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Germany

Abstract

Important biological processes like cell signalling and gene expression have noisy components and are very complex at the
same time. Mathematical analysis of such systems has often been limited to the study of isolated subsystems, or
approximations are used that are difficult to justify. Here we extend a recently published method (Thurley and Falcke, PNAS
2011) which is formulated in observable system configurations instead of molecular transitions. This reduces the number of
system states by several orders of magnitude and avoids fitting of kinetic parameters. The method is applied to Ca2z

signalling. Ca2z is a ubiquitous second messenger transmitting information by stochastic sequences of concentration
spikes, which arise by coupling of subcellular Ca2z release events (puffs). We derive analytical expressions for a mechanistic
Ca2z model, based on recent data from live cell imaging, and calculate Ca2z spike statistics in dependence on cellular
parameters like stimulus strength or number of Ca2z channels. The new approach substantiates a generic Ca2z model,
which is a very convenient way to simulate Ca2z spike sequences with correct spiking statistics.
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Introduction

The molecular state transitions and interactions inside cells

forming pathways and functional units are inherently random [1–

3]. Some cellular subsystems involve sufficiently large molecule

numbers to be well described by deterministic mean field

dynamics, but many are best described as stochastic processes.

Additionally, cells show considerable heterogeneity even within

clonal populations. Biological noise and cell-to-cell variability have

been identified and studied in chemotaxis [4], gene expression [5],

cell signalling [6–8] and cell differentiation [9,10]. A variety of

mathematical strategies can be used to analyse these stochastic

dynamical systems, including approximation techniques such as

Langevin and Fokker-Planck Equations [11,12], and exact

methods like the chemical master equation or its simulation by

the Gillespie algorithm [13]. Approximation techniques are often

based on the assumption of Gaussian white noise, which is only

valid for large copy-numbers of identical components and

fluctuations which are small compared to the mean value.

However, in biological processes like gene expression [1] or

Ca2z dynamics [14,15], the change of state of a single molecule

may have a huge impact on systems dynamics (see also [16]). To

describe such systems without rough approximations, we recently

developed a new modelling framework based on emergent

behaviour of biomolecules [17–19].

Ca2z is a ubiquitous second messenger transmitting informa-

tion in many cases by repetitive cytosolic concentration spikes

[14,15,18]. An important class of Ca2z signals is mediated by

Inositol-1,4,5-trisphosphate (IP3 ), which is produced in response

to hormonal activation of cell surface receptors [14,15]. IP3 then

binds IP3 receptors (IP3Rs ) in the endoplasmic reticulum (ER)

and thus sensitises them for activation by Ca2z. IP3Rs are

organised as clusters of about 1 to 20 IP3R molecules [20–22].

Active IP3Rs act as Ca2z channels, releasing Ca2z ions from the

ER lumen into the cytosol. Upon sensitisation by IP3 they are

successively activated by Ca2z -induced Ca2z release (CICR).

This mechanism is based on the opening probability of IP3Rs,

which increases with the local Ca2z concentration, up to a

threshold value where further increase of the Ca2z concentration

becomes inhibitory [23,24]. The outflux of Ca2z eventually stops

either because of depletion of the ER Ca2z stores or the threshold

½Ca2z� for channel inhibition is reached. Sarco-endoplasmic

reticulum Ca2z ATPases pump Ca2z back into the ER after

release. The transient increases in cytosolic ½Ca2z� trigger

downstream effects like activation of protein kinase C [15,25].

The clustering of IP3Rs implies that global cell-wide Ca2z signals

result from a hierarchic cascade of single channel opening (‘blips’)

over cluster opening (‘puffs’) to opening of several clusters (‘wave’

or ‘spike’), which arise when open clusters open neighbouring

clusters due to Ca2+ diffusion and CICR. This cascade is well

characterised by live cell imaging and mathematical modelling

studies [14,15]. We and others have recently demonstrated that

cellular Ca2z signals are repetitive stochastic events [6,18,26,27],

although at certain conditions they appear regular and have long

been analysed with deterministic mathematical models [28,29].

Thus, the Ca2z spikes arise by a multiscale stochastic process

emerging by clustering of IP3Rs. If we seek for a theory to
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intracellular Ca2z signalling, what are the experimental observa-

tions such a theory should explain? Ca2z spike sequences are

random with average interspike intervals (ISI) from a few tens of

seconds to hundreds of seconds. Due to this random spiking,

simulation of individual time series of the Ca2z concentration is

less meaningful than with deterministic limit cycle oscillators.

There are, however, well defined properties of the stochastic

sequences characterising the system. The moment relation

between the standard deviation s and the average Tav of ISI is

linear with a positive slope between 0.2 and 1 [6], the slope of the

moment relation of individual cells agrees with the population

relation [30,31], i.e. it is robust against cell-to-cell variability and

cell type specific [32]. These results were established by single cell

experiments with astrocytes, microglia, PLA stem cells and HEK

cells [6]. The ISI obey simple two-parameter distributions [6].

Weakening spatial coupling between IP3R clusters by Ca2z

buffers like EGTA destroys cellular spikes and any variation of

Ca2z signalling on their time scale [27]. Therefore, a mechanistic

theory should be able to explain the emergence of cellular spiking

on the basis of cluster properties and cluster coupling only.

Moreover, the theory should link the statistical properties to

biological parameters like stimulation strength and buffer concen-

trations.

We can meet all those requirements by an approach called

hierarchic stochastic modelling [17]. What is measured in vivo can

be correctly described only by waiting-time probabilities since it

represents transitions between observable states like ‘open’ or

‘closed’ of a specific IP3R cluster. Hierarchic stochastic modelling

deals with waiting-time probabilities for state-changes in a reduced

state-space. The reduction of the state space focuses on functional

or observational aspects of the system. In contrast the full state

space contains all biochemically possible states of the involved

molecules. Their dynamics can then be described by rate laws

yielding the usual chemical master equation. To avoid computa-

tional overhead by computing non observable state transitions and

facilitate analytic solutions, all microscopic states corresponding to

one function (e.g. for an ion channel ‘open’) are subsumed into one

observable state. The set of all observable states forms the reduced

state-space. This entails non-exponential waiting-time probabilities

instead of rate-laws for the description of transitions between the

observable states.

Here, we develop a convenient solution technique for hierarchic

stochastic systems by the Laplace transform, which directly leads

to analytical expressions for statistical properties of important

system variables. Moreover, we present a minimal mechanistic

model for stochastic Ca2z spikes based on recent data from live

cell imaging. We provide analytic approximations for the

dependence of system statistics on biological parameters. Finally,

based on the observation of a very robust time scale separation in

the mechanistic model, we find a surprisingly convenient

description of Ca2z spike statistics, which is in excellent

agreement with mechanistic models and with experimental data.

Results

Cellular Ca2z dynamics is a multiscale stochastic process driven

by huge gradients in the cytosolic Ca2z concentration, and

detailed computer simulations are difficult to implement and time-

consuming [14,32]. A concise, analytically treatable mechanistic

model was published only recently by two of us [17]. In the

following, we start by explaining the method that made this

possible and presenting an extension to the method, which is

solution by Laplace transform of generalised exponential distri-

butions. After that, we construct the input data required for the

modelling approach in terms of analytical functions of cellular

parameters. The third section analyzes a minimal mechanistic

Ca2z model, which allows for analytical solutions and and

elucidates the role of a global negative feedback. Finally, based on

that analysis, we present a proper derivation of a very simple

description of stochastic Ca2z dynamics called generic model,

which very nicely describes the experimental Ca2z spike statistics.

Hierarchic Stochastic Modelling Analysed by the Laplace
Transform

The traditional formulation of a stochastic model starts from the

state transitions of the IP3R subunits [14]. In most single channel

models [33], three binding sites are assumed for each of the four

subunits, one activating and one inhibiting site for Ca2z and one

site for IP3. A complete stochastic description determines the time

course of the probability for each system state. Their dynamics are

described by the master equation [11].

L
Lt

P
j
i(t)~

XN

l~1

qliP
j
l(t){qilP

j
i(t)

h i
: ð1Þ

N is the number of system states (N~? is possible) and

P
j
i(t)~P(i,tDj,0) is the conditional probability that the system is in

state i at time t conditioned by being in state j at time t~0. The qil

are the rates for state transitions i?l (see Table 1 for a summary of

the notation). Figure 1A illustrates the state scheme of a

hypothetical receptor channel molecule x with only four states

x1, . . . ,x4 (3 closed states, 1 open state). This case can easily be

treated directly by Eq. 1. However, if we consider several

interacting molecules with more than 100 possible states each,

like those in typical ion channels [33–35], Eq. 1 becomes

intractable due to the large number of system states.

When describing a biological system with a mathematical

model, we are often not interested in all the molecular details, but

rather in few states that are accessible to experimental quantifi-

cation or are important for system function. In the case of Ca2z

dynamics the main question is whether the channel is closed or

not, and not which of the many possible closed states it is in.

Nevertheless, the channel state depends on the dynamics between

all its closed states, such that a rigorous treatment demands the

inclusion of all possible microscopic state changes into Eq. 1. We

circumvent state space explosion by lumping microscopic states

belonging to the same observable state (Fig. 1B). Consider

stochastic transitions between observable system states Sl , each

representing a set of microscopic system states. Because a sequence

of microscopic transitions occurs between two consecutive

transitions, each transition Sl?Sk is not governed by a simple

rate-law with exponentially distributed waiting-time, as in Eq. 1.

The sequence of microscopic transitions causes a non-exponential

waiting time distribution (Fig. 1C). These waiting time distribu-

tions introduce memory into the process such that the Markov

property is lost (see Text S1). The probability densities of the

waiting times until specific state transitions i?l occur, Y il(t), are

considered as input data for our Ca2z model (see Section

Materials and Methods).

For analytical analysis, we need to solve a non-Markovian

master equation determined by the Y il(t). As an extension to the

previously published theory [17], we find that analytical solutions

for the stationary occupancy probabilities in the observable system

states (see Fig. 1) can be obtained by Laplace transform followed

by solution of linear algebraic systems (see Section Materials and

Methods and Text S1). Importantly, we do not need to calculate

Hierarchic Stochastic Modelling
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the often awkward inverse Laplace transform. We can obtain the

average and standard deviation of interevent times which are key

characteristics of biological processes like Ca2z signalling or

chemotaxis [17,36]. The expressions for the moments StnT of

interevent times are particularly convenient if the system can be

represented as a linear chain with N distinct states

X[f0,1, . . . ,N{1g and state transitions 0<1< . . .<N{1 (see

Section Materials and Methods). For instance, in the case of N~3
we obtain.

StnT~({1)n Ln

Lsn

~YY01(s) ~YY12(s)

1{ ~YY01(s) ~YY10(s)

" #
D

s~0

,
ð2Þ

where ~YYil(s) denotes the Laplace transformed conditioned waiting

times. From Eq. 2, average StT and standard deviation

s~
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
St2T{StT2

p
of interevent times are readily computable.

A limiting step in this solution strategy is the availability of the

Laplace transform ~YYil(s). Multistep processes like the ones

considered here (see Fig. 1) are often well described by c-

distributions [11], which are also frequently observed in biological

dynamical systems [27,37,38]. However, expressions like Eq. 2 are

impractical for c-distributed conditioned waiting times. Instead of

that, we found that generalised exponential (GE) distributions

[39].

y(t)~al(1{e{lt)a{1e{lt ð3Þ

are very convenient for operations in Laplace space and

approximate the multistep processes leading to Ca2z spikes

equally well as c-distributions (see below). In Eq. 3, a§1 is the

shape parameter and lw0 is the scale parameter. Note that for

a~1, Eq. 3 is an exponential distribution with parameter l.

With the use of Laplace transformed GE distributions, we have

found a straight-forward strategy to solve for dynamic properties of

non-Markovian systems. Importantly, computational effort is

essentially reduced to solution of a linear algebraic system, and

thus the strategy can easily be extended to larger systems, in

contrast to the Voltera integral equations discussed in Ref. [17].

Waiting Times of Ca2z Dynamics and their Dependence on
Cellular Parameters

Intracellular Ca2z dynamics can be described in terms of an

observable open and an observable closed state of clusters of

IP3Rs [14,17,18]. All microscopic states in which all channels of

the cluster are closed belong to the observable closed state. All

other states belong to the observable open state. The subunits of

individual IP3Rs continuously change states by binding and

unbinding of regulatory molecules (microscopic dynamics), but

only the closing of the last open channel and the first opening

when all channels are closed represent transitions between the

observable states of a cluster of IP3Rs (see Fig. 1). The waiting

times until a cluster opens or closes are determined by true

probability densities, which we denote by yo(t) and yc(t),

respectively. Cellular Ca2z dynamics consist of the action of

several interacting clusters, constituting a state space S1, . . . ,SN of

possible configurations of open and closed clusters. The condi-

tioned waiting times Y ij(t) are products of the basic transition

probability yo(t) or yc(t) of a cluster and the probabilities that all

other clusters remain in their states. yc(t) can be derived from

experimental data (see Ref. [17] and Text S1 for details). yo(t)
depends on the number of IP3Rs per cluster Nch and on the IP3

Figure 1. Schematic illustration of hierarchic stochastic modelling. (A) Markovian models consider all possible changes of a molecule x, e.g.
binding of regulatory factors, production, degradation. Thus, microscopic state transitions xi?xj are governed by rate parameters qij . In the case of

IP3Rs, the qij refer to binding (unbinding) of IP3 and Ca2z to (of) their respective binding sites on certain IP3R subunits. (B) A typical path of state
changes according to (A) includes repetitive switches between individual states before a specific state of interest (here, x4) is reached. The observable
states Sl are subsets of all microscopic states (here e.g. S1~fx1,x2,x3g). In Ca2z dynamics, observable states may represent open or closed clusters
of IP3Rs. (C) Microscopic transitions xi?xj with parameters qij induce exponential waiting time probabilities qij exp ({

P
j qij t). Observable state

transitions Sl?Sk follow waiting time probabilities Y lk(t), which can have one or several maxima due to their internal dynamics.
doi:10.1371/journal.pone.0051178.g001
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concentration, which represents the strength of a hormonal

stimulus in our model. Intracellular IP3 dynamics are still an

open question and beyond our scope here. Because of CICR, the

individual opening probabilities depend on the local Ca2z

concentration, which is a function of the number of open clusters.

The value of the Ca2z concentration rise caused by an open

cluster at the locations of the other clusters gives the strength of

spatial coupling between clusters.

All parameters that modify properties of Ca2z diffusion in the

cell and describe the spatial configuration of clusters affect the

coupling [14]. Therefore, we seek for a valid analytical approx-

imation of yo(t) and its dependence on ½Ca2z�, Nch and ½IP3�,
which was not available in our previous article [17]. Recent data

from TIRF microscopy revealed key properties of yo(t) [27,40],

but are not sufficient for a closed mathematical model, because the

dependencies of the Ca2z and IP3 concentration have not yet

been established. A good approximation was achieved by using

two-parametric probability distributions like the waiting time

density of the inhomogeneous Poisson process or the c-distribu-

tion, indicating recovery times between successive opening events

[27]. However, in some cases, simple exponential distributions

without any recovery process described the data equally well

[27,40]. This coincides with our observation that single channel

models generate approximately exponential distributions at low

(basal) local Ca2z concentration [17]. This is probably because

intermediate inhibitory states are rarely reached at low ½Ca2z� in

these models [14]. Based on these findings, we assume for the

purposes of this study that the transition from 0 to 1 open clusters

(puff probability) is governed by a pure exponential distribution

with average interpuff interval as recorded for SH-SY5Y cells for

typical values of cellular parameters. For subsequent cluster

openings (1?2,2?3, . . . open clusters), we use GE distributions

(see Eq. 3), which fit the data equally well as c-distributions

(Fig. 2A) but are more convenient for operations in Laplace space.

That means, for the puff probability distribution, we set a~1 and

identify l~l0 with the puff rate.

As we have determined the functional form of the yo(t), it

remains to establish the dependencies of the distribution param-

eters l and a on the cellular parameters ½Ca2z�, Nch and ½IP3�.
Unfortunately, for such dependencies no directly usable experi-

mental data are available. However, earlier work has shown that

yo(t) can be computed from single channel models by solution of a

Markovian master equation [41]. The single channel models were

partly based on data from in vitro studies, and the new in vivo

experimental data [27] confirmed the type of distributions

resulting from those models. In particular, we adopt an

implementation of the De Young Keizer model [34,41], one of

the most accepted single channel models in the field (see Table S1

and Text S1 for details). To obtain an analytical description of the

parameters a and l, we performed simulations of the De Young

Keizer model with varying cellular parameters and inspected

functional forms matching the simulations. The base-level Ca2z

Table 1. Important mathematical symbols used in this work.

Symbol Meaning Unit

qil Markovian transition rate from state i to l s{1

P
j
i (t) conditional probability P(i,tDj,0)

I
j
il

probability flux from state i to l conditioned with Pj (0)~1 s{1

Y il (t) conditioned waiting time to go from i to l s{1

f
j
il (t)

initial function for the Volterra integral equation s{1

~gg(s) Laplace transform of function g(t)

F
j
i (t) first passage time density (FPT) for the first visit in i starting in j

vtn
w n-th moment of the FPT sn

yo(t) opening probability density s{1

yc(t) closing probability density s{1

Nch mean number of Ca2z channels involved in a puff event per cluster

½IP3� cytosolic IP3 concentration mM

c Ca2z channel closing rate s{1

a shape parameter of the GE distribution

l scale parameter of the GE distribution s{1

l0 puff rate s{1

Tav average interspike interval (ISI) s

s standard deviation of ISIs s

k(t) time dependent spike rate s{1

k0 localized spike rate s{1

j recovery rate of global feedback s{1

C1N,i coupling strength of cluster i

C14 homogeneous coupling strength for the tetrahedron model

p(t) probability density of a spike occurring at epoch t s{1

doi:10.1371/journal.pone.0051178.t001
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concentration, an important (and experimentally undetermined)

parameter needed for the simulations, was chosen by comparison

with the measured puff rate [27].

We found (Fig. 2B–C) that the parameter dependencies of the

puff rate l0 can be approximated by a Hill function.

l(x)~
Uxxmx

Lxð Þmxzxmx
, ð4Þ

where x~[IP3] or Nch. Note that Nch is a discrete variable, and

Eq. 4 should only be evaluated at integer values in this case. This is

also true for the dependencies of the parameter l of the GE

distribution on x~Ca2+,[IP3]orNch (Fig. 2D–F). Dependencies of

l0 on Nch and of l0 on ½Ca2z� are close to the linear regime

(Fig. 2C,F). The a-dependence of all parameters (Fig. 2G–I) can be

fit by another Hill equation,

a(x)~
Vxxnx

Kxð Þnxzxnx
z1, ð5Þ

where the ‘+1’ in Eq. 5 reflects the fact that GE-distributions have

a different shape at av1. The fits of analytical functions to

computed opening probabilities yo at varying cellular parameters

provide all the information needed to perform calculations of the

hierarchic stochastic model (see Text S1). Fit parameters for the

examples shown in Fig. 2 are given in Table S2.

The analytical parameter dependencies of waiting times

presented here are a huge advantage over the approach followed

in Ref. [17], where the single channel models were evaluated de

novo for each of model simulation at a certain set of cellular

parameters. In particular, Eqs. 5–4 allow for integration of the

hierarchic stochastic model into models of signal transduction

networks in future research.

Analysis of a Minimal Mechanistic Ca2z Model
Solution of the hierarchic stochastic model by the Laplace

transform is most convenient in the case of a linear chain (see

Section Materials and Methods). As applied to stochastic Ca2z

dynamics, cluster arrangements with equal distances between all

clusters and identical clusters lead to linear chain models. That can

be achieved only up to 4 clusters in a tetrahedral arrangement, but

this number of clusters leads to physiologically meaningful results

concerning spike statistics already [17], in particular in conjunc-

tion with the generic model introduced below. Further details

needed to derive the Ca2z model are given in Text S1. By using

the analytic approximations, Eqs. 3–4, we can relate cellular

parameters like the cytosolic IP3 concentration to the parameters

of the opening and closing waiting time densities.

Figure 3 shows a typical model calculation with realistic

parameters and spiking statistics. The opening probabilities

(Fig. 3A–B) are split into two temporal regimes for opening of

the first cluster with the constant rate l0 (puff probability, inset)

and successive cluster openings. If the first cluster has opened, the

probability for the opening of successive clusters is greatly

enhanced. This reflects CICR in our stochastic model. The

stationary occupancy probabilities (Fig. 3C) for the different states

can be computed from Eq. 14. We performed delayed stochastic

simulations (Fig. 3D) by methods similar to the Gillespie algorithm

[13,17] to provide a picture of the actual dynamics.

We define a spike in the tetrahedron model by opening of all

four clusters. The average ISI StT:Tav([IP3],Nch) can then be

calculated analytically by Eq. 15. Figure 4A shows that Tav

changes by about one order of magnitude with varying Nch and

½IP3�, respectively. If we suppose a realistic coverage of the cellular

parameter range, a strong cell to cell variability in terms of Tav

should be expected in experiments, and is indeed reported [6,26].

Even though we can not calculate the ISI density directly, apart

from very simple cases (see Text S1) where the inverse Laplace

transform is feasible, we can characterise it with higher moments,

which are directly available from our theory (see Methods, Eq. 15).

For standard cellular parameters as used above, we obtain a

skewness of 2 (Fig. 4B) and an excess kurtosis of 6. These are

exactly the values fulfilled by an exponential distribution, and

indeed Tav (IP3, Nch ) = s (IP3, Nch ) also holds for our results

(Fig. 4C). Thus, we conclude that the tetrahedron model yields an

exponential ISI density in the realistic parameter regime.

The surprisingly simple result of an exponential ISI density for a

large range of the biological parameters is due to the strong time-

scale separation between the relatively slow puff dynamics and the

faster excitation process up to the spiking state (see Fig. 3A). If a

puff occurs the system decides rather quickly, in comparison to the

interpuff intervals, whether it generates a global spike or relaxes

back to the ground state with all clusters closed. Hence, the system

spends most of its time in the ground state, waiting for the next

puff to occur, and the constant puff probability dominates the ISI

density. The ISI density is different from an exponential

distribution for smaller time scale separation, i.e., smaller values

of c (Fig. 4B–C). Remarkably, we find parameter regions where

the coefficient of variation (CV = standard deviation/average)

drops significantly whereas the input distribution (puff-distribution)

is purely exponential (CV = 1). This indicates array enhanced

coherence resonance [42,43], a phenomenon that has been

intensively studied in physics and is a characteristic of coupled

noisy excitable systems. See Text S1 for a simple example where

array enhanced coherence resonance can be demonstrated

analytically.

The exponential dependence on time of the ISI density entailing

s = Tav is quite robust with respect to even strong variations of the

puff rate with realistic channel closing rates (arrows in Fig. 4B–C).

This is in agreement with our earlier result [17] that a global

feedback is necessary to reach the regime s,Tav, which is

typically observed in experiments [6]. Unfortunately, global

feedback does not allow for an exact analytical solution for the

moments of the FPT density. However, based on the robust time-

scale separation observed in the mechanistic model (Fig. 4), we

found a valid approximation of the spike process incorporating a

global feedback and the local dynamics, which we call generic

model.

A Generic Model Based on Local Puff Dynamics
We use the simple model for the global spike process introduced

in Ref. [6] to introduce a global feedback into the hierarchic

stochastic process. The global feedback is included as a slow

recovery of the spike rate after a spike occurred, which leads to an

inhomogeneous Poisson process with time dependent spike rate.

k(t)~k0(1{e{jt), ð6Þ

with the Poisson spike rate k0 and the recovery rate j. With this

formulation the probability for a spike at t~0 equals zero. This

represents an inhibitory or negative global feedback, at high Ca2z

concentrations, which naturally occurs after a global Ca2z spike.

The probability for a spike is the probability for a puff times the

probability that the puff opens the other clusters. The latter is in

mathematical terms a splitting probability that a single puff

triggers a consecutively opening of all clusters. For the tetrahedron

Hierarchic Stochastic Modelling
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model this means to go from one open cluster to four open clusters

before reaching the ground state with all clusters closed again. It is

analytically given by [17].

C14~
C12C23C34

1zC12(C23{1)zC23(C34{1)
, ð7Þ

with the one-step splitting probabilities Ci,iz1~
Ð?

0
Y i,iz1(t)dt.

Figure 5 shows the dependence of C14 on cellular parameters. As

in Ref. [17], we formulate puff generation as inhomogeneous

Poisson process with time-dependent rate l0(1{e{jt), where j is

the recovery rate. This effectively inhibits the occurrence of a local

puff event right after a spike and hence incorporates global

negative feedback. The puff rate asymptotically approaches the

stationary value l0 as time increases. We now resample the puff

process into the global spike process with probability C14 and its

complementary process with probability (1{C14). The comple-

mentary process is the Poisson process describing the failed puffs,

the ones that did not lead to a global Ca2z spike.

In general, a cellular spike will require N open clusters, the

splitting probability should therefore be denoted by C1N. Clusters

are heterogeneous with respect to the number of channels per

cluster as well as to their distance to neighbouring clusters. Hence,

the puff probability as well as the splitting probability are cluster

specific. We introduce the individual puff rate l0,i and splitting

probability C1N,i for every cluster i. Some failed puffs occurs

between two spikes. The probability for the interspike interval t is

then given by the sum over the probabilities for all possible

numbers of puffs in between two spikes from 0 to ?. This finally

leads to the expressions constituting the inhomogeneous Poisson

splitting (see also Text S1).

k(t)~
XN

i~1

l0,iC1N,i(1{e{jt) ð8Þ

p(t)~k(t)e{L(t), ð9Þ

Figure 2. Parameter dependencies of the opening probabilities yo. (A) Comparison of fits of Gamma and GE distributions to the De Young-
Keizer model (see Ref. [34] and Table S1) at ½Ca2z�= 0.6 mM. (B–I) Circles are fits of results from the De Young-Keizer model to GE distributions (Eq. 3)
with parameters a and l, as in A. Lines are (B,D,E) nonlinear fits to Eq. 4, (C,F) linear fits, (G–I) nonlinear fits to Eq. 5. (B–C) show the dependencies for
the puff-rate, i.e. at base-level ½Ca2z�= 0.1 mM (see Text S1). (D–H) show parameter dependencies in the regime of a puff, i.e. with one nearby cluster
already open, yielding ½Ca2z�= 0.6 mM (see Text S1). Other parameter values (if not varied on the x-axis) are Nch = 5, ½IP3�= 1 mM.
doi:10.1371/journal.pone.0051178.g002
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where L(t)~
PN

i~1 l0,iC1N,i

Ð t

0
(1{e{jt)dt is the intensity and

p(t) is the density function of the probability that a global Ca2z

spike occurs at time t after the previous spike.

Comparison with Eq. 6 shows that we found an expression of

the Poisson spike rate k0 in terms of cluster properties,

k0~
XN

i~1

l0,iC1N,i: ð10Þ

Thus, k0 can be taken as total spike rate, summing up the

individual contributions of clusters i to the spike rate. That is, the

individual puff rates l0,i of cluster i are rescaled with the coupling

strength C1N,i. The average interspike interval Tav and the

standard deviation s can then be calculated analytically with the

results given in Ref. [6].

To confirm the validity of the generic model in the presence of

global feedback, we performed stochastic simulations of the

hierarchic stochastic model as described in Ref. [17] and

compared them with the analytic results of the generic model.

For the homogeneous tetrahedron cluster arrangement, Eq. 10

gives k0~4l0C14. This new generic model approximates the

average ISI very well (Fig. 6A). The experimental moment

relations are in very good agreement with the moment relations

obtained for j~const (Fig. 6B). For a single cell the specific value

of k0 positions the cell on that moment relation as indicated by the

symbols in Fig. 6. Note that very small slopes of the moment

relation below 0.3, which have been reported for HEK293 cells

[6], can be generated by adding cooperativity to the generic model

[18]. The saturation for both l0 and C14 with respect to the IP3

concentration (see Figs. 2 and 5) gives rise to an intrinsic minimal

ISI in the model (Fig. 6A–B). The relation of this minimal ISI to

the physiological minimal ISI reported from single cell measure-

ments [6] should be elucidated by further research.

By applying Poisson splitting (see Text S1 for details), we

implicitly neglect the possible dynamics between the puff and the

spike events. Most notably we completely miss the duration of the

failed puffs. The number of those failed puffs is given on average

by 1=C14, so we expect the error we make by using the splitting

scales exactly with 1=C14. By comparing our exact analytic results

for the tetrahedron model with our generic model without

recovery we show that this is indeed the case (Fig. S1). Moreover

we have computed the relative error and state that it is bounded

and smaller than 10% (see Text S1). The great advantage of the

generic model is its capability of providing a closed expression for

the ISI distribution reproducing the moment relation between the

standard deviation s and the average Tav of ISIs found

experimentally, incorporating the local puff dynamics. The key

parameter for the local dynamics is the coupling strength C14

obtained by hierarchic stochastic modelling.

Discussion

We present an extension to a description of complex stochastic

networks in terms of observable states and non-exponential

transition time distributions. The approach can be used for very

efficient stochastic simulations and in many cases analytical

solutions can be obtained. We apply hierarchic stochastic

modelling to spatially resolved stochastic Ca2z dynamics. Apart

from using a new solution method, we made further progress in

the Ca2z model published in [17] by developing analytic

approximations of model dependencies on cellular parameters

and taking into account recent experimental data for model

Figure 3. Minimal hierarchic stochastic model of Ca2z dynamics. The colours in (A,B,C) depict the system state in terms of the number of
open clusters (Si , i = 0,1,2,3,4). (A) Individual opening time (Yo,i) and closing time (Yc) probability densities. (B) Conditioned waiting time densities for
the consecutive opening transitions, constructed out of the individual closing (yc) and opening (yo,i) densities for the tetrahedron model. Note the
time-scale difference between the opening of the first cluster (Y01) and the consecutive openings, this effectively covers the CICR mechanism. (C)
Stationary probabilities for the possible states of the system as function of the cytosolic IP3 concentration, as computed from Eq. 14. (D) Stochastic
simulations of spike trains for ½IP3�= 1 mM. Note the frequent puff events with less than four clusters open and the rather isolated global spike events.
The number of channels per cluster is Nch = 5. All calculations are based on the analytic approximations of parameter dependencies shown in Fig. 2.
doi:10.1371/journal.pone.0051178.g003
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calibration. This permitted us to rationalise time scale separation

between puffs and waves in a physiological setting, and

subsequently to find a derivation of a generic description of the

stochastic spike generating process.

The theory presented here is able to calculate the statistical

properties of cellular Ca2z spiking from cluster properties and

spatial coupling. We have derived the moments of the ISI

distribution by Laplace transform of the non-Markovian master

equation, and we approximated the complete ISI distribution with

the generic model. This simplistic description was postulated

earlier in the Falcke group [6] but only now we can give a

mechanistic explanations for its validity. The generic model is only

applicable for a large time scale separation between the interpuff

intervals and the ISIs. However, this separation was shown

experimentally for many cell types [27,44]. As is often the case

with approximate solutions, the generic model allows for deeper

insight than the direct solution of the integro-differential equa-

tions. The theory explains the role of spatial arrangement of

clusters and strength of spatial coupling in the spike probability in

a simple and intuitive way. We introduced a phenomenological

factor k0 which rescales the local puff dynamics to the global spike

dynamics. This factor also explains the observed large cell-to-cell

variability as differences in cluster properties and cluster arrange-

ment. While we started with the assumption that the puff

probability slowly recovers from negative feedback, Eqs. 8 also

allows for a time dependency of the splitting probability C1N .

Hence, more complicated recovery processes arising from a

variety of feedbacks could replace the simple relaxation chosen

here. The model exhibits almost linear moment relations between

standard deviation and average in agreement with experimental

results. Changes in k0 of an individual cell by experimental

manipulations or between cells due to cell-to-cell variability do not

alter the slope of the moment relation. That explains its robustness

against changes of local properties and coupling strength, i.e. cell-

to-cell variability within a given cell type, which has been observed

[17,32]. The rate of recovery from global feedback strength j is

cell type specific, which explains the cell type specificity of the

moment relation.

Figure 4. Statistical analysis of Ca2z interspike intervals
(ISI). (A) The average ISI Tav decreases with the IP3 concentration
(Nch = 5) and with Nch (½IP3�= 1 mM ). The other parameter is kept at
Nch = 5 and ½IP3�= 1 mM, respectively. (B) Skewness and (C) coefficient
of variation (CV = standard deviation/mean) increase with the channel
closing rate c, which controls the time scale separation between Ca2z

puffs (single cluster opening) and Ca2z spikes (all clusters open). The
solid lines are calculated for a realistic puff rate l0 . The dotted lines
indicate that the time-scale separation becomes weaker with growing
puff rate (see text). The parameter values used for the stochastic Ca2z

model (Fig. 3) are indicated by the arrows.
doi:10.1371/journal.pone.0051178.g004

Figure 5. Parameter dependencies for the splitting probability
C14 to reach the spiking state S4 out of a single puff state S1 for
the tetrahedron model. Note the different axis scaling for the
cytosolic IP3 concentration and the mean number of Ca2z channels
per cluster participating in an opening event (Nch ) respectively. The
splitting probability saturates for both parameters, however for the Nch

dependency only for a unrealistic high number of Ca2z channels
(Nchw100).
doi:10.1371/journal.pone.0051178.g005
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Our theory is based on recent experimental data from live cell

imaging for opening and closing transition times of Ca2z channel

clusters. A description of cellular Ca2z dynamics further requires

information about the coupling of individual Ca2z channel

clusters and the dependence on cellular parameters like strength of

the upstream signal (IP3 concentration) and cluster size. These

functional relations could, up to now, only be obtained from single

channel models, which are well established and have successfully

been used in earlier modelling studies [14,17,32]. Based on this,

we suggest analytical approximations for model dependencies on

cellular parameters. This approach can be used for integration of

the model into mathematical descriptions of larger signalling

cascades.

We calculated the splitting probability Ci
1N for N~4, where N

is the number of open clusters forming a cellular release spike.

Typically, a cellular spike will consist of more than 4 open clusters.

However, the calculation provides a good description of cellular

spiking, if a cell has a preferred nucleation area initiating most of

the cellular spikes. The stronger the release in such an area is, the

more likely is the nucleation of a wave due to Ca2z diffusion and

CICR. At a sufficient value, this probability will be very close to

one. The tetrahedron model is a good description of cellular

spiking with nucleation areas, if that value is reached by 4 open

clusters. Preferred nucleation areas have indeed been observed,

e.g. in hepatocytes [45]. In the spirit of hierarchical modelling, the

results with one nucleation area can then easily be generalised to

several such areas.

We find that the minimal tetrahedral system considered here

stays in the regime of a Poisson process for Ca2z spikes,

characterized by a coefficient of variation equal to one, even for

relatively large deviations from the physiological parameters. Only

a drastic reduction of the time scale separation (or increase of the

coupling strength between clusters), mediated by increased puff

rate l0 and reduction of the channel closing rate c, can reduce the

noise level by means of array enhanced coherence resonance

[42,43]. Therefore, we suppose that the lower noise levels

observed in many cell types [6] indeed stems from feedback

processes, as suggested by earlier results [17]. However, the

experimental proof for the importance of such feedback processes

for Ca2z spike statistics is still lacking. Given an inhomogeneous

Poisson process for the formation of a puff, the subsequent

nucleation process (one to many open clusters) is very fast

compared to a typical ISI. This time scale separation is the key

assumption behind the generic model. By incorporation of a

negative feedback it leads to ISI distributions close to experimental

data.

Hierarchic stochastic modelling uses non-exponential transition

times to reflect microscopic state changes occurring during

sojourns in observable states. Remarkably, such non-exponential

transition times have already been measured or computed for

other cellular systems like gene expression [37,38], autocatalytic

reactions [46,47] or signal transduction cascades [48,49]. Using

non-exponentially distributed transition times instead of kinetic

constants can also be interpreted as dynamic modelling with

stochastic delay – the delay arises from the underlying microscopic

dynamics (see Fig. 1). Biological systems with stochastic delay were

previously investigated [50–53], but these studies lack the

possibility to implement molecular interactions on the lumped

state level, and have not been generalised to hierarchic networks.

Hierarchic stochastic modelling can also be related to published

methods which exploit the hierarchic structure of networks [54–

56]. Similar to our approach, such methods reduce the state space

based on emergent behaviour of biomolecules arising by the

dynamic hierarchy from molecular interactions to cellular

properties [19,57,58]. However, to our knowledge, these studies

have been limited to a reduction of the state space or inference of

system parameters in deterministic systems so far. Since complex

stochastic networks are frequently observed in cell biology [1,2],

we expect that our approach has a wide range of potential

applications. On the one hand, pure Markov modelling means

that one has to take into account all microscopic variables to make

an exact description of the system. This is impossible for most, if

not all, processes analysed in cell biology due to the large numbers

of system states and because microscopic state transitions can

rarely be measured in vivo. On the other hand, the assumption of

Gaussian white noise, which is often used in approximation

techniques, is questionable for many biological systems because

the number of independent identical processes is too small for

application of the law of large numbers. Therefore, hierarchic

stochastic modelling brings theoretical concepts closer to exper-

imental data.

The application to intracellular Ca2z dynamics presented here

makes an important step forward in the development of a

mechanistic but comprehensive mathematical description of the

Figure 6. The generic model is a valid approximation of the hierarchic stochastic model and provides s–Tav relations close to
experimental data. (A) Comparison of numeric results for the tetrahedron model with the results for Tav of the generic model with different
feedback strengths represented by j (see also S1). For j??, the model approaches the analytically treatable case, where the slope of the relation
equals one. (B) s–Tav relation of the generic model. To demonstrate the impact of the coupling strength C14, we added the individual values of Tav

for three different values of C14 (0.05, 0.01, 0.008) to each line. Modification of the coupling strength merely leads to a shift of the cell along the s–Tav

relation and does not affect the slope of the relation.
doi:10.1371/journal.pone.0051178.g006
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process. We are now in a position to characterise the stochastic

process in the physiologic parameter regime. A key finding is that

the time scale separation between single cluster puffs and

subsequent openings is very strong. And that despite the non-

Markovian nucleation process, a coefficient of variation smaller

than one can not be realised without a negative feedback. These

results pave the road to the generic description in the form of a

time-dependent Poisson process, which can be sampled by

standard methods. Our derivation shows how the phenomenolog-

ical parameters of the generic model depend on cellular

parameters. The generic model can therefore be used to generate

Ca2z spikes with correct statistics in models of larger signalling

cascades in future research.

Materials and Methods

The Conditioned Waiting Times Y il(t)
In the mechanistic stochastic Ca2z model recently published by

two of us [17], we not only lumped the microscopic states of

individual IP3Rs but the whole ensemble of Ca2z channels

forming a cluster. Therefore, our effective reduced state space just

contains the time dependent cluster configuration, i.e. the number

of open and closed Ca2z clusters at a specific time point. In the

theoretical framework of semi-Markov processes (see Text S1 for

details) transitions within that state space can be described by the

probability given by pi,lY i,l(t). The first factor describes the

transition probability of an ordinary discrete time Markov chain

for the transition i?l, the latter gives the possibly non-exponential

waiting time distribution. The Y il(t) are not true probability

densities for more than two possible state transitions, as they are

not normalised individually, but rather by the conditionP
l

Ð?
0

Y il(t)dt~
P

l pi,l~1. Therefore the term conditioned

waiting times (or conditioned dwell times) is appropriate. The

waiting times can be calculated from a mathematical model or

measured directly (see Section Results). Exact definitions of the

Y il(t) and for the considered semi-Markovian stochastic process

are given in Text S1. Apart from the analytical approach given

below, the Y il(t) can also be used very efficiently in stochastic

simulations [17].

Solution of the Non-Markovian Master Equation
State-transition with non-exponential waiting times are not

covered by Eq. 1, but rather by a generalised (non-Markovian)

master equation [17,59].

L
Lt

P
j
i(t)~

XN

l~1

I
j
li(t){I

j
il(t)

h i
, ð11Þ

with the probability fluxes given by [59]

I
j
il(t)~

ðt

0

Y il(t{t)
XNin

k

I
j
ki(t)dtzf

j
il(t): ð12Þ

Note that the probability fluxes I
j
il(t) can no longer be expressed in

terms of the P
j
i(t) like in Eq. 1, but are solutions of a Voltera

integral equation determined by the conditioned waiting times

Y il(t) and appropriate initial functions f
j

il(t). The initial functions

are related to the initial probabilities P
j
i(0) in Eq. 11, e.g.

Pj(0)~1, Pi(0)~0 sets f
j

jl(t)~Y jl(t) and f
j
il(t)~0 for all i=j and

all l.

The form of Eq. 11 suggests a solution based on the Laplace

transform Lff (t)g~
Ð?

0
e{stf (t)dt~~ff (s) (see also [60]), because

the convolution theorem implies.

~II j
il(s)~ ~YYil(s)

XNin

k

~II j
ki(s)z~ff j

il(s): ð13Þ

This constitutes a linear system of equations for the probability

fluxes in Laplace space. We obtain the stationary occupancy

probabilities as.

lim
t??

P
j
i(t)~ lim

s?0

XN

l~1

~II j
li(s){~II j

il(s)
h i( )

, ð14Þ

where the limits in Eq. 14 are equal due to the final value theorem

of the Laplace transform.

Certain dynamical system properties can be characterised by

statistical moments of the density function of the first passage time

(FPT) F
j
i (t) giving the probability for the first visit of state i when

starting at state j. The moments of F
j
i (t) obey [11]:

StnT~({1)n Ln

Lsn
~FFj

i (s)Ds~0, ð15Þ

where the Laplace transformed FPT density can be found by the

formula ~FFj
i (s)~~PPj

i(s)=~PPi
i(s) [11]. By using the property

Lf L
Lt

f (t)g~s~ff (s){f (0), the next step is to apply the Laplace

transform to Eq. 11. This yields

s~PPj
i(s){dij~

X
l

½~II j
li(s){~II j

il(s)�, ð16Þ

stating that P(i,0Dj,0)~1 for i~j and zero otherwise. From this,

we find

~FFj
i (s)~

PN
l~1

~II j
li(s){~II j

il(s)
h i

PN
l~1

~II i
li(s){~II i

il(s)
� �

z1

: ð17Þ

This expression is particularly simple in the case of a linear chain

with N~Kz1 distinct states X[f0,1,:::,Kg, where we have to

compute the 2K probability fluxes I0,1,I1,0, . . . , IK{1,K ,IK ,K{1.

Suppose the system is in state 0 at time t~0 and we want to

calculate the moments of the FPT distribution to reach the highest

state K using Eq. 15 derived above. In the case of a linear chain,

we arrive at

~FF0
K (s)~

~II0
K{1,K (s){~II0

K ,K{1(s)

~IIK
K{1,K (s){~IIK

K,K{1(s)z1
: ð18Þ

The conditioning on either state 0 or state K at t~0 leads

effectively to two distinct non-homogeneous linear systems of

equations for the fluxes. They differ only with respect to the initial

functions, namely f 0
il ~Y01 and f S

il ~YK,K{1. Therefore, in the

case of N~3 we obtain Eq. 2 (see Text S1 for details).
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Model Calculations
Details of the mechanistic Ca2z model are given in Text S1.

We used Wolfram’s Mathematica 8 for linear algebra and a home-

made simulation tool [17] for stochastic simulations.

Supporting Information

Figure S1 Comparison of the generic model with the
exact analytic results provided by the hierarchic sto-
chastic model. Shown are the results for the realistic channel

closing rate c (black lines) and two examples with lower time scale

separation. (A) The approximation error grows linear with the

average number of failed puffs, given by 1=C14. (B) The relative

approximation error is smaller than 10% for the realistic closing

rate.

(PDF)

Table S1 Parameter values for the De Young-Keizer
model. The De Young-Keizer model with the parameters in this

table is used to compute the opening transition times yo.

(PDF)

Table S2 Analytical approximation of the GE distribu-
tion parameters. The values in this table result from nonlinear

fitting to Eqs. 4–5 (see Fig. 2) and are used for the dependencies of

the GE distribution parameters a and l on cellular parameters

Nch, ½IP3� and Ca2z (see Text S1 for details). In each row, only

one parameter is varied, and other parameters are kept constant at

Nch = 5, ½IP3�= 1 mM, and ½Ca2z� given by Eq. 41 in Text S1.

Every system state is described by the number of open clusters (o.

cl.) and has its own set of parameters.

(PDF)

Text S1

(PDF)
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