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Immune‑related long non‑coding 
RNA signature identified prognosis 
and immunotherapeutic efficiency in bladder 
cancer (BLCA)
Rui Cao1†, Lushun Yuan2†, Bo Ma3, Gang Wang4 and Ye Tian1* 

Abstract 

Background:  As bladder cancer was recognized to be immunogenic, dozens of studies have focused on immune 
biology of BLCA, but little is known about its relationship with the long non-coding RNAs (lncRNAs).

Methods:  LASSO Cox regression model was used to establish immune-related lncRNAs signature (IRLS) in BLCA. 
The immune infiltration landscape of BLCA was conducted via ssGSEA and immunotherapy response was calculated 
through TIDE algorithm.

Results:  A total of 82 immune-related lncRNAs were screened out according to spearman correlation analysis with 
the immune score (|R| > 0.4, p < 0.05). We selected 5 prognostic lncRNAs to construct immune-related lncRNAs signa-
ture (IRLS) through LASSO Cox regression analysis. Then we validated that 5 enrolled lncRNAs was downregulated in 
BLCA tissues and cells when compared with paracancerous tissues and normal bladder epithelium cell. The univariate 
and multivariate Cox regression analysis both demonstrated the IRLS was a robust independent prognostic factor in 
overall survival prediction with high accuracy. The GSVA and GSEA also suggested that the IRLS are involved in the 
immune-related biological processes and pathways which are very well known in the context of BLCA tumorigenesis. 
In addition, we found that IRLS is strikingly positive correlated with tumour microenvironment (TME) immune cells 
infiltration and expression of critical immune checkpoints, indicating that the poor prognosis might be caused partly 
by immunosuppressive TME. Finally, the results from the TIDE analysis revealed that IRLS could efficiently predict the 
clinical response of immunotherapy in BLCA.

Conclusion:  We have developed a novel IRLS, which have a latent prognostic value for BLCA patients and might 
facilitate personalized counselling for immunotherapy.
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Background
Bladder cancer (BLCA) is a disease within urinary tract of 
high malignancy, which has nearly 549,000 new cases and 
200,000 deaths and ranks the 10th most common cancer 
in 2018 [1]. As identified as heterogeneous carcinoma, 
there are two major subtypes: non-muscle-invasive blad-
der cancer (NMIBC) and muscle-invasive bladder can-
cer (MIBC). NMIBC, which consist the majority of the 
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BLCA, is not that fatal but have high potential to recur 
[2]. Intra-vesicular administration of chemotherapeutics 
and Bacillus Calmette-Guerin (BCG) was utilized to pre-
vent recurrence and progression [3]. It is essential to note 
that BLCA was recognized to be immunogenic after the 
successful instillation-therapy of BCG which was con-
ducted by Alvaro Morales in 1976 [4]. Moreover, the BCG 
was also identified as the second immunotherapy drug, 
which was approved by United States Food and Drug 
Administration (FDA), to inhibit the tumour growth, 
just behind the interferon-alpha (IFN-α) [5]. Although 
BCG is the first-line therapy for NMIBC patients, espe-
cially when contaminated with carcinoma in  situ (CIS), 
not all the patients benefit from it and some responders 
will finally relapse and progress to the another subtype 
MIBC, which is more life-threatening and need sys-
temic therapy [6, 7]. Recently, more and more study have 
focused on the onco-immunology and a lot of immune-
checkpoint inhibitors (ICIs) were developed and showed 
a robust and durable responses in patients with various 
cancers [8, 9], including BLCA [10].

The development of transcriptome sequencing over the 
past decade have revealed that over 70% of the genome 
is transcribed into RNA, among them vast majority are 
non-coding RNAs (ncRNAs) [11, 12]. Long non-coding 
RNAs (lncRNAs) are a major type of ncRNAs with more 
than 200 nucleotides in length, which has been previ-
ously considered as ‘junk’ or ‘transcriptional noise’ for 
not capable of coding protein [13]. As the flourish of the 
study in lncRNAs, we have found that lncRNAs acted 
as a key regulator in a broad range of biological pro-
cesses, including cell differentiation, proliferation [14]. 
Therefore, lncRNAs were further identified as the novel 
initiator and promoters for neoplasia by their specific 
expression and subcellular localization [15]. The expres-
sion of lncRNAs usually varied during the development 
process [16]. LncRNAs have exerted their role in tumo-
rigenesis through regulation of genes associated with 
cell proliferation, differentiation and migration by epi-
genetic regulations, interference with the transcriptional 
machineries, inducing alternative splicing etc. [17]. There 
is growing evidence that lncRNAs function as potential 
biomarkers as well as therapeutic targets in many cancer 
types, especially in carcinoma in urinary tract [18–20]. A 
lot of studies found that urothelial carcinoma-associated 
(UCA1) lncRNA has been significantly up-regulated in 
BLCA compared with the paracancerous tissues. And 
UCA1 could influence the cisplatin/gemcitabine sensi-
tivity through targeting CREB modulating miR-196a-5p 
in BLCA cells [21, 22]. Moreover, the increase expres-
sion of LncRNA TUG1 was reported to be related with 
poor overall survival (OS) in BLCA [23]. Moreover, 
recently some lncRNAs signatures have been identified 

to be prognostic, which might give us a chance to estab-
lish more accuracy biomarkers for BLCA [24, 25]. But 
the immune-related lncRNAs signature was not often 
investigated.

In the present study, we have established a 5 immune-
related lncRNAs (AC005014.2, AC010503.4, AL450384.2, 
LINC00930 and SH3BP5-AS1) signature (IRLS) through 
LASSO Cox regression analysis. All selected 5 lncRNAs 
were downregulated in BLCA tissues and cells compared 
with pancancerous tissues and normal bladder epithe-
lium cell. Then we found that the IRLS performed well 
in over survival (OS) prediction and acted as an inde-
pendent prognostic factor via univariate and multivariate 
Cox regression analysis in BLCA. Thus, the annotation 
and function analyses also indicated that our model was 
involved in the immune-related response processes and 
pathways which play a vital role in BLCA tumorigen-
esis. In addition, we also found that the IRLS was highly 
correlated with the TME immune cells infiltration and 
ICIs immunotherapy response based on the TIDE algo-
rithm. In summary, we have constructed a novel IRLS, 
which have a potential prognostic value for BLCA 
patients and might facilitate personalized counselling for 
immunotherapy.

Materials and methods
Ethical statement for human bladder tissue samples
As described previously by our group [26, 27], the 
MIBC tissues and paracancerous tissues (n = 20) used 
in this study were collected from patients with MIBC 
after radical resection at Zhongnan Hospital of Wuhan 
University, Wuhan, China. The tissue specimens were 
immediately stored in liquid nitrogen for total RNA isola-
tion. Informed consent was provided by all subjects. All 
specimen collection and treatments were carried out in 
accordance with the approved guidelines according to the 
Ethics Committee at Zhongnan Hospital of Wuhan Uni-
versity (approval number: 2015029, Related file in Addi-
tional file 1: Ethics approval).

Human bladder cancer cell lines
Human bladder cancer cell lines RT-4 (Cat. #TCHu226), 
5637 (Cat. #TCHu1), T24 (Cat. #SCSP-536), UM-UC-3 
(Cat. #TCHu217), J82 (Cat. #TCHu218), SCaBER (Cat. 
#TCHu239), SW780 (Cat. #TCHu219) and human 
immortalized normal urothelium cell line SV-HUC-1 
(Cat. #TCHu169) were kindly provided by the Stem 
Cell Bank, Chinese Academy of Sciences in Shanghai, 
China. Another human bladder cancer cell line, EJ (Cat. 
#CL-0274), was purchased from the Procell Co., Ltd. in 
Wuhan, China. The T24 and RT-4 cells were maintained 
in McCoy’s 5 A Medium (Gibco, China). The UM-UC-3 
and J82 cells were maintained in MEM medium (Gibco, 
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China). The 5637, SCaBER, and EJ cells were maintained 
in RPMI-1640 medium (Gibco, China). The SV-HUC-1 
cell was maintained in F12K medium (Gibco, China). All 
medium was supplemented with 1% penicillin G sodium/
streptomycin sulfate and 10% fetal bovine serum (FBS) 
(Gibco, Australia). All cells were grown in a humidified 
atmosphere consisting of 5% CO2 and 95% air at 37 ℃.

Total RNA isolation from bladder tissues and BCa cells
Total RNA from cells and tissues were isolated with the 
Qiagen RNeasy Mini Kit (Cat. #74101, Qiagen, Ger-
many), and QIAshredder from Qiagen (Cat. #79654, 
Qiagen, Germany) using a centrifuge (Cat. #5424, Eppen-
dorf, Germany) according to the manufacturer’s protocol. 
DNase I (RNase-Free DNase Set, Cat. #79254, Qiagen, 
Germany) was used to remove the contamination of 
gDNA in each RNA sample. The quantity of isolated 
RNA was measured by NanoPhotometer (Cat. #N60, 
Implen, Germany).

Reverse transcription and quantitative real time PCR 
(qRT‑PCR)
First-strand cDNA was synthesized by ReverTraAce 
qPCR RT Kit (Toyobo, China) using 1  µg of total RNA 
isolated from tissues or cells. Each reaction of real-time 
polymerase chain reactions (PCR) was conducted with 
iQTM SYBR® Green Supermix (Bio-Rad, China) in a 
final volume of 20  µl using 1  µg of cDNA. All prim-
ers were tested for optimal annealing temperatures and 
PCR conditions were optimized with gradient PCRs on 
an iCycler (Cat. #CFX Connect, Bio-Rad, USA). Primer 
sequences and annealing temperatures are summa-
rized in Additional file  2: Table  S1. Values were nor-
malized for amplified GAPDH alleles. Relative gene 
abundance = 2−∆∆ct, ∆ct = cttarget gene−ctGAPDH, for 
cells ∆∆ct = ∆ctBLCA cells−∆ctSV-HUC-1 cell, for tissues 
∆∆ct = ∆ctBCa tissues−∆ctparacancerous tissues (ct = threshold 
cycle).

Data collection and processing
The public available transcriptomic cohort for BLCA 
with full clinical information from the The Can-
cer Genome Atlas (TCGA) was downloaded from 
the UCSC Xena (GDC hub) (https​://tcga.xenah​ubs.
net). The samples without complete overall survival 
(OS) information were not enrolled for further evalu-
ation. The transcripts per million reads (TPM) will be 
represented as the gene  expression of RNA instead 
of the fragments per kilobase of exon per million 
reads mapped (FPKM), which was obtained from the 
TCGA-BLCA RNA-sequencing data. The gene sym-
bol was annotated at the highest expression accord-
ing to theENSEMBL ID. Finally TCGA-BLCA cohort 

consisting of 403 samples was defined as an entire set, 
which was then randomly separated into training and 
testing cohorts at cut-off 7:3. Detailed information of 
clinicopathological characteristics in TCGA-BLCA 
cohorts could be found in our previous study [28]. Data 
were analysed with the R (version 3.5.2) and R Biocon-
ductor packages.

Identification of immune‑related LncRNAs
The immune-related genes were obtained from gene 
set M13664 (immune system process) and M19817 
(immune response) in MSigDB of Broad Institute 
(http://softw​are.broad​insti​tute.org/gsea/index​.jsp) 
[29, 30]. The single-sample gene set enrichment analy-
sis (ssGSEA) was used to calculate the immune scores 
of each sample in TCGA-BLCA cohort [31, 32]. The 
low expression lncRNAs with rowmeans ≤ 0.5 were 
removed from the further study. Then the immune-
related lncRNAs were identified for high correlation 
with the immune score (|R| > 0.4, p < 0.05) based on 
spearman correlation analysis. Kaplan–Meier (KM) 
survival analyses were utilized to screen out the prog-
nosis related lncRNAs (p < 0.05). After merging the 
immune-related and prognosis related lncRNAs, the 
remained selected lncRNAs were considered to be 
immune-related candidate lncRNAs. The process of the 
selection was shown in Fig. 1.

Establishment and validation of prognostic IRLS
The selected immune-related candidate lncRNAs 
mentioned above were submitted to LASSO Cox 
regression analysis based on package “glmnet” in R 
for building an optimal prognostic immune-related 
lncRNAs signature (IRLS) for BLCA [33]. Then IRLS 
risk-score for each patient in TCGA-BLCA cohort 
was defined as the relative expression of each lncRNA 
and its associated Cox coefficient. The formula for 
IRLS risk− score =

∑
n

i=1 (coefi × Expri) , where Expri 
is the relative expression of lncRNA in the signature 
for patient i, coefi is the LASSO Cox coefficient of the 
lncRNA i. Furthermore, all patients were stratified into 
the high-risk and low-risk groups according to the IRLS 
risk-score. KM survival analyses were used to evaluate 
the OS between IRLS high/low risk patients and indi-
cated stratified clinical features by using package “sur-
vminer” in R. The time-dependent receiver operating 
characteristic (ROC) curves were utilized to assess the 
prediction accuracy in prognosis prediction of IRLS 
and the area under curve (AUC) for 1-year, 3-year and 
5-year OS was measured using package “survivalROC” 
in R [34].

https://tcga.xenahubs.net
https://tcga.xenahubs.net
http://software.broadinstitute.org/gsea/index.jsp
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Correlation between IRLS and clinicopathological 
characteristics
The correlation between IRLS risk-scores with corre-
sponding clinicopathological characteristics, including 
age, grade, histological subtype, pathological T stage, 
pathological N stage, pathological M stage, pathological 
tumour stage, lymphovascular invasion status and num-
ber of positive lymphonodes by hematoxylin and eosin 
(HE), was measured by t test or one-way ANOVA test 
and shown by box plot. Furthermore, cluster heat map 
were conducted on the immune-related lncRNAs and 
infiltration of each immune cell types according to IRLS 
risk-level by utilizing the package “pheatmap” in R. The 

correlation between clinicopathological characteristics 
with IRLS risk-level was calculated by χ2 test. *p < 0.05, 
**p < 0.01, ***p < 0.001.

Functional and annotation analyses
The Hallmark gene sets, which were also downloaded 
from the MSigDB of Broad Institute (http://softw​are.
broad​insti​tute.org/gsea/index​.jsp) [35], were used to ana-
lyse the change of pathway enrichment based on IRLS 
through package “GSVA” in R [36]. The significantly 
enriched pathways in Hallmark gene sets were identi-
fied with a threshold of p < 0.05 and t value > 2. Further-
more, ssGSEA score were calculated for the significantly 

Fig. 1  Identification of prognostic immune-related candidate lncRNAs in TCGA-BLCA cohort. a Histogram indicated the total annotated lncRNAs 
and low expression filtered lncRNAs b The dot plot demonstrated the correlation between lncRNAs and immune score through spearman 
correlation analysis. The red indicated positive correlation and the blue indicated negative correlation. The selected lncRNAs with IRLS were listed. 
The cut-off was defined as |R| > 0.4, p < 0.05. c The dot plot of prognostic lncRNAs. The selected lncRNAs with IRLS were listed. d Venn plot for 
prognostic lncRNAs and immune-related lncRNAs

http://software.broadinstitute.org/gsea/index.jsp
http://software.broadinstitute.org/gsea/index.jsp
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changed gene sets, then the cluster heat map and correla-
tion between IRLS and enriched pathways was measured. 
Moreover, GSEA was conducted to assess the influence of 
IRLS on M13664 (immune system process) and M19817 
(immune response) gene set via package “clusterProfiler” 
in R to show the common GSEA plot [37].

Construction of a predictive nomogram
The IRLS and clinical features were merged to find inde-
pendent prognostic factors through univariate and mul-
tivariate Cox regression analysis and visualized through 
package “forestplot” in R. Then the nomogram integrat-
ing with selected independent prognostic factors was 
established through package “rms”, “nomogramEx” and 
“regplot” in R [38]. Furthermore, decision curve analysis 
(DCA) and calibration curves were used to see whether 
our nomogram was useful as the ideal model.

Estimation of TME immune infiltrating 
and immune‑checkpoint inhibitors (ICIs) response
The gene set which could represent different  infiltrating 
immune cell types was obtained from Bindea et al. [39]. 
Then ssGSEA was utilized to calculate the abundance 
of immune cell according to the expression of reference 
gene within the gene set from transcriptomic data. The 24 
types of immune cells were enrolled in our study, includ-
ing innate immune cells (dendritic cells [DCs], immature 
DCs [iDCs], activated DCs [aDCs], plasmacytoid DC 
[pDCs], eosinophils, mast cells, macrophages, natural 
killer cells [NKs], NK CD56dim cells, NK CD56bright 
cells, and neutrophils) and adaptive immune cells (B cells, 
T cells, T helper cells, T helper 1 [Th1], Th2, T gamma 
delta [Tγδ], CD8 + T, T central memory [Tcm], T effector 
memory [Tem], T follicular helper [Tfh] cells, T helper 
17 (Th17) cells, regulatory T (Treg) cells and cytotoxic 
cells). The immune scores, stromal scores and estimate 
scores from each sample were calculated by applying the 
“Estimation of STromal and Immune cells in MAlignant 
Tumours using Expression data” (ESTIMATE) algorithm 
[31]. Moreover, the immune-checkpoint inhibitors (ICIs) 
response was assessed through Tumour Immune Dys-
function and Exclusion (TIDE) algorithm according to 
the suggestion of Hoshida et al. [40].

Statistical analyses
Statistical significance for variables between two groups 
or more than two groups was estimated by unpaired Stu-
dent t tests or one-way ANOVA tests respectively. The 
χ2 test was applied to analyse the correlation between 
IRLS risk-level and clinicopathological characteristics. 
Kaplan–Meier (KM) survival curves and log-rank test 
were used to assess differences in survival between dif-
ferent groups using the package “survminer” in R. The 

spearman correlation analyses were used to detect the 
correlation between two parameters. Two-sided Fish-
er’s exact tests were used to evaluate the efficacy of ICIs 
between different groups. Univariate and Multivariate 
Cox proportional-hazard models were utilized to assess 
the hazard ratios of variables and identify independent 
prognostic factors. Nomogram, calibration curve and 
DCA were constructed according to Iasonos’ suggestion 
[38]. A time-dependent receiver operating characteristic 
curve (ROC) analyses were used to compare the predic-
tive accuracy. All statistical analyses were performed with 
R software 3.5.3. Statistical significance was set at prob-
ability values of p < 0.05.

Results
Identification of prognostic and immune‑related LncRNAs
A flow diagram and design of the study can be seen in 
Additional file  3: Figure S1. The transcriptomic data of 
403 patients with full clinical information were retrieved 
from the TCGA-BLCA cohort. Then 13954 lncRNAs 
were identified by mapping from the ENSEMBL ID 
(Fig.  1a). After filtering the low expression lncRNAs, 
the 702 prognostic related lncRNAs were screened out 
through Kaplan–Meier (KM) survival analyses (Fig.  1c). 
Furthermore, the immune scores in each sample were 
calculated via ssGSEA according to the reference of the 
M13664 (immune system process) and M19817 (immune 
response) gene sets. After measured with spearman 
correlation analyses, 101 lncRNAs were recognized as 
immune-related lncRNAs (|R| > 0.4, p < 0.05) (Fig. 1b). At 
last, we have got 82 prognostic immune-related candi-
date lncRNAs for further research (Fig. 1d).

Establishment of immune‑related LncRNAs signature (IRLS)
The entire TCGA-BLCA cohort was randomly divided 
into training and testing cohorts at the cut-off 7:3. 
As 82 prognostic immune-related candidate lncR-
NAs might display the similar function and biologi-
cal process, the LASSO Cox regression analysis was 
used for dimension reduction. Then we constructed 
an immune-related lncRNAs signature (IRLS) con-
sisting of 5 lncRNAs, which could predict the over-
all survival (OS) in TCGA-BLCA training cohort, and 
the formula for IRLS risk-score was calculated as fol-
lows: expression of AC005014.2 * (− 0.05409) + expres-
sion of AC010503.4 * (− 0.0002344) + expression of 
AL450384.2 * (− 0.01291) + expression of LINC00930 * 
(− 0.008834) + expression of SH3BP5-AS1 * (− 0.04496) 
(Additional file 4: Figure S2). The KM log-rank test sur-
vival analyses demonstrated that all five lncRNAs within 
IRLS could predict the OS of BLCA effectively and acted 
as protective factors for BLCA patients (Additional file 5: 
Figure S3). Then we measured the relative expression of 
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AC005014.2, AC010503.4, AL450384.2, LINC00930 and 
SH3BP5-AS1 in BLCA tissues and cells. Surprisingly, we 
found that relative expression of 5 selected lncRNAs were 
upregulated in SV-HUC-1 (human immortalized nor-
mal urothelium cell line) when compared with almost all 
BLCA cell linses (Fig. 2a–e). Moreover, qRT-PCR results 
from our own specimens verified a significant overex-
pression of 5 lncRNAs in the paracancerous tissues com-
pared with that in the paired BLCA tissues, which was 
in accordance with the results in cells (n = 20, Fig.  2f–j, 
p < 0.05).

Then we stratified the patients into low-risk or high-
risk groups at median cut-off based on the IRLS risk-
scores. KM survival curves indicated that the IRLS 
low-risk patients lived longer than IRLS high-risk 
patients in the training cohort (p < 0.0001) (Fig.  3A a, 
b). Therefore, time-dependent ROC analysis showed an 
appropriate accuracy of IRLS in predicting OS in training 
cohort and area under the ROC curve (AUC) was 0.666 
at 1  year, 0.657 at 3  years and 0.652 at 5  years (Fig.  3A 
c). Moreover, these were further validated in the testing 
and entire cohort in order to assess the robust predic-
tion value of IRLS. We found that the results in testing 
and entire cohort were consistence with the outcome in 
training cohort, indicating all the high-risk patients were 
associated with poorer prognosis (Fig. 3B a-b and Fig. 3C 
a-b). In the testing cohort, the significant prognostic 
value was p = 0.039 and AUC with 1-, 3- and 5-years were 
0.651, 0.593, 0.631, respectively (Fig. 3B c). In the entire 
cohort, the significant prognostic value was p < 0.0001 
and AUC with 1-, 3- and 5-year were 0.667, 0.638, 0.647, 
respectively (Fig. 3C c).

Correlation between IRLS and clinicopathological 
characteristics
In order to figure out the role of IRLS in BLCA progres-
sion, the correlations between IRLS and clinical features 
was investigated. The boxplot showed that patients of 
IRLS high-risk were more likely to be the elder, non-
papillary, high TNM stage and grade patients, which 
indicated of the high correlation of IRLS with tumour 
malignancy (Additional file  6: Figure S4). And the clus-
ter heat map revealed that all lncRNAs within IRLS were 

downregulated in high-risk group (Fig.  7a). The stratifi-
cation survival analyses were utilized to see whether the 
IRLS could apply in different clinicopathological charac-
teristics. Thus, we found that IRLS could efficiently pre-
dict the OS in almost all the subgroups from the different 
clinical features (Fig. 4).

Identification of IRLS related functional annotation
The GSVA was used to figure out the dynamics of biolog-
ical pathways and processes according to the IRLS based 
on the Hallmark gene sets. The detail results of GSVA 
could be found in Additional file 7: Table S2. We found 
that the IRLS high-risk group were enriched in angiogen-
esis, immune response, epithelial-mesenchymal transi-
tion (EMT) related pathway, etc. which played a vital role 
in tumorigenesis. Meanwhile, the metabolism related 
pathway was enriched in IRLS low-risk group (Fig. 5a, b). 
In order to comprehensive unfold the functional annota-
tion, the correlation analysis was conducted to the com-
mon activated/suppressed gene sets (Additional file  8: 
Table  S3). The results showed that the gene sets within 
immune response related pathway were significantly 
correlated with each other when compared with other 
pathways. And the IRLS risk-score was highly positive 
associated with all the immune related gene sets (Fig. 5c). 
Moreover, the GSEA also revealed that immune response 
and immune system process gene sets, which were used 
to represent the immune score in each sample, were high 
enriched in the IRLS low-risk group (Additional file  9: 
Figure S5). All these demonstrated the IRLS could be a 
good model to represent for immune response status, 
which is so important for BLCA.

The IRLS was an independent prognostic factor in BLCA
Among all the clinical features, we wanted to make it 
clear whether IRLS, which could represent the immune 
response status, was an independent prognostic factor 
in BLCA. By integrating all the clinicopathological char-
acteristics with IRLS, univariate Cox regression analysis 
demonstrated that all except gender and tumour grade 
were responsible for OS in BLCA (Fig. 6a). Then the mul-
tivariate Cox regression analysis confirmed that IRLS 

Fig. 2  Elevated expression of 5 selected lncRNAs in paracancerous tissues and normal urothelium cell compared with BLCA tissues and cells. a–e 
qRT-PCR analysis indicates the transcriptional level of AC005014.2 (a), AC010503.4 (b), AL450384.2 (c), LINC00930 (d) and SH3BP5-AS1 (e) in distinct 
malignancy BLCA cells (EJ, UM-UC-3, T24, 5637, J82, SCaBER and RT-4) and normal immortalized urothelium cell SV-HUC-1. The GAPDH allele is 
used as a loading control. The gene expression of SV-HUC-1 cells was characterized as the control to compare the relative gene expression in each 
cell, *p < 0.05, **p < 0.01, ***p < 0.001, ns: p > 0.05. f–j) qRT-PCR analysis exhibits the expression of AC005014.2 (f), AC010503.4 (g), AL450384.2 (h), 
LINC00930 (i) and SH3BP5-AS1 (j) at the transcription level in BLCA tissues compared with that in paired paracancerous tissues. The GAPDH allele 
is used as an internal control. The difference between BLCA and paired pancancerous tissues were measured with Student t tests. The p value was 
indicated in the figures

(See figure on next page.)
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and pathological N stage were the only two independ-
ent factors for predicting the prognosis of BLCA patients 
(Fig. 6b). Then we established a nomogram consisting of 
these two prognostic variates, which could predict the 

mortality of BLCA patients via the quantitative scor-
ing method (Fig. 6c). According to the nomogram, every 
patient will get a total point from each prognostic param-
eter. The higher point indicated the higher mortality the 

Fig. 3  Immune-related lncRNAs signature (IRLS) is a prognostic biomarker for overall survival (OS) in TCGA-BLCA cohort. (A–C a–c) KM survival, risk 
score and time-dependent ROC curves of OS according to IRLS groups in TCGA-BLCA training (A), testing (B) and entire (C) cohort. The entire cohort 
was divided into the training and testing cohorts at 7:3 cut-off. The cohorts were all stratified at median cut-off of the IRLS risk-scores to form IRLS 
high-risk and low-risk groups. The AUC was assessed at 1, 3 and 5 years



Page 9 of 18Cao et al. Cancer Cell Int          (2020) 20:276 	

Fig. 4  KM survival stratification analyses in TCGA-BLCA cohort. a Age ≤ 65 years; b Age > 65 years; c Female; d Male; e Papillary; f Non‐papillary; 
g Stage I/II; h Stage III/IV; i Pathology T0‐T2; j Pathology T3‐T4; k Pathology N0; l Pathology N + ; m Number of positive lymph nodes by HE −; n 
Number of positive lymph nodes by HE + ; o Lymphovascular invasion −; p Lymphovascular invasion +

(See figure on next page.)
Fig. 5  The GSVA of hallmark gene sets in TCGA-BLCA cohort. a The bar plot showed the results of GSVA in the TCGA-BLCA. b The cluster heat map 
of the hallmark gene sets. The red indicated IRLS high-risk samples and blue indicated IRLS low-risk samples. c Correlation matrix of IRLS values and 
the activation levels of hallmark gene sets. The similar functional gene sets were identified as common signalling pathways with the same colour 
described in legends. Shading colour represents the value of corresponding correlation coefficients and nonsignificant correlations are denoted by 
“X”; blue indicated positive correlation and red indicated negative correlation



Page 10 of 18Cao et al. Cancer Cell Int          (2020) 20:276 



Page 11 of 18Cao et al. Cancer Cell Int          (2020) 20:276 	

patients were. Furthermore, calibration curves demon-
strated that the prediction accuracy of our model was 
similar to the ideal model (Fig. 6d, e). The DCA revealed 
that the nomogram have an advantage of IRLS alone and 
displaced a high potential for clinical utility (Fig. 6f, g).

The landscape of TME immune cells infiltration in BLCA
As good representative of immune response status, 
IRLS might influence the TME immune cells infiltra-
tion in BLCA. In order to comprehensive character-
ize the landscape of TME immune cells infiltration in 
BLCA, ssGSEA was utilized to estimate the abundance of 
24 immune cell types due to the specific reference gene 
sets mentioned above. The immune cells network, which 
could depict cellular interaction, cellular clusters and 
prognosis on the OS of BLCA patients, was established 
to exhibit the overall view of TME immune cells infil-
tration in BLCA (Fig. 7b). The results showed that there 
were four cellular clusters within 24 immune cell types, 

and the immunosuppressive cells such as Treg and NK 
CD56dim cells were highly correlated with all the other 
immune cell types. The KM survival curves showed that 
the innate immune cells (DC) and adaptive immune cells 
(cytotoxic cells, CD8 + T cells, T cells, T helper cells 
and Th17 cells) displayed beneficial effect, while innate 
immune cells (eosinophils, neutrophils, macrophages, 
mast cells and NK CD56dim cells) and adaptive immune 
cells (Tem cells, Th1 cells and Tgd cells) displayed harm-
ful effect on the prognosis of BLCA patients (Additional 
file 10: Figure S6). The cluster heat map showed that the 
IRLS high-risk patients were filled with TME immune 
cells infiltration (Fig.  7a). Moreover, the spearman cor-
relation analyses demonstrated that the IRLS lncRNAs 
were almost negative correlated with all the immune cells 
despite of NK CD56bright cells, which exerted a robustly 
anti-tumour effect (Fig.  7c). However, we also found 
that almost all the immune cells were filled in the IRLS 

Fig. 6  IRLS is an independent prognosis factor in the nomogram. a, b Forest plot summary of the univariate and multivariable Cox analyses of 
the IRLS and clinicopathological characteristics. The blue diamond squares on the transverse lines indicate the HR, and the black transverse lines 
indicate the 95% CI. c Nomograms integrating the IRLS and pathology N stage for predicting the probability of patient mortality at 3- or 5-year OS. 
d, e Calibration curves of the nomogram for predicting the survival outcomes at 3-, and 5-years.The 45-degree line represents the ideal prediction. 
f–g Decision curve analyses (DCA) curve of the nomograms for 3-year and 5-year OS
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high-risk group, indicating the poor prognosis might be 
relied on the immunosuppressive milieu (Fig. 7c, d).

IRLS could predict the clinical response of immunotherapy
Due to immunosuppressive atmosphere in IRLS high-risk 
patients, we next wonder to know whether there exited 
a correlation between IRLS and immune checkpoints 

Fig. 7  The IRLS is associated with TME immune cells infiltration. a Cluster heat map of immune-related lncRNAs and 24 types of immune cells 
stratified by the IRLS risk-level in the TCGA-BLCA cohort. Yellow represents the expression of lncRNAs and levels of immune cells were upregulated 
while blue indicates downregulated. The relationship between IRLS risk-level and each clinicopathological characteristic were measured with the 
χ2 test. *p < 0.05, **p < 0.01, ***p < 0.001. b The immune cells network in TCGA-BLCA cohort. The colour of each cluster was: Cell cluster-A, blue; Cell 
cluster-B, yellow; Cell cluster-C, red; Cell cluster-D, brown. The size of circle indicated the statistical significant on OS for different immune cell type, 
which was shown as the formula log10 (Log-rank test p value). The lines connecting immune cells indicated cellular interactions. And the thickness 
of the line represents the correlation coefficient evaluated by spearman correlation analysis. Red represented positive correlation while blue 
represented negative correlation. c Correlation matrix of IRLS, immune-related lncRNAs and 24 types of immune cell. The blue indicated positive 
correlation and yellow indicated negative correlation. Shading colour and asterisks represents the value of corresponding correlation coefficients. 
*p < 0.05, **p < 0.01. d Violin plots demonstrated the correlation between IRLS with the levels of 24 types of immune cell. The p value was indicated 
in detail
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such as PD-L1, which might trigger the immunosup-
pressive environment around the tumour and was 
reported to be predictive biomarkers for immunother-
apy in multiple malignancies. Therefore, the routine 
immune-checkpoints, including CD274 (PD-L1), CTLA-
4, LAG-3, LGALS9 (GAL9), HAVCR2 (TIM-3), PDCD1 
(PD-1), PDCD1LG2 (PD-1LG2) and TIGHT, were 
selected to evaluate the relationship with IRLS. Then we 
found that the expression of almost all immune-check-
points (CTLA-4, LAG-3, PD-1, PD-1LG2, PD-L1, TIM-3 
and TIGIT) were upregulated in IRLS high-risk patients, 
which indicated the immunosuppressive TME and poor 
prognosis might be owed to the inducing of the immune 
checkpoints (Fig. 8a, b).

Recently, more and more study has reported the ICIs 
targeting immune-checkpoints such as PD-1 and PD-L1 
could improve the efficiency in treatment of tumours. 
The TIDE algorithm, which was conducted to predict 
the immunotherapy responders through transcriptomic 
data, was utilized to explore whether IRLS could pre-
dict immunotherapeutic benefit in BLCA. The detailed 
output of TIDE algorithm in TCGA-BLCA cohort was 
shown in Additional file 11: Table S4. The result revealed 
that the number of immunotherapy responders were 
significantly higher in IRLS low-risk patients (76/202) 
compared with IRLS high-risk patients (42/201) (two-
sided Fisher’s exact test, p = 0.0002862) (Fig. 8c). And the 
IRLS risk-score were robustly negative correlated with 
the immunotherapy response in BLCA patients (Fig. 8c). 
Moreover, the ROC curve also showed that IRLS dis-
played an appropriate predictive effect to ICIs response 
in TCGA-BLCA cohort (Fig. 8d). ESTIMATE algorithm, 
which could represent the tumour microenvironment 
(TME), was used to calculate the immune scores, stromal 
score and estimate scores in TCGA-BLCA cohort. We 
found that our IRLS also have a high positive correlation 
with these scores (Fig. 8e, f ).

Discussion
With the development of next generation sequenc-
ing, more and more transcriptomic data from the pub-
lic database such as The Cancer Genome Atlas (TCGA) 
Research Network and Gene Expression Omnibus (GEO) 
could be easily obtained. By using the cohorts from the 
public database or own institute, many researchers found 
that non-coding RNAs (ncRNAs), such as microRNAs 
(miRNAs), long non-coding RNAs (lncRNAs), circular 
RNAs (circRNAs) etc. play vital roles in tumorigenesis 
by comparing cancer cells with corresponding pancanre-
rous cells [41]. In this context, analysis and evaluation of 
the genome and transcriptome sequencing data within a 
variety of human cancers from TCGA could provide us 
a comprehensive view on carcinogenesis according to 

aberrations at the genetic, epigenetic, and protein levels 
[42]. Despite genetic and epigenetic aberrations, such 
as methylation, histone modification, the dysregulated 
ncRNA expression has reported to be implicated in the 
function alterations and subsequent neoplasia induction 
[43]. Through mining the big data from the transcrip-
tomic sequencing, many studies have demonstrated that 
lncRNAs acted as a key regulator for the development 
of cancer in various cellular functions, including prolif-
eration, cell differentiation and DNA stability, etc. [44]. 
Moreover, whole genome sequencing analysis indicated 
that the most important mutation associated with tumo-
rigenesis lied within the non-coding region of genome, 
which could alter the expression of lncRNAs [45]. All 
of these worked together to become a vicious circle for 
developing the malignancy.

As so importance in cancer development, recent years 
have showed a booming of lncRNAs in cancer research. A 
lot of lncRNAs, including MALAT1, HOTAIR, CCAT2, 
and AK126698, were found to be associated with non-
small cell lung cancer (NSCLC) progression, metastasis, 
and invasion [46]. LncRNAs HULC and PCA-3 have been 
measured to be significantly upregulated in liver and 
prostate cancers, respectively [47]. Moreover, lncRNA 
urothelial carcinoma-associated 1 (UCA1), which was 
the most investigated lncRNA in BLCA, were involved 
in a variety of biological process in developing BLCA 
and might take responsibility for the drug resistance in 
BLCA [21, 22]. Despite focusing on the routine process 
in neoplasia, recent publications have seen a widespread 
alteration of lncRNAs in activation and priming of innate 
and adaptive immune response, such as T cell develop-
ment, differentiation [48]. Conversely, researchers also 
found that these lncRNAs could regulate some important 
aspects of onco-immunity such as production of inflam-
matory mediators to form an immunosuppressive milieu 
through protein–protein interactions or capability to 
base-repair of RNA and DNA [49].

Through analysing the transcriptomic data via bioin-
formatics and machinery methods, many studies have 
already established the lncRNAs signature for predicting 
the prognosis of multiple cancers, including breast can-
cer [50], oesophageal cancer [51], as well as BLCA [24]. 
Furthermore, some even focused on investigating the 
immune-related lncRNAs signature in diffuse large B cell 
lymphoma [52], renal clear cell carcinoma [53], etc.

Here we aimed to construct an immune-related lncR-
NAs signature (IRLS) in BLCA, which is recognized an 
immunogenic cancer. Firstly, the M13664 (immune sys-
tem process) and M19817 (immune response) gene 
sets, which were reported previously, have been used to 
represent the immune status of each sample in TCGA-
BLCA cohort. By filtering the low expression lncRNAs, 
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Fig. 8  IRLS were efficient in prediction the immunotherapeutic benefit in BLCA. a Violin plots visualized the correlation between IRLS and 
immune-checkpoint-relevant genes, including CTLA-4, LAG-3, GAL9, PD-1, PD-1LG2, PD-L1, TIM-3 and TIGIT. b The correlation chord chart displayed 
the mutual correlation between IRLS and immune-checkpoint-relevant genes. c The distribution of immunotherapeutic response in indicated 
groups stratified by IRLS in TCGA-BLCA cohort based on the TIDE algorithm. Two-sided Fisher’s exact tests were used to analyse contingency tables 
for ICIs responder. d ROC curves for IRLS in predicting the immunotherapy response in the TCGA-BLCA cohort. e Correlation matrix of IRLS and 
immune scores, stromal scores and estimate score. f The box plot indicated the correlation between IRLS and immune scores, stromal scores and 
estimate score
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101 immune-related lncRNAs were identified with sig-
nificantly correlation with the immune status through 
estimation with ssGSEA. Kaplan-Meier (KM) survival 
analyses were used to measure the association between 
lncRNAs and prognosis in BLCA patients. We have 
found 702 lncRNAs significantly associated with the 
overall survival (OS) in patients with BLCA. Finally we 
have obtained 82 prognostic immune-related candidate 
lncRNAs in TCGA-BLCA cohort. Then we submitted 
them to LASSO cox regression analysis to establish a 5 
immune-related lncRNAs signature (IRLS), which was 
capable for stratifying patients into the high-risk and 
low-risk groups with significantly different OS in TCGA-
BLCA training cohort. The 5 lncRNAs (AC005014.2, 
AC010503.4, AL450384.2, LINC00930 and SH3BP5-AS1) 
were all protective factors for BLCA patients. Further-
more, qRT-PCR results validated that 5 lncRNAs were 
downregulated in BLCA cells and tissues compared with 
normal urothelium cells and pancanerous tissues respec-
tively. Moreover, KM survival analyses from the testing 
and entire TCGA-BLCA cohort also suggested that IRLS 
has good reproducibility and are robustness in prognosis 
prediction for BLCA patients. We also found that IRLS 
was vigorously positive correlated with the malignancy 
clinical features such as high TNM stage, non-papillary 
in BLCA. As a heterogeneous disease with so many 
clinicopathological characteristics and risk factors, the 
stratification analyses should be utilized to figure out 
whether our signature was independence of them. The 
results demonstrated that IRLS could clearly distinguish 
patients with all subgroups. Additionally, IRLS remained 
as an independent prognostic factor by combination with 
other risk factors through univariate and multivariate 
Cox regression analyses. Within the nomogram integrat-
ing independent prognostic factors, IRLS contributed 
more and performs better in survival predicting. All of 
these suggested that IRLS acted as an oncogenic role and 
was able to improve prognosis accuracy in BLCA.

Interestingly, the function and annotation analyses 
demonstrated that the gene sets within immune response 
related pathway, such as inflammatory response, comple-
ment, IL2-STAT5 signalling, etc. were significantly posi-
tive correlated with each other, which again emphasized 
the importance of immune response regulation in BLCA. 
The results of GSVA revealed that the angiogenesis 
related pathway, immune response related pathway and 
EMT related pathway, etc. which are considered immu-
nosuppressive and play a vital role in tumorigenesis, 
were enriched in IRLS high-risk group. Furthermore, the 
GSEA also showed the positive correlation between IRLS 
risk-score and M13664 (immune system process) and 
M19817 (immune response) gene sets. The functional 
annotation was entirely consistent with the survival 

analyses and indicated the IRLS was a good representa-
tive for immune response status in BLCA.

TME immune cells infiltration in  situ now has been 
recognized as critical invaluable information for predict-
ing the prognosis and immunotherapy response in vari-
ous cancers according to the clinical trials with ICIs [54, 
55]. So we made a comprehensive analysis of the TME 
immune cells infiltration landscape by estimation the 
abundance of 24 immune cell types in BLCA. Strikingly, 
we found that the IRLS high-risk group were filled with 
all types of immune cells, especially immunosuppressive 
cells such as Treg, macrophages and NK CD56dim cells, 
which could formed the immunosuppressive atmos-
phere to hamper the activation of CD8 + T cells and NK 
CD56bright cells for eradicating the tumour cells [56, 57]. 
By clearly analyse the immune cells network, we were 
amazed to find that Treg and NK CD56dim cells were 
positive associated with all immune cells, no matter pro-
tective or harmful. So it was proposed that there existed 
a negative regulation system, which immunosuppressive 
cells will response to changes of other immune cells and 
dominate the central position within the tumour immune 
microenvironment in BLCA. To this effect, we inferred 
that the poor prognosis of IRLS high-risk patients might 
relay on this tumour immunosuppressive microenviron-
ment. And the results from the ESTIMATE algorithm 
indicated IRLS was positive associated with the immune 
scores, stromal scores and estimate scores, which could 
represent the tumour microenvironment. Moreover, the 
immune-checkpoints, such as CTLA-4, PD-1/PD-L1, 
etc., also act as rheostat in immune response regulation 
by inhibiting the priming of protective immune cells and 
immune surveillance [58, 59]. Therefore, we found that 
the expression of immune checkpoints increased in IRLS 
high-risk patients, prompting us to measure its potential 
in ICIs response prediction. Encouragingly, with the help 
of TIDE algorithm, IRLS was proved to be efficiency in 
predicting the immunotherapy response in TCGA-BLCA 
cohort. Therefore, IRLS was robustly negative correlated 
with the immunotherapy response and there were more 
immunotherapeutic responders in IRLS low-risk groups 
(76/202) than high-risk groups (42/201). All of these indi-
cated that IRLS was a potent biomarker for predicting the 
immunotherapy response.

Conclusions
We have made a comprehensive estimation of immune-
related lncRNAs and established a prognostic and pre-
dictive IRLS for response to ICIs in BLCA, which has 
broaden our eyes in immunotherapies and may provide 
a useful scoring system for clinical utility.



Page 16 of 18Cao et al. Cancer Cell Int          (2020) 20:276 

Supplementary information
Supplementary information accompanies this paper at https​://doi.
org/10.1186/s1293​5-020-01362​-0.

Additional file 1. Ethics Committee Approval (number: 2015029). 

Additional file 2: Table S1. List of primers for qRT-PCR. 

Additional file 3: Figure S1. A flow diagram and design of the study. 

Additional file 4: Figure S2. Establishment of the most valuable 
prognostic immune-related lncRNAs signature (IRLS) through LASSO Cox 
regression model. 

Additional file 5: Figure S3. The prognosis effect of 5 immune-related 
lncRNA within IRLS. 

Additional file 6: Figure S4. Association between the IRLS and clinico-
pathological characteristics. 

Additional file 7: Table S2. Summary of GSVA for hallmark gene sets in 
TCGA-BLCA cohort. 

Additional file 8: Table S3. Summary of ssGSEA scores for hallmark gene 
sets in TCGA-BLCA cohort. 

Additional file 9: Figure S5. The GSEA plot of M13664 (immune system 
process) and M19817 (immune response) gene sets in TCGA-BLCA training 
(A), testing (B) and entire cohort (C). 

Additional file 10: Figure S6. The KM survival analyses of each immune 
cell types in TCGA-BLCA cohort. 

Additional file 11: Table S4. The detailed information of immunotherapy 
response based on TIDE algorithm in TCGA-BLCA cohort.

Abbreviations
aDCs: Activated DCs; AUC​: Area under curve; BCG: Bacillus Calmette-
Guerin; BLCA: Bladder cancer; CI: Confidence interval; circRNA: Circular 
RNA; DC: Dendritic cells; DCA: Decision curve analysis; CTLA-4: Cytotoxic 
T-lymphocyte-associated protein 4; EMT: Epithelial-mesenchymal transition; 
ESTIMATE: Estimation of STromal and Immune cells in MAlignant Tumours 
using Expression data; FDA: Food and Drug Administration; GAL9: LGALS9; 
GEO: Gene Expression Omnibus; GSEA: Gene Set Enrichment Analysis; GSVA: 
Gene Set Variation Analysis; HE: Hematoxylin and eosin; HR: Hazard ratio; ICIs: 
Immune-checkpoint inhibitors; IRLS: Immune-related lncRNAs signature; KM: 
Kaplan–Meier; LASSO: Least absolute shrinkage and selection operator; MIBC: 
Muscle-invasive bladder cancer; miRNAs: microRNA; NES: Normalized enrich-
ment score; NKs: Natural killer cells; NMIBC: Non-muscle-invasive bladder 
cancer; NSCLC: Non-small cell lung cancer; OS: Overall survival; pDCs: Plasma-
cytoid DC; PD-1: Programmed death-1; PD-L1: Programmed death-ligand-1; 
ROC: Receiver operating characteristic curve; ssGSEA: Single-sample gene set 
enrichment analysis; TCGA​: The Cancer Genome Atlas; Tcm: T central memory; 
Tem: T effector memory; Th1: T helper 1; Th2: T helper 2; Tim-3: Havcr2; TNM: 
Tumour Node Metastasis; TME: Tumour microenvironment; Treg: Regulatory T 
cells; Tγδ: T follicular helper.

Acknowledgements
The authors are grateful for the invaluable support and useful discussions with 
other members of Department of Urology.

Authors’ contributions
All authors read and approved the final manuscript. RC, LY made substantial 
contributions to conception and design of the research. RC, LY and BM car-
ried out data collection and analysis. GW performed the experiments, RC, LY 
and YT wrote the paper. RC, LY, BM, GW and TY edited the manuscript and 
provided critical comments.

Funding
This work was supported by grants from National Natural Science Foundation 
of China (Grant number 81802550 and 81902603), China Postdoctoral Science 
Foundation (Grant number 2019M660041), and Beijing Postdoctoral Research 
Foundation (Grant number ZZ2019-04).

Availability of data and materials
All data generated or analysed during this study are included in this published 
article and its Additional files.

Ethics approval and consent to participate
The Ethics Committee at Zhongnan Hospital of Wuhan University approved 
the experiments using human bladder cancer and pancancerous tissue 
samples for RNA isolation (Approval Number: 2015029). All methods used for 
human bladder cancer and pancancerous tissue samples were performed in 
accordance with the approved guidelines and regulations. Informed consent 
was obtained from all individual participants included in the study.

Consent for publication
All authors read and approved the final manuscript.

Competing interests
The authors declare that they have no competing interests.

Author details
1 Department of Urology, Beijing Friendship Hospital, Capital Medical 
University, Beijing 100050, China. 2 Department of Internal Medicine, Division 
of Nephrology, Leiden University Medical Center, 2333 ZA Leiden, The Nether-
lands. 3 Department of Stomatology, Beijing Shijitan Hospital, Capital Medical 
University, Beijing 100038, China. 4 Department of Biological Repositories, 
Zhongnan Hospital of Wuhan University, Wuhan 430071, China. 

Received: 25 December 2019   Accepted: 17 June 2020

References
	1.	 Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global 

cancer statistics 2018: GLOBOCAN estimates of incidence and mor-
tality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 
2018;68(6):394–424.

	2.	 Babjuk M, Bohle A, Burger M, Capoun O, Cohen D, Comperat EM, 
Hernandez V, Kaasinen E, Palou J, Roupret M, et al. EAU guidelines on 
non-muscle-invasive urothelial carcinoma of the bladder: update 2016. 
Eur Urol. 2017;71(3):447–61.

	3.	 Soria F, Milla P, Fiorito C, Pisano F, Sogni F, Di Marco M, Pagliarulo V, Dosio 
F, Gontero P. Efficacy and safety of a new device for intravesical thermo-
chemotherapy in non-grade 3 BCG recurrent NMIBC: a phase I-II study. 
World J Urol. 2016;34(2):189–95.

	4.	 Morales A, Eidinger D, Bruce AW. Intracavitary bacillus calmette-guerin in 
the treatment of superficial bladder tumors. J Urol. 1976;116(2):180–3.

	5.	 Martinez R, Tapia G, De Muga S, Hernandez A, Cao MG, Teixido C, Urrea V, 
Garcia E, Pedreno-Lopez S, Ibarz L, et al. Combined assessment of peritu-
moral Th1/Th2 polarization and peripheral immunity as a new biomarker 
in the prediction of BCG response in patients with high-risk NMIBC. 
Oncoimmunology. 2019;8(8):1602460.

	6.	 Veeratterapillay R, Heer R, Johnson MI, Persad R, Bach C. High-Risk non-
muscle-invasive bladder cancer-therapy options during intravesical bcg 
shortage. Curr Urol Rep. 2016;17(9):68.

	7.	 Sanli O, Dobruch J, Knowles MA, Burger M, Alemozaffar M, Nielsen ME, 
Lotan Y. Bladder cancer. Nat Rev Dis Primers. 2017;3:17022.

	8.	 Johnson DB, Sullivan RJ, Menzies AM. Immune checkpoint inhibitors in 
challenging populations. Cancer. 2017;123(11):1904–11.

	9.	 Atkins MB, Clark JI, Quinn DI. Immune checkpoint inhibitors in advanced 
renal cell carcinoma: experience to date and future directions. Ann Oncol. 
2017;28(7):1484–94.

	10.	 Inman BA, Longo TA, Ramalingam S, Harrison MR. Atezolizumab: 
a PD-L1-blocking antibody for bladder cancer. Clin Cancer Res. 
2017;23(8):1886–90.

	11.	 Kapranov P, Cawley SE, Drenkow J, Bekiranov S, Strausberg RL, Fodor SP, 
Gingeras TR. Large-scale transcriptional activity in chromosomes 21 and 
22. Science. 2002;296(5569):916–9.

	12.	 Djebali S, Davis CA, Merkel A, Dobin A, Lassmann T, Mortazavi A, Tanzer A, 
Lagarde J, Lin W, Schlesinger F, et al. Landscape of transcription in human 
cells. Nature. 2012;489(7414):101–8.

https://doi.org/10.1186/s12935-020-01362-0
https://doi.org/10.1186/s12935-020-01362-0


Page 17 of 18Cao et al. Cancer Cell Int          (2020) 20:276 	

	13.	 Kung JT, Colognori D, Lee JT. Long noncoding RNAs: past, present, and 
future. Genetics. 2013;193(3):651–69.

	14.	 Fatica A, Bozzoni I. Long non-coding RNAs: new players in cell differentia-
tion and development. Nat Rev Genet. 2014;15(1):7–21.

	15.	 Cabili MN, Dunagin MC, McClanahan PD, Biaesch A, Padovan-Merhar O, 
Regev A, Rinn JL, Raj A. Localization and abundance analysis of human 
lncRNAs at single-cell and single-molecule resolution. Genome Biol. 
2015;16:20.

	16.	 Ma Q, Chang HY. Single-cell profiling of lncRNAs in the developing 
human brain. Genome Biol. 2016;17:68.

	17.	 Wilusz JE, Sunwoo H, Spector DL. Long noncoding RNAs: functional 
surprises from the RNA world. Genes Dev. 2009;23(13):1494–504.

	18.	 Martens-Uzunova ES, Bottcher R, Croce CM, Jenster G, Visakorpi T, Calin 
GA. Long noncoding RNA in prostate, bladder, and kidney cancer. Eur 
Urol. 2014;65(6):1140–51.

	19.	 Fatima R, Akhade VS, Pal D, Rao SM. Long noncoding RNAs in develop-
ment and cancer: potential biomarkers and therapeutic targets. Mol Cell 
Ther. 2015;3:5.

	20.	 Gibb EA, Brown CJ, Lam WL. The functional role of long non-coding RNA 
in human carcinomas. Mol Cancer. 2011;10:38.

	21.	 Pan J, Li X, Wu W, Xue M, Hou H, Zhai W, Chen W. Long non-coding RNA 
UCA1 promotes cisplatin/gemcitabine resistance through CREB modulat-
ing miR-196a-5p in bladder cancer cells. Cancer Lett. 2016;382(1):64–76.

	22.	 Wang XS, Zhang Z, Wang HC, Cai JL, Xu QW, Li MQ, Chen YC, Qian XP, 
Lu TJ, Yu LZ, et al. Rapid identification of UCA1 as a very sensitive and 
specific unique marker for human bladder carcinoma. Clin Cancer Res. 
2006;12(16):4851–8.

	23.	 Tan J, Qiu K, Li M, Liang Y. Double-negative feedback loop between long 
non-coding RNA TUG1 and miR-145 promotes epithelial to mesenchymal 
transition and radioresistance in human bladder cancer cells. FEBS Lett. 
2015;589(20 Pt B):3175–81.

	24.	 Zhan Y, Du L, Wang L, Jiang X, Zhang S, Li J, Yan K, Duan W, Zhao Y, Wang 
L, et al. Expression signatures of exosomal long non-coding RNAs in urine 
serve as novel non-invasive biomarkers for diagnosis and recurrence 
prediction of bladder cancer. Mol Cancer. 2018;17(1):142.

	25.	 Hedegaard J, Lamy P, Nordentoft I, Algaba F, Hoyer S, Ulhoi BP, Vang S, 
Reinert T, Hermann GG, Mogensen K, et al. Comprehensive transcriptional 
analysis of early-stage urothelial carcinoma. Cancer Cell. 2016;30(1):27–42.

	26.	 Cao R, Wang G, Qian K, Chen L, Qian G, Xie C, Dan HC, Jiang W, Wu M, Wu 
CL, et al. Silencing of HJURP induces dysregulation of cell cycle and ROS 
metabolism in bladder cancer cells via PPARgamma-SIRT1 feedback loop. 
J Cancer. 2017;8(12):2282–95.

	27.	 Cao R, Wang G, Qian K, Chen L, Ju L, Qian G, Wu CL, Dan HC, Jiang W, Wu 
M, et al. TM4SF1 regulates apoptosis, cell cycle and ROS metabolism via 
the PPARgamma-SIRT1 feedback loop in human bladder cancer cells. 
Cancer Lett. 2018;414:278–93.

	28.	 Cao R, Yuan L, Ma B, Wang G, Qiu W, Tian Y. An EMT-related gene 
signature for the prognosis of human bladder cancer. J Cell Mol Med. 
2020;24(1):605–617.

	29.	 Barbie DA, Tamayo P, Boehm JS, Kim SY, Moody SE, Dunn IF, Schinzel 
AC, Sandy P, Meylan E, Scholl C, et al. Systematic RNA interference 
reveals that oncogenic KRAS-driven cancers require TBK1. Nature. 
2009;462(7269):108–12.

	30.	 Wang W, Zhao Z, Yang F, Wang H, Wu F, Liang T, Yan X, Li J, Lan Q, Wang J, 
et al. An immune-related lncRNA signature for patients with anaplastic 
gliomas. J Neurooncol. 2018;136(2):263–71.

	31.	 Yoshihara K, Shahmoradgoli M, Martinez E, Vegesna R, Kim H, Torres-
Garcia W, Trevino V, Shen H, Laird PW, Levine DA, et al. Inferring tumour 
purity and stromal and immune cell admixture from expression data. Nat 
Commun. 2013;4:2612.

	32.	 Derrien T, Johnson R, Bussotti G, Tanzer A, Djebali S, Tilgner H, Guernec 
G, Martin D, Merkel A, Knowles DG, et al. The GENCODE v7 catalog of 
human long noncoding RNAs: analysis of their gene structure, evolution, 
and expression. Genome Res. 2012;22(9):1775–89.

	33.	 Friedman J, Hastie T, Tibshirani R. Regularization paths for generalized 
linear models via coordinate descent. J Stat Softw. 2010;33(1):1–22.

	34.	 Heagerty PJ, Zheng Y. Survival model predictive accuracy and ROC 
curves. Biometrics. 2005;61(1):92–105.

	35.	 Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, Gillette MA, 
Paulovich A, Pomeroy SL, Golub TR, Lander ES, et al. Gene set enrichment 

analysis: a knowledge-based approach for interpreting genome-wide 
expression profiles. Proc Natl Acad Sci USA. 2005;102(43):15545–50.

	36.	 Hanzelmann S, Castelo R, Guinney J. GSVA: gene set variation analysis for 
microarray and RNA-seq data. BMC Bioinform. 2013;14:7.

	37.	 Yu G, Wang LG, Han Y, He QY. clusterProfiler: an R package for comparing 
biological themes among gene clusters. OMICS. 2012;16(5):284–7.

	38.	 Iasonos A, Schrag D, Raj GV, Panageas KS. How to build and interpret a 
nomogram for cancer prognosis. J Clin Oncol. 2008;26(8):1364–70.

	39.	 Bindea G, Mlecnik B, Tosolini M, Kirilovsky A, Waldner M, Obenauf AC, 
Angell H, Fredriksen T, Lafontaine L, Berger A, et al. Spatiotemporal 
dynamics of intratumoral immune cells reveal the immune landscape in 
human cancer. Immunity. 2013;39(4):782–95.

	40.	 Jiang P, Gu S, Pan D, Fu J, Sahu A, Hu X, Li Z, Traugh N, Bu X, Li B, et al. 
Signatures of T cell dysfunction and exclusion predict cancer immuno-
therapy response. Nat Med. 2018;24(10):1550–8.

	41.	 Wang J, Liu Q, Shyr Y. Dysregulated transcription across diverse cancer 
types reveals the importance of RNA-binding protein in carcinogenesis. 
BMC Genomics. 2015;16(Suppl 7):S5.

	42.	 Cancer Genome Atlas Research N, Weinstein JN, Collisson EA, Mills 
GB, Shaw KR, Ozenberger BA, Ellrott K, Shmulevich I, Sander C, Stuart 
JM. The cancer genome atlas pan-cancer analysis project. Nat Genet. 
2013;45(10):1113–20.

	43.	 Kanwal R, Gupta K, Gupta S. Cancer epigenetics: an introduction. Meth-
ods Mol Biol. 2015;1238:3–25.

	44.	 Huarte M. The emerging role of lncRNAs in cancer. Nat Med. 
2015;21(11):1253–61.

	45.	 Schmitt AM, Chang HY. Long noncoding RNAs in cancer pathways. 
Cancer Cell. 2016;29(4):452–63.

	46.	 Chen J, Wang R, Zhang K, Chen LB. Long non-coding RNAs in non-small 
cell lung cancer as biomarkers and therapeutic targets. J Cell Mol Med. 
2014;18(12):2425–36.

	47.	 Lu Z, Xiao Z, Liu F, Cui M, Li W, Yang Z, Li J, Ye L, Zhang X. Long non-
coding RNA HULC promotes tumor angiogenesis in liver cancer by up-
regulating sphingosine kinase 1 (SPHK1). Oncotarget. 2016;7(1):241–54.

	48.	 Heward JA, Lindsay MA. Long non-coding RNAs in the regulation of the 
immune response. Trends Immunol. 2014;35(9):408–19.

	49.	 Carpenter S, Aiello D, Atianand MK, Ricci EP, Gandhi P, Hall LL, Byron M, 
Monks B, Henry-Bezy M, Lawrence JB, et al. A long noncoding RNA medi-
ates both activation and repression of immune response genes. Science. 
2013;341(6147):789–92.

	50.	 Jiang YZ, Liu YR, Xu XE, Jin X, Hu X, Yu KD, Shao ZM. Transcriptome 
analysis of triple-negative breast cancer reveals an integrated mRNA-
lncRNA signature with predictive and prognostic value. Cancer Res. 
2016;76(8):2105–14.

	51.	 Li J, Chen Z, Tian L, Zhou C, He MY, Gao Y, Wang S, Zhou F, Shi S, Feng X, 
et al. LncRNA profile study reveals a three-lncRNA signature associated 
with the survival of patients with oesophageal squamous cell carcinoma. 
Gut. 2014;63(11):1700–10.

	52.	 Zhou M, Zhao H, Xu W, Bao S, Cheng L, Sun J. Discovery and validation 
of immune-associated long non-coding RNA biomarkers associated 
with clinically molecular subtype and prognosis in diffuse large B cell 
lymphoma. Mol Cancer. 2017;16(1):16.

	53.	 Khadirnaikar S, Kumar P, Pandi SN, Malik R, Dhanasekaran SM, Shukla SK. 
Immune associated LncRNAs identify novel prognostic subtypes of renal 
clear cell carcinoma. Mol Carcinog. 2019;58(4):544–53.

	54.	 Lee JM, Lee MH, Garon E, Goldman JW, Salehi-Rad R, Baratelli FE, Schaue 
D, Wang G, Rosen F, Yanagawa J, et al. Phase I trial of intratumoral injec-
tion of CCL21 gene-modified dendritic cells in lung cancer elicits tumor-
specific immune responses and CD8(+) t-cell infiltration. Clin Cancer Res. 
2017;23(16):4556–68.

	55.	 Hegde PS, Karanikas V, Evers S. The where, the when, and the how of 
immune monitoring for cancer immunotherapies in the era of check-
point inhibition. Clin Cancer Res. 2016;22(8):1865–74.

	56.	 Bauer CA, Kim EY, Marangoni F, Carrizosa E, Claudio NM, Mempel TR. 
Dynamic Treg interactions with intratumoral APCs promote local CTL 
dysfunction. J Clin Invest. 2014;124(6):2425–40.

	57.	 Bunt SK, Yang L, Sinha P, Clements VK, Leips J, Ostrand-Rosenberg S. 
Reduced inflammation in the tumor microenvironment delays the 
accumulation of myeloid-derived suppressor cells and limits tumor 
progression. Cancer Res. 2007;67(20):10019–26.



Page 18 of 18Cao et al. Cancer Cell Int          (2020) 20:276 

•
 
fast, convenient online submission

 •
  

thorough peer review by experienced researchers in your field

• 
 
rapid publication on acceptance

• 
 
support for research data, including large and complex data types

•
  

gold Open Access which fosters wider collaboration and increased citations 

 
maximum visibility for your research: over 100M website views per year •

  At BMC, research is always in progress.

Learn more biomedcentral.com/submissions

Ready to submit your research ?  Choose BMC and benefit from: 

	58.	 Dempke WCM, Fenchel K, Uciechowski P, Dale SP. Second- and third-
generation drugs for immuno-oncology treatment-the more the better? 
Eur J Cancer. 2017;74:55–72.

	59.	 Le Mercier I, Lines JL, Noelle RJ. Beyond CTLA-4 and PD-1, the generation 
Z of negative checkpoint regulators. Front Immunol. 2015;6:418.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.


	Immune-related long non-coding RNA signature identified prognosis and immunotherapeutic efficiency in bladder cancer (BLCA)
	Abstract 
	Background: 
	Methods: 
	Results: 
	Conclusion: 

	Background
	Materials and methods
	Ethical statement for human bladder tissue samples
	Human bladder cancer cell lines
	Total RNA isolation from bladder tissues and BCa cells
	Reverse transcription and quantitative real time PCR (qRT-PCR)
	Data collection and processing
	Identification of immune-related LncRNAs
	Establishment and validation of prognostic IRLS
	Correlation between IRLS and clinicopathological characteristics
	Functional and annotation analyses
	Construction of a predictive nomogram
	Estimation of TME immune infiltrating and immune-checkpoint inhibitors (ICIs) response
	Statistical analyses

	Results
	Identification of prognostic and immune-related LncRNAs
	Establishment of immune-related LncRNAs signature (IRLS)
	Correlation between IRLS and clinicopathological characteristics
	Identification of IRLS related functional annotation
	The IRLS was an independent prognostic factor in BLCA
	The landscape of TME immune cells infiltration in BLCA
	IRLS could predict the clinical response of immunotherapy

	Discussion
	Conclusions
	Acknowledgements
	References




