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Abstract
Assessing parameter uncertainty is a crucial step in pharmacometric workflows. Small datasets with ten or fewer subjects

appear regularly in drug development and therapeutic use, but it is unclear which method to assess parameter uncertainty is

preferable in such situations. The aim of this study was to (i) systematically evaluate the performance of standard error

(SE), bootstrap (BS), log-likelihood profiling (LLP), Bayesian approaches (BAY) and sampling importance resampling

(SIR) to assess parameter uncertainty in small datasets and (ii) to evaluate methods to provide proposal distributions for the

SIR. A simulation study was conducted and the 0–95% confidence interval (CI) and coverage for each parameter was

evaluated and compared to reference CIs derived by stochastic simulation and estimation (SSE). A newly proposed LLP-

SIR, combining the proposal distribution provided by LLP with SIR, was included in addition to conventional SE-SIR and

BS-SIR. Additionally, the methods were applied to a clinical dataset. The determined CIs differed substantially across the

methods. The CIs of SE, BS, LLP and BAY were not in line with the reference in datasets with B 10 subjects. The best

alignment was found for the LLP-SIR, which also provided the best coverage results among the SIR methods. The best

overall results regarding the coverage were provided by LLP and BAY across all parameters and dataset sizes. To

conclude, the popular SE and BS methods are not suitable to derive parameter uncertainty in small datasets contain-

ing B 10 subjects, while best performances were observed with LLP, BAY and LLP-SIR.

Keywords Parameter uncertainty � Small datasets � Sampling importance resampling � Bootstrap � Log-likelihood profiling �
LLP-SIR

Introduction

Nonlinear mixed-effects modelling has gained an impor-

tant role in quantitative clinical pharmacology, drug

development and therapeutic drug use [1, 2]. In many

applications when non-linear mixed effects modelling is

employed, small datasets containing ten or even fewer

subjects appear regularly [3–5], for example due to ethical

concerns, high risks, high costs, low availability of patient

(sub)groups of interest to the study or multiple factors.

Conclusions drawn from such ‘small-n’ studies depend on

the estimated parameters as well as parameter uncertainty.

Wrongly determined parameter uncertainty can lead to

inaccurate stochastic simulation studies and might also

adversely influence power calculations derived from clin-

ical trial simulations [6, 7].

The calculation of the standard error (SE) based on the

inverse of the Fisher information matrix of the covariance

step is the fastest, easiest and most popular way to obtain

an estimate of the parameter uncertainty [8]. However,

parameter uncertainty via SE has been discussed critically:

Numerical difficulties in the covariance step leading to

implausible SE’s and the assumption of normal distribution

of the SE-based confidence intervals (CI) are significant

disadvantages of the SE technique [9, 10].
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Bootstrapping (BS) is a well-accepted strategy for

assessing parameter uncertainty. BS does not depend on a

successful covariance step and allows for asymmetry of the

derived CIs. The BS became a gold standard technique to

evaluate parameter uncertainty and computation time is

often seen as the only major drawback of the BS. However,

heterogeneous sampling and unbalanced study designs

violate the assumption that each sample contributes evenly

balanced information leading to incorrect confidence

intervals in these situations [11]. Accordingly, datasets

with low subject numbers or low homogeneity of the

information content between subjects might not be suit-

able for the BS technique [12].

Log-likelihood profiling (LLP, also referred to as

objective function mapping) is another, less frequently

used method to assess parameter uncertainty employing the

likelihood ratio test [8]. As with BS, LLP also does allow

for asymmetric confidence intervals. Its computational

demand is usually between BS and SE. The main drawback

of LLP is its univariate character, which hampers using the

results of an LLP run for stochastic simulations, which

preferably consider possible correlations between parame-

ters. First steps towards an N-dimensional LLP were taken

by Denney and colleagues in 2012, but this approach is not

yet available to the pharmacometric community [13].

Bayesian methods (BAY) provide a posterior distribu-

tion of the parameters, which allows deriving 95% CI’s to

assess parameter uncertainty [14]. They are faster as

compared to BS and provide dense information within one

run giving the posterior distribution, including correlation

between parameters and possible asymmetry of confidence

intervals. Thus, these approaches directly provide access to

parameter uncertainty. In addition, BAY methods can be

used sequentially after a frequentist estimation using the

final parameter estimates as uninformative prior to derive

confidence interval using the posterior distribution [14].

The sampling importance resampling (SIR) procedure

was proposed to overcome some of the aforementioned

limitations associated with the use of SE, BS and LLP [9].

SIR is faster than BS. It can be conveniently used through

integration of the SIR algorithm into PsN [15, 16], and also

computes asymmetric confidence intervals. SIR requires a

proposal distribution to initiate the sampling procedure and

commonly the SE, BS or an educated guess is utilized, but

it is unclear which proposal distribution might provide

optimal results, in particular in small datasets.

The aim of this study was to (i) systematically evaluate

commonly used methods to assess parameter uncertainty in

very small datasets containing 5 subjects, small datasets

containing 10 subjects and regular datasets containing

50 subjects and (ii) to compare and define optimal methods

to derive proposal distributions for SIR for application in

small datasets.

Methods

Dataset and model

In order to evaluate the approaches to assess parameter

uncertainty in small datasets, clinical trials with very small

datasets, small datasets and regular datasets containing 5,

10 and 50 subjects, respectively, were simulated. The

pharmacokinetic model used for the simulations was a

common two-compartment model (Clearance (CL): 10 L/

h, central volume of distribution (V1): 20 L, inter-com-

partmental Clearance (Q): 5 L/h, peripheral volume of

distribution (V2): 30 L) with inter-individual variability on

Clearance (IIVCL: 0.1 (variance, log-normal distribution)

and the central volume of distribution (IIVV1: 0.1 (vari-

ance, log-normal distribution)) and a proportional residual

error model (15% CV). No covariates or inter-occasion

variabilities were included. The design of the simulation

datasets was motivated by realistic examples, containing a

rather high number of samples per patient (n = 10) mea-

sured in the first and third dosing occasions. The sampling

times were optimized iteratively in simulation and esti-

mation studies (data not shown) and set to 0.7, 1.2, 2, 5, 7,

16.7, 17.2, 19, 20, 23 h resulting in an unbiased sampling

design. The simulated dosing regimen was 1000 mg every

8 h with an infusion duration of 30 min. The model was

encoded in NONMEM 7.4.3 (ICON, Gaithersburg, MD,

USA) and the analytical solution of the two-compartment

model (ADVAN3) was used. FOCE-I (first order condi-

tional estimate with interaction) was used for parameter

estimation. The simulations, estimations and methods to

determine parameter uncertainty were controlled using R

3.6.1 calling NONMEM and PsN 4.7.0 [15].

Determination of confidence intervals

The 0–95% CIs of stochastic simulation and estimation

studies (SSEs, n = 1000) performed with PsN were used as

a reference for parameter uncertainty.

Clinical trial simulations (n = 1000) were performed

with NONMEM and the parameters were re-estimated for

each dataset. The parameter uncertainty in every simulated

study was assessed with SE, BS, LLP, BAY and the SIR

variants SE-SIR, BS-SIR and LLP-SIR, using either SE,

BS or LLP as input to the proposal distribution. Statistics

on potentially terminated runs of each technique were

collected.

Based on the SE derived from the variance–covariance

matrix, the 0%, 20%, 40%, 60%, 80%, 90%, and 95% CIs

around the final parameter estimates were calculated.

Subject based BS (n = 1000) was performed in R calling

NONMEM for every simulated dataset and the 2.5th–
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97.5th, 5th–95th, 10th–90th, 20th–80th, 30th–70th, 40th–

60th and 50th percentile were evaluated to determine the

respective CIs.

LLP was performed using the PsN routine with an

objective function increase criterion of 3.84, 2.706, 1.642

and 0.455 assuming the V2 distribution with one degree of

freedom to determine the 95%, 90%, 80% and 50% CI,

respectively, as well as the maximum likelihood estimate

corresponding to the 0% CI.

BAY was performed using two approaches, i.e. Markov

Chain Monte Carlo (MCMC) and no-u-turn sampling

(NUTS) MCMC Bayesian analysis. NONMEM 7.4.3 was

used according to standard settings provided with unin-

formative priors [17]. The final parameter estimates

derived by FOCE-I were used as priors. For MCMC and

for NUTS, 30,000 and 2000 iterations were used, respec-

tively. The 2.5th–97.5th, 5th–95th, 10th–90th, 20th–80th,

30th–70th, 40th–60th and 50th percentile of the posterior

distribution were evaluated to determine the respective CIs.

In addition, in an exploratory analysis, to derive an SSE

reference for the BAY estimation, which might diverge

from the FOCE-based SSE reference, the 0–95% CI of the

mean of the posterior distribution across 1000 simulations

and estimations with the true parameters as uninformative

priors was used to determine the reference parameter

uncertainty (MCMC-SSE and NUTS-SSE).

For SIR based on the proposal distribution provided by

the variance–covariance matrix, the PsN routine was used,

which provides a 0%, 40%, 80%, 90%, and 95% CI for

each parameter. The PsN standard settings for SIR were

used as recommended by Dosne et al. [16], i.e. five itera-

tions with sample vectors of M = 1000, 1000, 1000, 2000,

2000 and resample vectors of m = 200, 400, 500, 1000,

1000, respectively. In case of a failed covariance step, an

educated guess (20% relative standard error) was provided.

For the BS-SIR, the BS results that were generated as

described above, were used as a proposal distribution via

the PsN routine.

The LLP-SIR, newly introduced in this work, combines

the results of the LLP as a basis for the proposal distri-

bution for the SIR. The 95% CI was transformed to a rel-

ative standard error (rse) assuming a normal distribution

(± 1.96, a = 0.05) with the difference between 2.5th and

97.5th percentile (P2.5 and P97.5) in relation to the median

(P50) of the LLP result:

rse ¼
P97:5�P2:5

2�1:96

P50

� 100

The rse calculated for each parameter served as an

educated guess in the SIR PsN routine. Relative standard

errors[ 200% were set to 200%.

Evaluation of the shape and distribution
of the confidence intervals

The median of the lower and upper limit of the CIs

determined by the methods SE, BS, LLP, BAY, SE-SIR,

BS-SIR and LLP-SIR in 1000 simulations, were compared

to the SSE results. Additionally, the 80% CIs around 2.5th

and 97.5th percentile, reflecting the variability of the lower

and upper value of the parameter uncertainty across the

1000 simulations, were calculated and compared.

Evaluation of coverage

The 95% coverage was calculated as the fraction of the

simulations, where the 95% CI included the true value.

When the determination of the parameter uncertainty and

consecutively of the 95% CI failed, for instance, when the

covariance step did not complete, this simulation was

excluded for the calculation of the coverage of this method.

Clinical dataset example

All methods, SE, BS, LLP, BAY, SE-SIR, BS-SIR and

LLP-SIR, were also applied to a clinical dataset example

[5] and the 95% CI by the different methods were com-

pared. The dataset originating from a hemodialysis study

with 11 patients contained 180 blood and 109 dialysate

samples thereby represented a typical example for a small-n

study. The model was a two-compartment model with two

parameters describing the clearance of hemodialysis and of

hemodiafiltration, respectively, and a covariate relationship

of bilirubin on CL as well as IIV on CL, V1, Q and

CLCVVHD (clearance of continuous veno-venous

hemodialysis).

Results

Central tendency of confidence intervals

The central tendency of the CIs determined by the different

methods is presented in Fig. 1. The median uncertainty

(n = 1000 simulations) of each parameter was determined

by SE, BS, LLP, BAY SE-SIR, BS-SIR and LLP-SIR and

compared to SSE results. As expected, the 0–95% CIs were

narrower with increasing study size. While CIs across

methods diverged at small sample sizes, the CIs of the

different approaches were more similar at higher sample

sizes.
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Structural parameters

For very small datasets containing five subjects, for the

structural parameters, LLP provided the highest agreement

with the SSE reference, whereas BAY overestimated the

CIs and the other techniques tended to underestimate the

CIs. For datasets C 10 subjects, CIs derived for the struc-

tural parameters were less dependent on the chosen tech-

nique and closer to the SSE reference. For example, the

boundaries of the 95% CI (normalized) for the dataset size

of 10 subjects for CL ranged from 0.814 to 0.842 and from

1.19 to 1.23 for the lower and upper boundary, respec-

tively, across the methods SE, BS, LLP and SIR. Larger

CIs were provided by BAY (e.g. for CL the lower boundary

ranged from 0.77 to 0.80 and upper boundary ranged from

1.27 to 1.31 in a dataset containing 10 subjects). As it can

be expected, the SSE reference derived for the BAY

methods was not always in line with the FOCEI-based SSE

reference (Supplementary Fig. 1). However, the CIs by

BAY in datasets containing B 10 samples were also not

always in line with the MCMC-SSE and NUTS-SSE,

where CIs were increased as compared to the SSE refer-

ence (Supplementary Figure S1).

Variability parameters

Variability parameters, in particular CIs of IIV, were

highly variable across methods. For example, the normal-

ized 95% CI for the IIV of CL in a dataset of 10 subjects

varied from 0.199–0.498 and 1.407–3.10, for the lower and

upper boundary, respectively. A bias in the 0% CI, i.e. the

point estimate, occurred for the datasets containing B 10

subjects in the SSE reference and most pronounced in the

BS, that by definition almost always underestimates vari-

ability in small datasets. The median derived by BAY

methods overestimated the 0% CI. The bias was higher for

the MCMC-SSE and NUTS-SSE (Supplement Figure S1).

For the residual error, a similar, but less marked pattern as

compared to the IIVs was observed.

Fig. 1 Normalized median of the parameter uncertainty expressed as

0–95% confidence intervals (CI) by parameter and evaluation

approach across datasets containing 5–50 subjects compared to

stochastic simulation and estimation (SSE) ‘reference’ CIs. CIs

calculated from the SE: standard errors derived from the variance

covariance matrix, BS: bootstrap, LLP: log likelihood profiling, SIR:

sampling importance resampling, SE-SIR: SIR on SE based proposal

distribution, BS-SIR: SIR on BS based proposal distribution, LLP-

SIR: SIR on LLP based proposal distribution, MCMC: Markov Chain

Monte Carlo Bayesian analysis, NUTS: no-u-turn sampling MCMC.

IIV: interindividual variability. N = 1000 simulations
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The SE and BS in median underpredicted the reference

CIs provided by the SSE of IIVCL and IIVV1. In contrast,

the LLP overpredicted the upper boundary of the 90% and

95% CI of the IIV parameters. BAY was not in line with

the SSE reference and overestimated the reference across

all CIs for the lower and upper boundary. BAY was more

in line with the MCMC-SSE and NUTS-SSE that differed

substantially from the SSE reference for the IIV parameters

in datasets containing B 10 subjects. The lower boundary

was overall captured better across all methods in datasets

containing B 10 subjects. In contrast to the upper bound-

ary, SE and BS were more in line with the lower boundary

of the SSE reference than LLP.

The result of the SIR was dependent on the proposal

distribution: The BS-SIR provided too low 95% CIs for

IIVs, similar to the SE based SIR. The LLP-SIR was best in

line with the SSE reference CIs, even for very small

datasets with only 5 subjects.

Termination statistics

The occurrences of terminations are presented in Table 1. The

covariance step failed in 31 of 1000 estimations for datasets

with 5 subjects and accordingly the SE-SIR was based on an

educated guess (20% rse) in this case. Hence, in 969/1000

scenarios the variance covariance matrix was used as a pro-

posal distribution in SE-SIR. Less than 2% of the BS runs

terminated in 95% of simulations even for very small datasets

with only 5 subjects. The statistics on the occurrence of rel-

ative standard errors[ 200% by LLP being set to 200% for

the LLP-SIR can be found in Supplementary Table 1.

Distribution of confidence intervals

The distribution of the CIs determined by the different

methods is presented in Fig. 2. The parameter uncertainty

assessed by the different methods was in parts highly

variable, in particular in the case of very small datasets

(five subjects) for all parameters, and for small datasets

(ten subjects) especially for IIV parameters.

For SE, the 80% CI around the upper limit of the 95%

CI was overall too low for the IIVs and its lower boundary

was even lower than the true value (respectively 1, when

normalized) for small and very small datasets (e.g. 0.74 for

IIVCL in small datasets containing ten subjects).

For BS, a similar pattern regarding the CIs of the upper

limit was observed, which were also too low and crossed 1

for the IIVs in small and very small datasets.

The LLP provided high uncertainty around the upper

limit of the CI of the IIVs in small and very small datasets.

For example for IIVCL for datasets with five subjects, the

80% CI of the upper limit of the 95% CI was 1.1–7.7 with a

median of 3.3 while the upper limit of the SSE reference

was 2.2. LLP varied less as compared to all SIRs for the

lower limit of the IIV parameters.

For BAY, the highest uncertainty around the upper

limits of the IIV parameters and V2 was observed for

datasets with B 10 subjects. While small heterogeneity

between SE, BS, LLP and SIR in the CIs of structural

parameters in datasets containing 10 subjects was found,

BAY provided different CIs and was only more in line with

the other methods for datasets containing 50 subjects. The

uncertainty of the lower limit of the 95% CI was smaller

and more in line with other methods.

For SIR, the CIs around the upper percentile were dif-

fering depending on their proposal distribution: The SE-

SIR and the BS-SIR derived upper CI limits varied less as

compared to the LLP-SIR. However, for IIVs in datasets

containing B 10 subjects, the 80% CI around the upper

limit crossed 1 more markedly for SE-SIR and BS-SIR

than for LLP-SIR. In general, the SIR results followed the

tendency of their proposal distribution but improved them

Table 1 Statistics on the

termination of parameter

uncertainty determination by

method

Method Number of terminations (n = 1000 simulations)

Subjects in dataset 5 10 50

SE 31 1 0

BSa (mean, 5th, 95th percentile) 3.1 (0, 17) 0.09 (0, 1) 0.002 (0, 0)

LLP 0 0 0

SE-SIRb 0 0 0

BS-SIR 8 0 0

LLP-SIR 2 0 0

MCMC 0 0 0

NUTS 0 0 0

aTerminated runs per n = 1000 BS over 1000 simulations
bProposal distribution was SE in 969 simulations and educated guess in 31 simulations, where covariance

step failed
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with regard to the SSE reference. The lower limit of the

IIVs was captured well by all SIR methods, but drawing

reliant conclusions is problematic, since the lower bound of

the CI of the IIVs tended to zero.

Evaluation of coverage

The results of the evaluation of the coverage of all included

methods is presented in Fig. 3. For a 95% CI, a coverage of

the true value of 95% is to be expected in theory. Indeed,

for all structural parameters in regular datasets with 50

subjects, the coverage was approximately 95% (92%–

95.9% over all methods and all structural parameters). Yet,

for the small and very small datasets contain-

ing B 10 subjects, the coverage was heterogeneous among

the methods (77.7%–94.7% and 88.6%–98.0%, for datasets

with five and ten subjects, respectively, over all methods

and all structural parameters). In general, the structural

parameters were covered better than the variability

parameters, but even for CL, the coverage was\ 90% for

all methods, except BAY (93.5–93.6%) in very small

datasets with five subjects.

SE did not cover adequately the true parameters for

small and very small datasets. For example, in small

datasets containing ten subjects, median coverage (range)

was 90.9% (88.6–92.9%) for structural parameters, 76.8%

(76.6–77.1%) for IIV parameters.

BS did provide the lowest coverage rates for the IIV

parameters in small and very small datasets. Here, in small

datasets containing ten subjects, median coverage (range)

was 90.6% (89.0–92.3%) for structural parameters, 74.6%

(74.4–74.7%) for IIV parameters.

LLP provided the overall highest coverage without

exceeding 95% coverage substantially (88.9–95.6% across

all parameters and dataset sizes). This was reflected also in

small datasets containing ten subjects, where median cov-

erage (range) was 93.9% (92.6–94.8%) for structural

parameters and 92.9% (92.6–93.1%) for IIV parameters.

BAY provided highest coverage rates. Overall, coverage

by NUTS was closest to 95% indicated by the lowest rel-

ative root mean squared error across all dataset sizes and

parameters, that was in range with MCMC and LLP (3.3%,

2.7%, 2.8% for MCMC, NUTS and LLP, respectively).

BAY exceeded coverage rates of 95% to the highest extend

but was varying to a small amount across all dataset sizes

and parameters (86.3%–98.0%).

For SIR, the coverages were dependent on the respective

proposal distribution. For example, in small datasets con-

taining ten subjects, median coverage (range) by SE-SIR

was 89.3% (89.0–89.5%) for structural parameters, 82.1%

(81.8–82.3%) for IIV parameters and by BS-SIR was

Fig. 2 Normalized 10th and 90th percentile of the upper and lower

limit of the 95% CI of the parameter uncertainty by parameter and

evaluation approach across datasets containing 5–50 subjects. Black

lines indicate the 95% confidence interval determined by stochastic

simulation and estimation; dashed lines indicate the true parameter

value
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90.2% (89.3%–90.4%) for structural parameters, 85.0%

(84.1%–85.8%) for IIV parameters. The highest coverage

amongst the evaluated SIR methods in small and very

small datasets was reached by the LLP-SIR. Median cov-

erage (range) for LLP-SIR in small datasets containing 10

subjects was 91.9% (91.5%–92.8%) for structural param-

eters and 88.8% (88.2%–89.3%) for IIV parameters.

The pattern in the coverages reached by the 40–90% CIs

was similar with respect to the different methods, param-

eters and number of subjects in the dataset as compared to

the 95% CI (Supplementary Fig. 2).

Clinical dataset example

The real dataset example including 11 patients revealed a

similar pattern of the evaluated methods compared to the

simulation results (Fig. 4). The uncertainty for the struc-

tural parameters was similar when determined by SE, BS,

LLP, SE-SIR, BS-SIR and LLP-SIR and increased when

determined with BAY. However, the uncertainty calculated

via SE, the only tested method that did not allow skewness,

differed from the others, when a skewed uncertainty was

found by BS, LLP, BAY and SIR (e.g. 0.34–1.66 vs.

0.64–1.66 normalized uncertainty for V1 as determined by

SE and LLP-SIR, respectively). For IIV parameters, the

predicted parameter uncertainty was higher and varied

more substantially. LLP and BAY provided the largest

95% CI for IIVs, while SE and BS gave much smaller CIs.

The SIR results were dependent on the proposal distribu-

tion and the LLP-SIR suggested higher uncertainty than

SE-SIR and BS-SIR for all IIV parameters.

Discussion

The present study comprises an extensive comparison of

the performance of different techniques to assess parameter

uncertainty in small datasets. The parameter uncertainty

determined by SE, BS, LLP, BAY, SE-SIR, BS-SIR and

LLP-SIR differed especially for small and very small

datasets with B 10 subjects, while the differences were less

marked in larger datasets with 50 subjects. The highest

influence was seen on parameters describing the random

effects, while fixed effect parameters of the non-linear

mixed effect models were less affected. Both, low number

of subjects in dataset size and random parameter effects

were factors increasing uncertainty. Accordingly, the

higher the parameter uncertainty was, the higher were the

differences in the performance of the methods to assess

parameter uncertainty (Supplementary Figure S3). For a

parameter uncertainty\ 15% estimated by SE, all methods

provided similar results regarding the alignment with the

SSE reference. Despite this homogeneity for estimated

parameter uncertainty at\ 15% by SE, the coverage was

highly variable and even below 80% for some methods

(Supplementary Figure S4). The different behavior of the

5 10 50

60 70 80 90 100

60 70 80 90 100

60 70 80 90 100

IIVV1 

IIVCL

properror

V2 

Q

V1 

CL

coverage [%]
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BS
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SE-SIR

BS-SIR

LLP-SIR

MCMC

NUTS 

Fig. 3 Coverage of the 95% CIs by parameter and evaluation approach across datasets containing 5–50 subjects
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methods to determine parameter uncertainty was confirmed

in the clinical dataset example.

SE and BS were not in line with the SSE results for

datasets with B 10 subjects. Especially for IIV parameters,

the estimated CIs were too narrow and the IIV was

underestimated in median. In very small datasets with 5

subjects also the CIs of structural PK parameters were

estimated too narrow. Moreover, the coverage rates of SE

and BS were alarmingly low. Even for regular datasets with

50 subjects, the parameter estimates of the IIV were better

covered by LLP, BAY and SIR than SE and BS (Fig. 3).

While it is widely accepted that the SE is less robust and

unreliable, BS is still considered gold standard to assess

parameter uncertainty. However, our results corroborate

the notion, that both BS and SE are inappropriate methods

to assess parameter uncertainty in small datasets [10, 11].

LLP displayed a good performance to derive CIs for the

structural parameters over all dataset sizes and was in line

with the SSE reference. For the IIV parameters, LLP pro-

vided very conservative, yet inflated CIs. In particular, the

upper limit of the 95% CI was overestimated in median

with a wide distribution across the 1000 simulations for IIV

parameters as indicated by the wide distribution of the

upper CI limit. The wider CIs might have been beneficial to

reach a high coverage rate close to 95% for the methods

LLP and BAY. Nonetheless, the coverage was closest to

95% with the LLP and was satisfactory even for small and

very small datasets with B 10 subjects.

Fig. 4 Normalized parameter uncertainty (95% CI) by parameter and

evaluation approach in the real data example. CVVHD(F): continuous

veno-venous hemodialysis (hemodiafiltration); prop. error plasma

(dialysate): proportional error of plasma (dialysate) measurements;

Bili: bilirubin
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Standard deviations and point estimates like the mean of

the posterior distribution of BAY can provide comparable

results to FOCE methods, which was confirmed for data-

sets containing 50 subjects in this study. BAY is considered

a useful method to assess parameter uncertainty for clinical

trial simulations [6] and tools are available to provide

uncertainty information for simulations [18]. However, for

small datasets with B 10 subjects the BAY methods were

in median not in line with the FOCE-I based SSE reference

and provided inflated confidence intervals that resulted in

coverage rates partly exceeding 95%. Overall, the coverage

rates reached with NUTS were closest to the desired 95%

across all methods and parameters and comparable to

coverages reached by LLP and MCMC. The point esti-

mates derived by the MCMC-SSE and NUTS-SSE were

overestimating the true variability in these small datasets.

A potential explanation is the increased influence of out-

liers, since the MCMC-SSE and NUTS-SSE were based on

the mean and not on median of the posterior distribution.

Nonetheless, using a different estimation method can lead

to a different point estimate and thus can also alter the

‘true’ parameter uncertainty. Consequently, the estimated

parameter uncertainty by BAY was more in line with

BAY-based SSE runs, i.e. the MCMC-SSE and NUTS-

SSE. A systematic comparison between estimation meth-

ods and their respective parameter uncertainty was beyond

the scope of the presented study, which focused on typical

frequentist FOCE-I-based estimation. Yet, the obtained

results in this study are in line with Dartois et al. [10], who

observed the same tendency of larger parameter uncer-

tainty estimated by BAY.

The SIR represents a recent addition to the pharmaco-

metric community to assess parameter uncertainty [9].

A SIR run requires a proposal distribution. Usually, the

variance covariance matrix is used. Alternatively, a small

BS run has been also proposed in case the covariance step

failed [9]. However, it is unclear which proposal distribu-

tion might provide optimal results leading to accurate CIs

with high coverage. Our study showed that the CIs derived

by the SIR method were dependent on the respective pro-

posal distribution, which was particularly important in

small datasets with B 10 subjects. Contrarily, for datasets

with 50 subjects, all studied proposal distributions were

appropriate and the SIR results were virtually identical

when comparing their central tendency and coverage rates.

The LLP-SIR, i.e. the SIR using an LLP run as proposal,

was superior as compared to the SE-SIR and BS-SIR with

regard to the alignment with the SSE reference (Fig. 1) and

the coverage of the true parameter (Fig. 3). An explanation

for this behavior of the SIR technique can be found in the

way the algorithm operates: If the proposal distribution is

narrower than the true distribution, it is more difficult for

the SIR algorithm to flatten the distribution than to narrow

it. Therefore, an improper proposal distribution requires

diagnosis and inflated proposal distributions might be

necessary [9]. Graphical evaluation is recommended to

detect limitations in the proposal distribution, the number

of sample vectors or the ratio of sample vectors to resample

vectors. While other proposal distributions could provide

valuable information to the SIR method regarding the

covariances (non-diagonal elements), this was not possible

with the LLP method. The LLP was a natural candidate for

the investigation of benefits in combining methods to

derive parameter uncertainty for small datasets with SIR

due to missing covariance handling and the option of

providing only diagonal elements as input to the SIR-PsN

routine. However, in scenarios with highly correlated

parameters other methods like importance-sampling vari-

ance covariance matrix (IMP) in combination with the SIR

could be of value, in case SIR alone could not overcome

this missing information. Our study revealed that the LLP

might provide a useful proposal distribution to SIR.

Combining LLP and SIR helps to also overcome draw-

backs of the LLP technique itself, i.e. inflated CIs and

univariate parameter uncertainty. The LLP-SIR was suc-

cessfully applied to a clinical small-n dataset example and

tendencies observed here were in line with the simulation

results. Accordingly, we cannot identify barriers to over-

come the usage of BS or SE in practice for small datasets

by using BAY, LLP or LLP-SIR instead.

Some limitations of this study shall be discussed. The

in-silico study was performed in NONMEM using FOCE-I

in a single case of a two-compartment model. Although the

scenario is typical for a small-n study, the results might be

different in substantially different scenarios. In contrast to

BAY estimation methods, where parameter uncertainty via

the posterior distribution is available, for FOCE-I the best

way to assess parameter uncertainty is unclear and was

therefore in the focus of this study. Not all existing

approaches to assess parameter uncertainty were compared,

such as parametric BS or N-dimensional LLP, but these

approaches are less common or not used, respectively, in

the pharmacometric community.

To conclude, the approach used to assess parameter

uncertainty requires thorough consideration and not every

method, which is appropriate and well accepted for regular

and large datasets, is suitable for small datasets. LLP and

BAY provided the best coverages regarding datasets con-

taining B 10 subjects while LLP was not over exceeding

the desired coverage rates. LLP and in particular BAY

provided conservative confidence intervals. An appropriate

coverage close to the anticipated coverage is essential for

interpretation of the CIs. Hence, LLP and BAY might be

preferred techniques when this information is in the focus.

SIR was sensitive to the proposal distribution and benefited

from LLP as a proposal distribution as compared to SE or
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BS. The LLP-SIR provided the highest agreement of the

parameter uncertainty distribution with the SSE reference.

Hence, the LLP-SIR might be the preferred technique when

parameter uncertainty is included in stochastic simulations.
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