of 2 Å. The red 
asterisk notations and the bold lines stand for the averages and medians of RMSD results of each docking 
program, respectively
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docking prediction among all the compared docking programs Additional file  1: 
Tables S1 and S2 in the Supplementary illustrate the mean energy and the mean RMSD 
obtained by each docking tool for the testing items with various number of torsions, 
respectively. Moreover, according to these statistical data, the polylines and the histo-
grams of the Additional file 1: Figure S1 were generated, which implies the influence of 
different torsion number on docking program. From the polylines, it can be concluded 
that the PSO-c4 and PSOVina exhibited the weakest binding affinity across all the test-
ing items of more than 7 torsions among all the compared docking programs, and the 
other docking programs yielded the similar binding energy throughout the torsion clas-
sifications. The histograms demonstrate that the mean RMSD of multi-swarm programs 
was lower than other compared docking programs in almost every class of the number 
of torsions. Hence, the multi-swarm programs can have better performance than the 
other compared approaches for dealing with the docking tasks no matter how many the 
numbers of torsions are, which also indicates the better docking stability of multi-swarm 
programs.

Furthermore, to make an intuitive performance comparison among different docking 
tools, we elaborately selected four ligands with 1, 5, 10 and 15 torsions, which come from 
the complexes of 3arv, 1q8t, 3nx7 and 3uew, respectively. The crystalline ligands and the 
best-scored conformations obtained by each docking tool are visualized in Fig. 4. More-
over, the corresponding RMSD values are listed in the legend. When it comes to the 
docking result of 1 torsion, PSO-c4, GWOVina and MRDPSOVina obtained the dock-
ing conformations of 4.164 Å, 4.257 Å and 4.176 Å, respectively, which are closer to the 
ligand crystallization than the docking results of the other methods. The MRDPSOVina 
yielded the second best docking conformation only behind the result of PSO-c4. For the 

Fig. 4  Visual comparison of the best-scored conformations obtained by different docking tools. Four testing 
items are selected and noted in the Additional file 1: Table S1. In the sub-plot for each item, there are three 
molecular visualizing models of ligands, i.e., bonds (crystallization), ball-and-stick (the compared results) and 
licorice (the results from our method). And each visual model displays with specific colors: the bonds with 
a red (crystallization) color, the ball-and-stick with blue (Vina), purple (PSO-c4), orange (PSOVina) and grey 
(GWOVina) colors and the licorice with yellow (MPSOVina), cyan (MRDPSO-c4) and green (MRDPSOVina) 
colors. The RMSD values of docking results, shown within the legend boxes, have the same color with visual 
ligand molecules
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docking results of 5 torsion ligands, the molecule geometry docked by MRDPSOVina 
obviously lays closer to crystalline structure than those by the other compared pro-
grams. With respect to the docking results for 10 and 15 torsions, MRDPSOVina gener-
ated the closest configurations to crystallized structures, and then PSO-c4 contributed 
the second best docking conformation, and the docking results of the other tools are all 
worse than those of MRPDPSOVina and PSO-c4. In summary, MRDPSOVina is a good 
choice of docking tools for docking different ligands with various torsion numbers.

For the cross-docking target families, the experimental results are categorized as three 
clusters, namely successful docking, failed scoring and failed sampling, corresponding to 
three docking situations, respectively. The first cluster is that the obtained best-scored 
conformation is the correct pose with RMSD of less than 2 Å. The second one is that 
the correct pose docked to protein is not the best-scored one. The last one is that the 
RMSDs of the obtained configurations all exceed 2 Å. The Fig. 5 shows the numbers of 
successful dockings and the numbers of failed dockings for each protein family obtained 
by each compared docking program, and the cross-docking results of each protein target 
are illustrated by the corresponding statistical heat maps in the Additional file 1: Figure 
S2. It is obvious that MPSOVina and MRDPSOVina have more successful dockings and 
fewer failed dockings than Vina, PSOVina and GWOVina (GWOVina, MPSOVina ans 
MRDPSOVina have 1681, 1690, 1699 failed docking items in total, respectively), which 
indicates that multi-swarm models are more suitable for handling cross-docking tasks 
than the other docking programs in adequate-CPU mode. Moreover, MRDPSOVina is 
worse than MRDPSO-c4 in term of the cross-docking RMSD, and PSO-c4 is worse than 
PSOVina, which implies that the PSO-based docking methods in inadequate-CPU mode 
had higher cross-docking accuracy than those in adequate-CPU mode. PSO-c4 had the 
largest number of successful dockings among all the compared docking programs, but 

Fig. 5  The statistical results of successful dockings and failed dockings for Vina-based programs. A illustrates 
the number of successful dockings for 8 family proteins. B shows that of failed dockings. The values on 
vertical bars are the number of successful or failed docking items
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had more failed dockings than most of the compared docking programs. MRDPSO-c4 
has the fewest failed dockings among all the compared docking programs, and has the 
second most successful dockings only behind the PSO-c4. Overall, MRDPSO-c4 was 
more effective than PSO-c4 in performing the cross-docking tasks.

Performance comparison of virtual screening

To assess the virtual screening performance of the afore-mentioned docking methods, 
the ROC curves and the AUC values are utilized, and their results are presented in Fig. 6 
and Table 2, respectively. In terms of the screening for ampc target, MRDPSOVina per-
formed the best, and then PSO-c4 is the second best, followed by the other docking 
programs. For the cp3a4 protein target, all the docking programs exhibit the extremely 

Fig. 6  ROC curves of virtual screening four targets using all compared docking programs. A ROC curves for 
ampc. B ROC curves for cxcr4. C ROC curves for cp3a4. D ROC curves for kif11

Table 2  The AUC-ROC values of virtual screening four targets in DUD-E datasets

a The unite of computational time is the second

Ampc cp3a4 cxcr4 kif11 Mean Timea

Vina 0.646 0.613 0.576 0.849 0.671 19.67

PSOVina 0.622 0.597 0.639 0.859 0.679 2.77

GWOVina 0.649 0.606 0.592 0.861 0.677 9.72

MPSOVina 0.644 0.598 0.613 0.865 0.680 4.13

MRDPSOVina 0.663 0.611 0.626 0.871 0.693 4.08

PSO-c4 0.653 0.611 0.655 0.883 0.701 6.31

MRDPSO-c4 0.626 0.610 0.620 0.879 0.684 6.32
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similar ROC curves and have the comparable screening performance. With respective 
to the cxcr4 target, our proposed multi-swarm programs performed better than Vina 
and GWOVina, but not so well as PSOVina and PSO-c4. According to ROC and AUC 
results of kif11 target, PSO-c4 has the best screening performance, and our proposed 
programs has the second best, followed by Vina, PSOVina and GWOVina. In summary, 
MRDPSOVina and PSO-c4 can generate better screening results than the other dock-
ing programs. Referring to the latest report of PSOVina [6], we can find that PSOVina 
can generate better docking prediction than and comparable virtual screening to Vina, 
which coincides with our docking experimental results obtained by PSOVina in inad-
equate-CPU mode and screening results by PSOVina in adequate-CPU mode, respec-
tively. When the docking tools run in inadequate-CPU mode, according to the AUC and 
ROC results of Table 2 and Fig. 6, MRDPSO-c4 performed worse than MRDPSOVina, 
but the performance of PSO-c4 turned out to be better than that of PSOVina and even 
better than that of MRDPSOVina.

The average time of docking per ligand by each program is shown in Table 2. It reveals 
that MRDPSOVina and MPSOVina had the second and the third fastest screening 
speed, respectively, and only slightly slower than PSOVina, but significantly faster than 
Vina and GWOVina. PSO-c4 and MRDPSO-c4 were almost in the unanimous speed 
and both were more computationally expensive than PSOVina and MRDPSOVina.

In the virtual screening, the focus is always put on the top ranked compounds that are 
generally regarded as positive compounds and worth to further explore their drug-like 
properties. In this paper, the top1%, top2% and top5% ranked compounds are logically clus-
tered as actives, respectively, and three corresponding enrichment factors of EF1%, EF2% 
and EF5% are reported in Table 3. Among all the compared programs, MPSOVina had 
the best screening performance in terms of EF1% and EF2%, followed by MRDPSOVina. 
As for the results of EF5%, the MPSOVina, MRDPSOVina, PSO-c4 and GWOVina exhib-
ited the comparable performance. Typically, the ligands at more top ranked locations are 
consider as more worthy candidates to explore their pharmaceutical property, and thus 
EF1% and EF2% are more representative than EF5% for the evaluation of virtual screening. 
Compared with other docking programs, the MPSOVina accomplished the best, and the 
MRDPSOVina had an outstanding enrichment effect for drug-like candidates. These 
superior results mainly benefited from our proposed multi-swarm model.

Conclusions
In this work, based on PSO and RDPSO, we proposed a novel multi-swarm coevolu-
tion scenario with a master–slave model, and applied it to the docking algorithm. In our 
coevolutionary model, there are self-independent evolutions of subswarms and informa-
tion exchanges between slave gbest positions and master pbest positions. Our docking 
experimental results demonstrated that multi-swarm programs are more robust for the 
parallel execution than PSOVina, and have better stable  performance of docking pre-
diction and virtual screening than Vina and GWOVina. The better parallel robustness 
attributes to the independent evolution of subswarm, and the information exchanges, 
bringing the improvement of algorithmic explorations and exploitations, contribute to 
the better docking effects.
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Moreover, in our experiments, MRDPSOVina, among our multi-swarm programs, 
served as an efficient docking tool and exhibited the best docking performance. On 
the one hand, MRDPSOVina has the best prediction accuracy of ligand pose, the most 
concentrated RMSD distribution, and about two-fold and nine-fold faster speed than 
GWOVina and Vina, respectively. On the other hand, MRDPSOVina can harvest the 
AUC prediction only inferior to PSO-c4, and an outstanding performance in terms of 
enrichment factors. These indicate that fully parallel implementation is essential to the 
efficiency improvement of docking programs, and the RDPSO is a remarkable method 
for docking optimization problems.

Supplementary Information
The online version contains supplementary material available at https://​doi.​org/​10.​1186/​s12859-​022-​04711-0.

Additional file1: the RMSD and energy results of all test cases in PDBbind core set and the cross-docking results of 
eight protein families in Sutherland-crossdock-set. (PDF 1099 kb)

Acknowledgements
The authors thank the facility supports of Jiangsu Provincial Engineering Laboratory of Pattern Recognition and Compu-
tational Intelligence.

Author contributions
CL, JL and JS wrote the main manuscript text. LM, VP and BA proofread the article expressions. All authors reviewed the 
manuscript.

Funding
This work was supported in part by the National Natural Science Foundation of China (Projects Numbers: 61673194, 
61672263, 61672265) and in part by the national first-class discipline program of Light Industry Technology and Engi-
neering (Project Number: LITE2018-25). The funding agencies did not have any role in the design, collection, analysis or 
interpretation of the data or writing of the manuscript.
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2 1.042 1.796 1.25 12.93 4.255
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