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Abstract
Research in radiology and visual cognition suggest that finding one target during visual search may result in increased misses for
a second target, an effect known as subsequent search misses (SSM). Here, we demonstrate that the common method of
calculating second-target detection performance is biased and could produce spurious SSM effects. We describe the source of
that bias and document factors that influence its magnitude. We use a modification of signal-detection theory to develop a novel,
unbiased method of calculating the expected value for dual-target performance under the null hypothesis. We then apply our
novel method to two of our data sets that showed modest SSM effects when calculated in the traditional manner. Our correction
reduced the effect size to the point that there was no longer a significant SSM effect. We then applied our method to a published
data set that had a larger effect size when calculated using the traditional calculation as well as when using an alternative
calculation that was recently proposed to account for biases in the traditional method. We find that both the traditional method
and the recently proposed alternative substantially overestimate the magnitude of the SSM effect in these data, but a significant
SSM effect persisted even with our calculation.We recommend that future SSM studies use our method to ensure accurate effect-
size estimates, and suggest that the method be applied to reanalyze published results, particularly those with small effect sizes, to
rule out the possibility that they were spurious.
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More than 50 years ago, radiologists first raised a concern that
displays with multiple targets may result in more misses
(Tuddenham, 1962). Specifically, they were concerned that
the act of finding one target may reduce the likelihood of
finding a second target (Berbaum, Franken, Caldwell, &
Schartz, 2010; Berbaum et al., 1994; Berbaum et al., 1996).
Initial evidence supported this concern, and the effect was
coined “satisfaction of search.” That moniker suggested a
mechanism—namely, that once a target had been found,
searchers would be somewhat “satisfied” with their perfor-
mance and may not search as diligently for a second target.

Although the research of this phenomenon began in
radiology, visual cognition researchers have more recently
started to investigate the mechanisms responsible for this
decrement in second-target detection. One conclusion of
that work is that there is little empirical evidence to

suggest that the observed deficits in second-target detec-
tion can be attributed to less diligent searching for the
second target as suggested by the satisfaction account
(Berbaum et al., 1991; Cain, Adamo, & Mitroff, 2013;
but see Adamo, Cain, & Mitroff, 2018). As a result, a
number of researchers have argued that the mechanism-
agnostic term “subsequent search misses” (SSM) is a
more appropriate description of the effect (Adamo, Cain,
& Mitroff, 2013; Cain et al., 2013).

Investigations into this SSM phenomenon have addressed
numerous additional questions to better understand the phe-
nomenon and its causes. This research includes investigations
into whether finding one target depletes workingmemory (Cain
& Mitroff, 2013) or causes that target’s template to become
highly active in working memory (Adamo, Nah, Collegio,
Scotti, & Shomstein, 2018), investigating how expertise influ-
ences the effect (Biggs & Mitroff, 2014; Cain, Biggs, Darling,
&Mitroff, 2014), investigating how the effect may interact with
target prevalence (Godwin et al., 2010), how the salience dif-
ference between the two targets may influence the effect (Sall &
Feng, 2016), and how the effect may depend on anxiety (Cain,
Dunsmoor, LaBar, & Mitroff, 2011, 2017).
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Throughout these investigations, one vexing issue has been
how to appropriately evaluate the presence and magnitude of
the SSM effect. That is, what are the appropriate measures of
single-target performance and dual-target performance to be
entered into a comparison (Biggs, 2017)? To illustrate this
problem, consider a scenario where you are looking for both
scissors (Target A) and some tape (Target B). As a natural
starting place, you open your junk drawer and start searching
through the clutter for both items. The primary question of
interest in the SSM literature is whether finding the tape re-
duces your subsequent ability to find the scissors. In the lab, a
typical experiment designed to investigate this issue would
have target-absent trials, single-target trials (with either
Target A alone or Target B alone), and dual-target trials (with
both Target A and Target B). Given the primary question of
interest, the critical comparison would be between detection
rates when Target A appeared alone and detection rates for
Target A following the detection of Target B in dual-target
trials. However, it would be inappropriate to directly compare
the total number of Target A detections in these two cases, as
the latter’s contingency of having found Target B prior to
finding Target A adds a second requirement. The conjunction
of two events must be less than (or equal to, in the limiting
case) the likelihood of either event occurring alone (Tversky
& Kahneman, 1974).

To address this concern, Biggs (2017) considered a number
of methods for calculating a corrected value of second-target
detection performance to allow a direct comparison to detec-
tion performance in the single-target condition. While a num-
ber of calculations were considered, all had the goal of remov-
ing the impact of the contingency from the dual-task calcula-
tion, and all did this by calculating dual-task accuracy consid-
ering only those trials were Target B was detected first. In
other words, these methods compared search accuracy on
Single-Target A trials to the contingent probability P(A I B)
for dual-target trials. The following is themost widely adopted
formula for calculating this contingent probability:

F1 :
trials with B then A detected

all trials with B detected first
ð1Þ

On its surface, this calculation seems well founded; consid-
ering only those trials where Target B has already been found
eliminates the contingency of having to find B before A.
Given its intuitive appeal, this approach (or a variation on this
approach) has been widely adopted.

However, Adamo, Cox, Kravitz, and Mitroff (2019) re-
cently pointed out that that approach introduces a systematic
bias, leading to a consistent underestimation of second-target
performance. As a result, the approach can lead to an overes-
timation of the size of the SSM effect. At a conceptual level,
the main problemwith the traditional method (Biggs, 2017) of
calculating second-target search performance for a Target A is

that it considers only trials where A is found following detec-
tion of B. Critically, the calculation therefore eliminates trials
where Target A is detected prior to Target B. Arguably, these
eliminated trials would be, on average, cases where Target A
is “easy” to find. (i.e., is found rapidly). By contrast, the cal-
culation of Single-Target A performance would include all
cases, both easy and hard. This difference in inclusion criteria
leads the calculation to be systematically biased against the
second target condition.

One way of addressing this issue is by trying to limit the
calculation of Single-Target A performance to difficult cases
in a way that is matched to the calculation of second-target
performance. This is the approach Adamo et al. (2019) took in
an attempt to circumvent the bias in the original method. Their
experiment included matched sets of three trials that all shared
the same target and distractor layout; one contained both tar-
gets, one contained only Target A with Target B replaced by a
distractor, and one contained only Target B with Target A
replaced by a distractor. All trials were randomly interleaved.
Motivated by the fact that the second-target performance cal-
culation includes only a subset of, mostly difficult, two-target
trials, this design allowed Adamo and colleagues to use only
the corresponding single-target trials in their Single-Target A
performance calculation, thereby attempting to match difficul-
ty across both calculations. This would be an excellent ap-
proach if a large majority of the variability in search difficulty
could be accounted for by display layout. However, it is pos-
sible that other factors also substantially contribute to difficul-
ty for a given target on a given trial (e.g., trial history, mo-
mentary shifts in vigilance, internally generated changes in
activation of one of the search templates, etcetera). This means
that an approach centered on equating search array layouts
may be rooted in an incomplete characterization of the under-
lying factors that determine search difficulty. As a result, such
an approach may suffer from the same issue as the traditional
approach and result in SSM estimates that are biased in the
same way. We will detail below that this is, indeed, the case
with the approach proposed by Adamo et al. (2019).

In what follows, we will present a method that, we argue,
provides an unbiased estimate of SSM magnitude. Two key
features of the method are, first, that it takes care of the con-
cern of biased trial selection with regard to search difficulty;
and, second, that it does so without committing to any partic-
ular factors that might determine this difficulty. Instead, and
importantly, the method treats the process of searching for a
target as fundamentally stochastic in the sense that search
difficulty might vary from trial to trial due to various factors
that cannot be fully controlled, and it incorporates this
stochasticity in its computations rather than relying on at-
tempts to control those factors.

After describing the logic behind our method, we will ex-
amine the impact of the above-described bias on SSM esti-
mates by applying both the traditional approach and our novel
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approach to empirical data collected in two SSM experiments
in our lab. Because those particular data are not suitable for
applying the method proposed by Adamo et al. (2019), we
will also apply our method to a published set of Adamo
et al.’s (2019) data to directly observe how our approach com-
pares to those authors’ approach to addressing the systematic
bias in the traditional method.

To preview, we find that our method results in substantially
smaller SSM effect estimates than the traditional method
(Biggs, 2017) as well as the recently proposed alternative
(Adamo et al., 2019), and that apparent SSM effects in our
own data sets, but not in the published data set, disappear
when using our method. We also demonstrate that display
layout does not account for much variability in search diffi-
culty in the published data set, which explains why our meth-
od leads to smaller SSM estimates for those data than Adamo
et al.’s (2019) method centered on controlling display layout.
We conclude with a set of recommendations for researchers
investigating SSM effects to follow, in order to avoid biased
calculations that can overestimate SSM effect sizes, and could
even produce spurious SSM effects.

A different approach to avoiding SSM estimation bias Our
approach is different from existing approaches in that it is
not aimed at directly comparing Single-Target A performance
to a measure of second-target performance and, consequently,
it does not involve any attempt to match those two perfor-
mance measures in terms of the search difficulty of the under-
lying targets. Instead, our approach treats search difficulty for
a given kind of target as inherently a stochastic variable that
has some distribution—that is, that has some across-trial var-
iability that we do not attempt to control (using display layout
or otherwise). Our method, then, is aimed at including esti-
mates of that variability, obtained from the empirical data, in
our prediction of what the quantity proposed by Biggs (2017;
our Formula 1) would be under the null hypothesis that no
SSM effect exists. In other words, there is no attempt to arrive
at an unbiased alternative to Biggs’s (2017) variable, nor to
arrive at an equivalently biased measure of Single-Target A
performance to use for comparison (as in Adamo et al., 2019).
Instead, we predict Biggs’s variable, including whatever bias
it may have, under the assumption that an SSM effect is ab-
sent, and any deviation between this prediction and the actual
variable counts as evidence for an SSM effect.

To introduce our approachwewill now revisit the source of
bias in the traditional method using a framework inspired by
signal-detection theory (SDT). To adopt SDT to visual-search
responses, we assume that search difficulty, or the time re-
quired to detect the target, for Target A is normally distributed
across trials (the actual shape of this distribution is not criti-
cal). Further, there is a decision criterion, which in the domain
of visual search can also be considered a quitting threshold. If
the target for a given trial is easy to detect (see Fig. 1a), the

target will be successfully detected prior to reaching the quit-
ting threshold and the result will be a hit. By contrast, if the
target for a given trial is sufficiently difficult to detect (see Fig.
1b), the quitting threshold will be reached before finding the
target, and the result will be a miss. Thus, the shaded area
under the curve represents the hit rate, and the nonshaded area
represents the miss rate.

To expand this logic to trials with two targets gets a bit
more difficult. For illustrative purposes, assume a scenar-
io where the single-target hit rates are .65 for Target A
and .9 for Target B. The application of SDT and basic
rules of probability allow us to use these single-target
detection rates to estimate the likelihood of four possible
dual-target trial outcomes. As illustrated in Fig. 2, these
are finding both A and B (top left); finding only A (bot-
tom left); finding only B (top right); and finding neither
(bottom right). Note that these predictions are under the
null hypothesis that the detection of one target has no
impact on the detection rate of the other.

However, none of the four calculated probabilities il-
lustrated in Fig. 2 is a direct prediction of the probability
of detecting A after detecting B, because none consider
the order of target detection. Rather, the calculated prob-
ability of finding both targets in a trial (the upper left
panel of the figure) is a composite of two types of
trials—those where A is detected after detecting B (the
data of interest) and those where A is detected before
detecting B. As such, this calculated probability of detect-
ing both A and B sets the upper limit of the expected
probability for detecting A after detecting B. The propor-
tion of A following B trials will fall below this upper limit
by an amount that corresponds to the proportion of trials
in which Target A is detected before Target B. For in-
stance, assume that B was the first target detected in
80% of the trials where both targets were detected, and
A was detected first in the other 20%. Then, given that the
expected proportion of trials where both targets were de-
tected was .585 (from upper-left panel of Fig. 2), only
80% of them, or .468, would be expected to be trials
where A was detected following B. In short, and this is
the key observation here, with knowledge of the propor-
tion of dual detections that follow the B then A ordering,
we can derive an expected value for the rate of B then A
detection under the null hypothesis that finding B does
not impact the ability to find A.

Before turning to an examination of howwe can predict the
proportion of dual-target trials with a specific order of detec-
tion, we use the example we have developed to empirically
demonstrate the bias inherent in the traditional calculation of
second-target detection rates. To refresh, that calculation con-
siders only trials where Target B is detected in the calculation.
As such, the formula (see Formula 1, above) can be rewritten
as follows:
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F2 :
trials with B then A detected

trials with B then A detectedþ trials with only B detected
ð2Þ

For our example that we just calculated, the expected value
for “trials with B then A detected” would be .468 (assuming a
B then A ordering of detection in 80% of the trials where both
targets were detected). Thus, inserting the values from our
probability calculations, the expected value of this traditional
calculation would be .468/(.468 + .315) = .59. The traditional
method would then directly compare this calculated value
with the single-target detection rate. Note, however, that this
.59 is below the .65 single-target detection rate for Target A
that was used to generate our expected values in our example.
Thus, this apparent SSM effect of 6% is due to bias in the
calculation rather to than any actual effect that finding Target
B had on finding Target A.

While the above example is a single example, in Fig. 3 we
calculated the bias in the traditional measure across a variety
of Single-Target A detection rates (y values of solid lines) and
a variety of B then A rates (finding B before A in dual-
detection trials; x-axis). As can be seen from Fig. 3, broken
lines, the traditional calculation is accurate when B is found
before A on all dual-target trials, but systematic bias increases
as the number of trials on which A is found prior to B in-
creases. Intuitively, this pattern makes sense, given that the
main problem with the traditional calculation is that it throws
out successful target detections when the target of interest (A,
in this example) is found first. Figure 3 also demonstrates that
the magnitude of this bias is dependent on the single-target hit
rate for Target A; as the hit rate for Target A decreases, the
magnitude of the effect increases.1

In short, this exercise of calculating the second-target de-
tection rates using expected values generated under the null

hypothesis and the traditional method of calculation provides
a couple of key insights. First, it confirms the inherent bias
identified by Adamo et al. (2019) in the measure of second-
target performance that has been used, which renders the mea-
sure unsuited for direct comparison to single-target perfor-
mance. This bias could create apparent SSM effects when
none are present, or artificially increase the magnitude of the
effects when they are present. Second, the magnitude of the
bias depends on two critical factors: the single-target hit rate
for the target of interest (Target A in our example) and the
proportion of trials in which the target of interest is found
before the other target when both are detected, a quantity we
term the reversal rate. Finally, and critically for our present
purposes, if these two factors are known, one can use that
knowledge to make estimates of the variable proposed by
Biggs (2017; i.e., the proportion of trials detecting Target A
following Target B) under the null hypothesis that no SSM
effect exists—against which observed dual-task performance
can be evaluated. The following section describes this estima-
tion process in detail.

Making unbiased dual-task performance predictionsOneway
to derive a prediction of second target detection rate under the
null hypothesis is to use the single-target data to calculate the
probability of finding both Target A and Target B (regardless
of order) in dual-target trials, and then to use the observed
reversal rate (% of dual detection trials that do not occur in
the order of interest) to scale this probability. This is fairly
similar to the example we performed above, and requires three
pieces of information: the single-target hit rate for the target of
interest [P(A)], the single-target hit rate for Target B [P(B)],
and the proportion of trials, out of only those two-target trials
where both targets are detected, in which Target A is found
after Target B [P(A after B)]. Provided these three measures,
the expected proportion of all two-target trials on which A is
found after B, under the null hypothesis, is given by the fol-
lowing formula:

1 The traditional calculation is unaffected by detection of Target B in single-
target trials (see Appendix A), and thus that was not considered as a factor in
Fig. 3.

Fig. 1 To adopt a signal detection theory (SDT) framework to visual
search responses, we posit that search difficulty, which can be thought
of as the time required to find a target is normally distributed across trials.
Like traditional SDT, there is a decision criterion, which in the visual
search literature is analogous to a quitting threshold. If the target for a
given trial is drawn from the part of the distribution of target difficulties to

the left of the quitting threshold (a, shaded area), the target will be detect-
ed prior to hitting the quitting threshold. If the target is drawn from the
part of the distribution to the right of the quitting threshold (b, unshaded
area), the trial will be terminated before detecting the target and there will
be a miss
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F3 : P Að Þ*P Bð Þ*P A after Bð Þ ð3Þ

Of course, to directly compare this value to the traditional
calculation, one would have to put this value over the denom-
inator of all trials in which Target B was found first, so the
formula to calculate a value that can be directly comparedwith
the traditional calculation would be:

F4 :
P Að Þ*P Bð Þ*P A after Bð Þ

P Að Þ*P Bð Þ*P A after Bð Þ þ P Bð Þ*P not Að Þ ð4Þ

Most SSM experiments have single-target conditions, so
the P(A) and P(B) can be calculated directly from the single-
target trials. The P(A after B) term can also be calculated
directly from the dual-target trials. Thus, it would be relatively
easy to perform these calculations based on the data typically
collected in an SSM experiment.

Note that the reversal rate is a quantity that is directly re-
lated to the across-trial variability in search difficulty for the
Targets A and B: It depends on the degree of overlap between
search difficulty distributions for the two targets. So, by

Fig. 2 The figure illustrates how one can adopt a SDT approach to a dual-
target search scenario. The distributions with light-gray and dark-gray
shading correspond to the distribution of Target A and Target B difficul-
ties, respectively. The four quandrants of the figure represent the 2 × 2
factorial combination of the response of detecting or missing Target B
(rows) and detecting or missing Target A (columns). In the example we
assume a Single-Target A hit rate of 65% and a Single-Target B hit rate of

90%. While this signal-detection model provides estimates of likelihood
of the four possilble types of response, it is worth noting that the upper-
right quadrant (detect both targets) is composed of a portion of trials in
which A is detected before B and in which B is detected before A. Note
that the distribution for Target A and B can have different means standard
deviations, but the quitting threshold is the same for both targets because
it is set for the entire trial
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incorporating the empirically observed reversal rate into our
computation, we are taking into account knowledge of this
variability without trying to control it. However, we will also
apply a second method in addition to the one just described,
based on the following consideration: it is somewhat odd to
use the dual-target data themselves to determine the reversal
rate term P(A after B), and then use that term to predict dual-
target performance. The possibility arises that this prediction
is not independent from the data to which the prediction is
applied. In an ideal situation, one would infer the nature of
across-trial variability in search difficulty and, ultimately, de-
rive a prediction of dual-target performance, entirely on the
basis of single-target data.

This turns out to be possible, provided one collects reaction
time data for the single-target trials. In particular, given that
single-target displays and dual-target displays in a given ex-
periment are made up of the same kinds of targets and
distractors, one can reasonably use the single-target reaction-
time distributions for Target A and Target B to estimate the
probability that a given Target B would be detected before a
given Target A in a dual-target trial. One way of doing this is
to simulate a set of hypothetical dual-target trials, each corre-
sponding to a combination of one actually observed Single-
Target A trial and one actually observed Single-Target B trial.
In this case, for a given observer one would make a matrix of

all the successful Single-Target A detection reaction times by
all successful Single-Target B detection reactions times (see
Fig. 4). If a 1 was entered in every cell where the RT for A was
greater than the RT for B (i.e., a simulated trial where Target B
would be found first), and a zero elsewhere (i.e., a simulated
trial where Target A would be found first), the average of the
matrix would be an estimate, based solely on the single-target
data, of the proportion, out of those dual-target trials in which
both A and B are found, in which A should be detected after
B. This proportion then replaces the “P(A after B)” term in
Formulas 3 and 4, above. In this way, the prediction of dual-
target performance can be calculated relying completely on
the single-target data.

An empirical test

Having derived the above suggestions for analyzing SSM da-
ta, we applied both of our proposed methods (as well as the
traditional approach) to empirical data from two SSM exper-
iments that we had run in the lab. The two experiments were
originally designed to investigate whether the SSM resulted
because detection of one target made that target active in
working memory, thereby biasing subsequent attention to-
ward features of that target, and away from features of a dif-
ferent target (Gorbunova, 2017). However, we use them here

Fig. 3 Solid lines represent three different levels of single-target detection
accuracy. Broken lines are the corresponding expected values for second-
target accuracy for the target as computed by the traditional calculation.
The traditional method is accurate when the target of interest is found

second in all dual-target trials where two targets are detected. However,
bias is introduced and increases as the percentage of trials where the target
of interest is found second decreases, and this bias is exaccerbated as the
single-target accuracy for the target of interest decreases
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simply to evaluate how our unbiased method influences SSM
analyses and interpretations. Importantly, these data showed
significant SSM effects when analyzed with the traditional
method, thereby providing an opportunity to investigate the
extent to which that significant effect may be reduced or elim-
inated by analyzing the data with the unbiased methods we
derived here.

Methods

Participants Subjects were recruited from Michigan State’s
undergraduate research pool; subjects were granted course
credit or extra credit for their involvement in the experiment.
The subjects’ age ranged from 18 to 35 years, and they had
normal or corrected-to-normal vision. For the analyses we
perform here, data from a subject was excluded from analysis
if the subject’s accuracywas 2.5 standard deviation away from
mean. This criterion resulted in useable data from a total of 59
subjects (26 in Experiment 1 and 33 in Experiment 2).

Apparatus and stimuli The experiment was coded using
Experiment Builder software (SR Research, Ottawa, ON,
Canada) for the EyeLink 1000 (SR Research), and presented
on a 27-inch monitor with 1,024 × 768 resolution. A head rest
placed 66 cm away from the computer screen stabilize the
head, while the participant’s right eye was tracked. The exper-
iment began with a calibration and validation procedure for
the eye tracker.

Each search array consisted of 24 stimuli (each ~.92° ×
.82°of visual angle) that were distributed in a 6 × 4 grid, with
each object’s location randomly jittered within that section of
the grid (see Fig. 5). Target-absent displays were composed of
an equal number of Qs and offset Ls which could appear in
any of four rotations and which were randomly dispersed

throughout the array. Targets were Os and rotated Ts. There
were six different types of search arrays: absent, a single T,
single O, two Ts, two Os, and T and O search arrays. The
subjects were informed there could either be one target, two,
targets or no targets present.

Procedure Every trial began with a central fixation point that
checked the calibration of the eye tracker. Following fixation
on the central fixation point, the search array appeared and
remained present until subjects terminated the trial. Subjects
were instructed to press one button every time they detected a
T, a second button for every O, and a third button to indicate
that there were no more targets (i.e., terminate the trial).

Both experiments were identical, except for the number of
trials in each condition. In Experiment 1, there were three
blocks of trials; the first block was a practice block consisting
of 16 trials (four absent, two single Ts, two single Os, two

Fig. 4 How to use single-target RTs to derive and estimate of the expect-
ed probability of dual-target detection trials in which the order would be
to detect Target B before Target A. For any cell where the Target A
reaction time was greater than the Target B reaction time, we would

assign a 1; for all other cells we assign a zero. The average of this matrix
provides an estimate, based on single-target trials, of the proportion of
dual-target detection trials inwhich Target Awould be found after finding
B

Fig. 5 An example of a dual-target search array with two different targets
(T and O). The targets here have been circled for illustrative purposes, but
they were not in the actual experiment
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double Ts, two double Os, and four TO trials). The next two
blocks were test blocks each had 64 trials composed of 16
absent, eight single Ts, eight single Os, eight double Ts, eight
double Os, and 16 TO trials that were randomly interleaved.

In Experiment 2, the practice block consisted of two search
arrays of each of the six conditions (absent, sing T, single O,
double T, doubleO, and TO trials). The test blocks were com-
posed of 72 trials each, with 24 absent, 12 single T, 12 single
O, eight double T, eight doubleO, and eight TO trials. For the
analyses used here we only used the single-target and TO
trials.

Results

Themain data of interest for evaluating our method of analysis
were the data from the single-target conditions, and the con-
dition in which two distinct targets appeared (TO). We per-
formed identical analyses for Experiments 1 and 2. We used
traditional inferential statistics, but when comparisons sug-
gested null effects, we additionally calculated the Bayes fac-
tor. For the Bayes factor calculation, the null hypothesis was
that the two conditions had the same mean, and the a priori
distributions were set to be uniform distributions. When
reporting Bayes factors, we report them in terms of the likeli-
hood of the null over the alternative hypothesis. This method
is more intuitive when trying to evaluate support for the null
hypothesis, as the Bayes factor reported in this way indicates
the how much more likely the null hypothesis is than the
alternative hypothesis.

For each experiment, we calculated each subject’s single-
target hit rate and dual-target hit rate (see Fig. 6) using the
traditional method of calculation suggested by Biggs (2017).
Then, as a first pass to addressing the bias in this method, we
also calculated the total observed rate of target detections for
each target during dual-target trials, regardless of any other
considerations (i.e., including trials were the other target was
found second and where it was missed). After all, recall that
the bias arises from eliminating trials where only the target of
interest was detected and those where the target of interest was
detected prior to the other target. Computing the overall hit
rates for the two targets during dual-target trials (regardless of
order) does not involve any such eliminations, so it is a useful,
albeit coarse, first pass approach. If it is true that the presence
and/or detection of another target during dual-target trials has
no bearing on search for a given target (i.e., that there is no
SSM effect), then these overall detection rates should match
single-target detection rates. A 2 (target identity O or T) × 3
(method of calculation: single-target hit rate, traditional dual-
target hit rate, or overall dual-target hit rate) repeated-
measures ANOVA performed for each experiment (see Fig.
6) found significant main effects of target identity, Experiment
1, F(1, 25) = 14.23, p = .001; Experiment 2, F(1, 32) = 58.44,

p < .001, with better detection of theO target than the T target.
Critically there was also a main effect of method of calcula-
tion, Experiment 1, F(2, 50) = 23.51, p < .001; Experiment 2
F(2, 64) = 17.556, p < .001. The two factors did not interact (F
< 1 for both experiments).

Paired t test were used to investigate the source of the main
effect of method of calculation (see Table 1). These compar-
isons consistently show a significant SSM effect when com-
paring the single trial performance to the second-target perfor-
mance calculated using the traditional method suggested by
Biggs (2017). That is, if we had performed the traditional
analyses on these data, we would have concluded that there
were significant SSM effects. However, comparing single-
target detection rates to the total-target detection rates (regard-
less of order of detection) in the dual-target trials, we found no
significant differences. In addition, the Bayes factors for these
null results correspond to substantial evidence in favor of the
null hypothesis. In sum, the traditional method of evaluating
the SSM effect (comparing the left bars to the middle bars in
Fig. 6) would have led to the conclusion that there was a
significant SSM effect in our data; however, that conclusion
would not be reached when using overall detection rates on all
two-target trials regardless of other considerations (see the
right bars in Fig. 6). One possible reason for this difference
is the bias we identified in the traditional method of calcula-
tion; if one does not eliminate hits form the dual-target trials
based on order of detection, there is no evidence for reduced
detections in the dual-target trials. In short, the calculation of
overall dual-target detection rates, regardless of order, is a
good first test to evaluate in an unbiased manner whether
SSM effects are present in a data set, but for a more powerful
test we turn to the two methods we derived above. In
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particular, we derived expected values for the traditional cal-
culation (in the absence of any true SSM effect) based on both
of our methods of prediction (i.e., using observed dual-target
reversal rates and using single-target RT distributions to esti-
mate reversal rates). These predictions were made at the level
of the subject.

Figure 7 plots the observed second-target detection rates
calculated using the traditional method and the expected
values for these observed rates derived under the null hypoth-
esis. If there is truly an SSM effect, then the second-target
detection rates should be lower than these expected values.
By contrast, if there is no SSM effect, we should find no
significant difference between the second-target detection
rates and the derived expected values for these detection rates.
We have also replotted the single-target detection rates in the
figure to depict the SSM effect that would be inferred if one
followed the traditional method of comparing the second-
target detection rates to the single-target detection rates.
However, the real comparison of interest for our present pur-
poses is between the observed second-target detection rates
(calculated with the traditional method) and the expected
values for these rates that we derived using the methods de-
scribed above.

A 2 (T target/O target) × 3 (calculations: observed dual
target, predicted dual target based on RT, predicted dual target
based on probability) repeated-measures ANOVA was per-
formed for each experiment. The pattern of results was iden-
tical across experiments. In each case there was a main effect
of target letter, Experiment 1, F(1, 25) = 5.92, p = .022;
Experiment 2, F(1, 32) = 27.84, p < .001, no main effect of
type of calculation, Experiment 1, F(2, 50) = .157, p = .86;
Experiment 2, F(2, 64) = 1.57, p = .22, and no interaction,
Experiment 1, F(2, 50) = .377, p = .69; Experiment 2, F(2, 64)
= .24, p = .79. In both experiments, the main effect of target
letter resulted because the T target was harder to detect than
the O target. Critically, the lack of a main effect of type of
calculation suggests that there is no evidence of an SSMwhen
the observed second-target detection rates calculated using the

traditional approach are compared with expected values for
these calculations derived under the null hypothesis. Even
so, we provide paired t test for each comparison and the
Bayes factors for each comparison in Table 1. Of note, none
of the paired comparisons approach significance and the
Bayes factors range from 4.5 to 7.35, suggesting that that null
hypothesis is more than 4.5 times as likely as the alternative
hypothesis. Note that all these values for the Bayes factor
would conventionally be interpreted as substantial evidence
for the null hypothesis (Dienes, 2014). In short, the observed
second-target detection values are not significantly different
from the expected values under the null hypothesis (under
either method of predicting switch rates) and substantial evi-
dence indicates that they are, in fact, the same. These findings
suggest that, in our two data sets, the significant differences
between the single-target and second-target detection perfor-
mance measures that were found with the traditional method
of comparison were completely accounted for by the bias that
is inherent in the second-target calculation and, therefore, that
there is no SSM effect in our data.

A final method of evaluating whether there is a true SSM
effect is to parcel the dual-target trials into all five possible
outcomes of dual-target trials (i.e., taking into account hit
order) and compare the observed and expected percentages
for each type of response. Again, we calculated these expected
percentages at the subject level, and we did so by extending
the two methods introduced above to predict all five possible
outcomes. The first method of prediction used the RT data
from the single-target conditions and nothing else to estimate
the expected responses for the dual-target data under the null
hypothesis. The second method calculated the expected prob-
abilities for the dual-target data using probability theory based
on single-target hit rates and the observed reversal rate in the
dual-target trials.

Figure 8 presents the observed and predicted percentages
for each type of trial outcome in both experiments. Again, the
pattern of data is very consistent across experiments. As is
clear from the figure, the observed data are extremely similar

Table 1 Statistics for the paired t test and Bayes factor comparisons

Single vs. dual
2nd target (traditional)

Single vs. dual total Dual 2nd target (traditional)
vs. E.V. under H0 (RT method)

Dual 2nd target (traditional)
vs. E.V. under H0 (obs. reversal rate)

T Targets Exp. 1
df = 25

t = 4.44, p <.001
Bayes = .006

t = .85, p = .40 Bayes = 4.68 t = .18, p = .86; Bayes = 6.51 t = .44, p =.66; Bayes = 6.02

Exp. 2
df = 32

t = 3.20, p =.003
Bayes = .098

t = .88, p =.39
Bayes = 5.11

t = .72, p = .48; Bayes = 5.78 t = .12, p = .90, Bayes = 7.35

O Targets Exp. 1
df = 25

t = 2.60, p = .015
Bayes = .361

t = .75, p = .46 Bayes 5.06 t = .50, p =.63; Bayes = 5.88 t = .07, p =.95; Bayes = 6.61

Exp. 2
df = 32

t = 2.84, p = .008
Bayes = .221

t = 0, p = 1
Bayes 7.41

t = .34, p =.74; Bayes = 7.00 t = 1.02, p = .32; Bayes = 4.50

Note. Bayes factors are expressed as the ratio of H0 to H1, such that a Bayes factor of 7 indicates that the null hypothesis is 7 times more likely than the
alternative hypothesis. E.V. stands for the expected value as calculated using our formulae.
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to the predicted data, which were made under the null hypoth-
esis. This analysis provides additional evidence that there is no
SSM effect when the expected value for dual-target perfor-
mance is calculated correctly. To verify this interpretation, we
ran a series of five repeated-measures ANOVAs comparing
the observed proportions for each classification of response
with the two predictions, for each experiment. For Experiment
1, none of the five comparisons approached significance, all
Fs(2, 50) < 1.14, all ps >.32. Similarly, for Experiment 2, none
of five comparisons approached significance, all Fs(2, 62) < 1,
all ns.

In short, this approach also finds no evidence of a SMM
effect. For good measure, we again calculated Bayes factors
for all pairwise comparisons within each response classifica-
tion. The smallest Bayes factor across all these comparisons
was 3.52 for Experiment 1 and 4.50 for Experiment 2. This
again translates to substantial evidence in favor of the null
hypothesis that observed two-target performance is as predict-
ed in the absence of SSM effects.

Discussion

Across two experiments, analyzing our data using the standard
method (described by Biggs, 2017) of comparing single-target
detection performance to second-target detection performance
showed a significant SSM effect. However, that significant
SSM effect was attributable to a bias inherent in that standard
method of calculation. When single-target performance was
comparedwith dual-target performance regardless of the order

of found targets, and also when observed dual-target perfor-
mance was compared with unbiased estimates of the expected
value for dual-target performance, there was no evidence for
an SSM effect. In addition, our two methods of calculating
expected values for dual-target performance were able to cap-
ture the relative proportions of all five possible dual-target
outcomes quite well. Taken in total, our results indicate that
the significant SSM effects for both experiments that were
obtained using the standard method of calculation were spu-
rious findings that disappeared when avoiding the biased
method of calculation.

Application to Adamo et al.’s (2019) method

Next we applied our method to data from the different saliency
experiment in Adamo et al. (2019). We did this for two rea-
sons. First, the traditional calculation of the SSM effect size in
that paper was a Cohen’s d of 1.63. This is substantially larger
than the largest effect size in our two experiments using the
traditional calculation, Cohen’s d = .82. Although the analysis
of our own data suggested that the apparent SSM completely
disappeared when we applied our unbiased method of evalu-
ating the SSM effect, it is unclear whether a larger effect size
based on the traditional method would be completely attribut-
able to the bias in the calculation.

Second, and perhaps more importantly, because the alter-
native calculation that Adamo et al. (2019) proposed to elim-
inate the bias requires a specific experiment design that was
not followed for our two in-house data sets, we could not

Fig. 7 Black bars depict the single-target accuracy rates and are provided
to show that the traditional method of calculating dual-target performance
(dark-gray bars) is lower than that of the single-target performance. Of
more interest are the two lighter bars that represent the expected values for
the traditional dual-target calculation derived under the null hypothesis.

As is clear, observed dual-target performance is very similar to the ex-
pected perforance under the null. The left-hand panel depicts Experiment
1 and the right-hand Experiment 2. Error bars are the standard error of the
means
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include their alternative, matched-layout calculation in the
above comparisons. Applying our approach to the data from
Adamo and colleagues allowed us to directly compare wheth-
er their technique and ours produce similar patterns of results.

To provide some general context with regard to the Adamo
et al. (2019) data set: In their experiment, the search target was
always a rotated T and distractors were offset Ls, and half were
high salience whereas the other half were low salience (con-
trolled via target luminance).2 In each trial, there was a single
target or two targets, and participants had to click on the tar-
gets they found and could terminate the trial by pressing the
space bar once they believed they had found all the targets. If
the space bar was not pressed within 15 s, the trial timed out.
As detailed above, for each dual-target display there were two
“matched” single-target displays with the same layout, but

with one of the targets from the dual-target display replaced
with a distractor.

Results Following our recommendations above (see Fig. 6) to
evaluate the presence of an SSM effect, we began by compar-
ing the single-target hit rates for the low-salience target to the
total hit rate for low-salience targets (regardless of order) in
the dual-target trails. Unlike with our data, with their data the
single-trial detection rates were significantly higher, t(29) =
4.348, p < .001, d = .79, than the total dual-target detection
rates, suggesting that there may in fact be an SSM effect in
their data.

To evaluate this possibility, we calculated, for low-salience
targets, each subject’s single-target hit rate, the second-target
detection rate using the traditional calculation, the prediction
of this second-target hit rate using our method that uses the
observed switch rate, and the prediction using our method that
uses the single-target RT distributions instead (see Fig. 9).
Using those four values, we could evaluate the presence of
an SSM effect in the same way as we did for our own two data

2 Adamo et al. (2019) had a second experiment in which all stimuli were
presented at the same saliency, but this rendered the assignment of Target 1
versus Target 2 somewhat arbitrary, so we limited our analysis to their differ-
ent saliency data.
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Fig. 8 Comparison of the observed mean percentage of each type of
response in dual-target trials to the predicted likelihood of each type of
response under the null hypothesis for Experiments 1 (top) and 2 (bot-
tom). The observed dual-task performance is in line with predictions

under the null hypothesis, whether those predications were based on
our method, or modeling based on single-target RT data, or based on
our probability calculations. Error bars are the standard error of the means
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sets. In addition, to evaluate how our method compares with
the one proposed by Adamo et al. (2019), we calculated a
matched single-target hit rate (see Fig. 9). This is the single-
target hit rate based on only those single-target trials whose
layouts match dual-target trials that were included in the tra-
ditional calculation of second target performance. As men-
tioned above, Adamo et al. (2019) proposed avoiding bias
by comparing second-target hit rate to this “matched” single-
target hit rate rather than to overall single-target hit rate. All
these various quantities were used to calculate four different
SSM measures by comparing the observed second-target de-
tection rate to the four different reference values (see Table 2).

These comparisons yield a number of key observations.
First, and in contrast to the data from our lab, in these data
there is a clear SSM effect regardless of method of calculation.
This provides evidence that some reported SSM effects are
real, instilling some confidence in published SSM effects
when effect sizes are large and when the design would mini-
mize the switch rate. Specifically, in this experiment, present-
ing one target at high and one at low saliency should have
reduced the switch rate; the likelihood of finding a low-
salience target before a high-salience target should be relative-
ly low.

Aside from indicating that an SSM effect is present, these
comparisons yield a second important insight: the estimated
magnitude of the effect (measured as Cohen’s d) is drastically
different depending on method. The methods we suggest re-
sult in effect sizes that are about half the magnitude of the
effect size for the traditional calculation, whereas the method
proposed by Adamo et al. (2019) reduces that traditionally
calculated effect size by only 8%. Related, both our expected
value calculations for the second-target hit rate are significant-
ly lower than Adamo et al.’s (2019) matched single-target hit
rate, both ts(29) > 7.7, ps < .001, ds > 1.4, even though all
three quantities are intended as unbiased comparison values
for the traditional second-target hit rate in the calculation of

SSM effects. This large difference between methods suggests
that the method proposed by Adamo et al. (2019) may not
fully eliminate the influence of bias. The next section will
address this possibility in more detail.

Is the matching method appropriate? The issue with the tra-
ditional method as laid out in the beginning of the paper, and
as first identified by Adamo et al. (2019), is that this method
selectively eliminates easy trials from the second target calcu-
lation yet includes all trials in the single-target calculation. To
match target difficulty across the dual-target and single-target
calculation, Adamo et al. (2019) match the array layouts be-
tween trials included in both calculations. This method of
matching trial layouts in the dual-target and single-target de-
tection-rate calculations rests on the assumption that layout
accounts for all (or at least a great deal) of the variability in
target difficulty on a given trial.

To evaluate this assumption, we note that given their meth-
od of having triplets of matched layout trials (one with dual
targets, and two with single targets), there are two ways to
determine trials where the low-salience target is found
first—the subset of trials that is eliminated from their calcula-
tions. The first method is the one they use; trials with layouts
for which the low-salience target was foundmore quickly than
the high-salience target in the dual-target trials are eliminated
from both the dual-target and single-target detection-rate cal-
culations. The second method would be to use the reaction
times for a pair of single-target trials that are matched in lay-
out, and identify layouts where the single-target RT for the
low-salience target was faster than the single-target RT for the
corresponding high-salience target. In other words, to use
single-target reversals to eliminate trials. The critical thing is
that if Adamo and colleagues’ assumption that layout is a
good proxy for difficulty is correct, these two methods should
identify very similar sets of trials for elimination. By contrast,
if the single-target reaction-time criterion and dual-target

Fig. 9 Calculated hit rate for the observed single-target hit rate, dual-target hit rate, as calculated by the traditional (Biggs, 2017) method, and three novel
methods—our two and Adamo et al.’s (2019).

3368 Atten Percept Psychophys (2020) 82:3357–3373



detection order criterion do not identify the same set of layouts
for elimination, it would call into question Adamo and col-
leagues’ approach. To illustrate a situation of good correspon-
dence between the two methods, we show the perfect case of
complete overlap in the trials that are eliminated based on the
two methods in Fig. 10a (the proportion of 0.29 in this panel
corresponds to the observed reversal rate in Adamo et al.,
2019: Their dual-target reversal rate is 28.4% and their
single-target reversal rate is 29.0%, which averages to 28.7%).

We also derive a prediction of the overlap in trials that
would be eliminated by each method assuming independence
of the two methods of calculation. This prediction assumes
that the proportion of reversals is the same for dual-target trials
and for pairs of single-target trials (an assumption that is rea-
sonable, regardless of the role of layout), but that there is no
correlation at all between the layouts identified by the two
methods. For this calculation, we again use the proportion of
reversals observed in Adamo and colleague’s data of 28.7%. It
is important to note that this calculation assumes that layout
accounts for none of the variability in target difficulty. Under

this independence model, the probability of both methods
identifying a given layout for elimination is simply the pro-
portion of reversals squared (the product of two independent
processes). This is depicted in Fig. 10b.

Finally, we can use the data from Adamo et al.’s triplets to
find how often, in reality, both methods identify the same
trials for elimination, as compared with how often the two
methods diverge. That is, for each triplet of match-layout trials
we identify whether the low-salience target was found faster
than the high-salience target in the dual-target trial, and wheth-
er this was true for the pair of single-target trials. We then
calculate how often these two methods identify the same set
of trials for elimination, and how often they do not. These data
are depicted in Fig. 10c.

The observed data in Fig. 10c deviate greatly from the
perfect concordance prediction that corresponds to Adamo
et al.’s assumption that layout explains the bulk of trial-to-
trial variability in target difficulty (see Fig. 10a). The observed
data are, in fact, more similar to the prediction under the as-
sumption that layout explains no variability at all (see Fig.

Fig. 10 Solid circles delineate the proportion of all layouts that give rise
to a reversal in their dual-target trial. Dashed circles delineate the propor-
tion of all layouts that give rise to a reversal across the pair of single-target
trials that have that layout. The area of overlap between the circles corre-
sponds to the proportion of layouts that give rise to a reversal by both of
those criteria. Panel a depicts the prediction under the assumption that
holding layout constant equates difficulty across dual and single-target
trials (Adamo et al., 2019). Under this assumption the same layouts
should be identified by both method so the overlap is complete. Panel b

depicts the prediction assuming complete independence between the
dual-target and single-target criteria (e.g., under the assumption that lay-
out accounts for no variability in difficulty). Under this assumption, only
a small portion of layouts should be identified by both methods (the
square of the average reversal rate). Panel c presents the observed data
from Adamo et al. (2019), using dual-target detection order and single-
target RTs to identify reversals. In this case, the two methods identify
substantially different sets of layouts

Table 2 Test of SSM effect with four different methods

Second-target hit rate (see Formula 2) versus t value p Cohen’s d

Single-target hit rate (Biggs, 2017) 8.953 <.001 1.63

Our prediction (observed switch rate) 5.21 <.001 0.95

Our prediction (switch rate based on RT distributions) 4.316 <.001 0.79

Matched single trial (Adamo et al., 2019) 8.215 <.001 1.5
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10b). Relatedly, out of the layouts that are eliminated by the
method of Adamo and colleagues, fewer than half would also
be eliminated when using single-trial reversals as the criterion
for elimination (0.12 out of 0.28). This result highlights that
equating layouts between dual-target trials and single-target
trials does not adequately equate difficulty on an individual
trial basis. There is, evidently, substantial variability in the
difficulty of finding a given target even when layout is held
constant.

To summarize, motivated by the realization that SSM cal-
culations involve a selection of dual-target trials that is biased
with regard to difficulty, Adamo et al.’s method aims to intro-
duce a corresponding bias in the selection of single-target
trials by matching display layout between included dual-
target trials and included single-target trials. But because lay-
out is not a good proxy for difficulty, the method does not
address the fundamental problem of bias in the calculations of
SSM.

General discussion

Here, we, like Adamo et al. (2019), have argued that the stan-
dard method used to evaluate the presence of an SSM effect is
biased. It eliminates a number of successful target detections
from the dual-target performance calculations, while includ-
ing all successful target detections in the single-target calcu-
lations. This differential inclusion of trials introduces system-
atic bias in the calculation that could produce spurious or
inflated SSM effects. Further, we documented that the magni-
tude of the bias increases as the order of detections of the two
targets becomes more variable; if one target is always found
before the other, there is no bias, but the bias increases as the
order of detection for two trials becomes less consistent. The
magnitude of the bias also scales with the single-target hit rate
of the target of interest; the lower the hit rate, the more pro-
nounced the bias.

Having characterized the bias, we then developed a method
of using single-target performance data to derive expected
values for dual-target performance under the null hypothesis
that the detection of one target has no influence on search for
the other target. We applied our method to two sets of empir-
ical data from SSM experiments run in our lab. Although the
standard method of calculation would have led us to conclude
that there was a significant SSM effect in both experiments,
these conclusions would have been inappropriate; dual-task
performance did not differ significantly from the expected
value of performance calculated under the null.

We then applied our method of analysis to a data set from
Adamo et al. (2019). That data set had a much larger effect
size than our two experiments (as calculated using the tradi-
tional method), and although our analyses reduced the effect
size by about half, there was still a significant SSM effect,

suggesting that some SSM findings persist even when the bias
in calculation is removed, albeit with a substantially reduced
effect size.

Finally, we used that data to compare our method of calcu-
lation with the matching method suggested by Adamo et al.
(2019). Our analysis found that our method made a much
more sizable adjustment to the estimated SSM effect size,
and upon further investigation of their method, we found that
it does not address the core problem leading to the bias.

Our findings raise the question of whether existing reports
of an SSM effect involved true SSM effects or apparent ones
resulting from biased calculations. Unfortunately, most pub-
lished papers do not report enough data for us to apply the
methods we have presented here to those data. Instead, most
present only their adjusted dual-task performance (after apply-
ing the standard method of dual-task calculation) and report
neither the reversal rate nor the full single-target RT data.
Thus, the extent to which prior SSM effects are spurious it is
still unclear.

Even so, we believe the issues we raise should provoke
concern. The data we analyzed here demonstrate that the mag-
nitude of the calculation bias is substantial enough that it can
produce a spurious effect that is statistically significant, even
in a data set of modest size. This fact raises the possibility that
other reported significant SSM effects may be spurious.
However, here it is important to note that it would be impru-
dent to conclude based on this report that any specific reported
effect is spurious. In fact, when we applied our method to the
data from Adamo et al. (2019), we still found a significant
SSM effect, albeit with a much reduced effect size. In short,
it would be inappropriate to suggests, based on these limited
data, that many reported SSM effects are spurious. Instead, we
can say with some confidence that the bias in the traditional
calculation inflates the effect size in the many reported SSM
papers that have used this traditional method of calculation,
and may cause some of those effects to disappear.

We also note that a number of existing papers that used the
traditional method compared the magnitude of the SSM across
different presentation conditions (e.g., Cain et al., 2014) or
populations of participants (e.g., Biggs & Mitroff, 2014). It
might be tempting to believe that the bias should be constant
across these manipulations, and thus conclusions based on
differences in the magnitude of the SSM effect between con-
ditions or populations should hold. However, this is only true
if the reversal rate and single-trial detection rates are equiva-
lent across populations and/or conditions; a requirement that
may not seem to hold in some of these experiments.

In short, without the right subject-level data, we are unable
to perform the calculations that would allow us to evaluate the
validity of specific previously published findings except those
we reported above, and doing so is beyond the scope of this
paper. However, we believe that a reanalysis of these data with
an unbiased method of analysis is warranted, and we
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encourage researchers in this area to do so and correct the
record where necessary.

It is also worth noting that the standard method we address
here is the method that has been used specifically in most
visual cognition work investigating the SSM. Most of the
radiology research investigating this effect has used ROC
analysis (Berbaum, Dorfman, Franken, & Caldwell, 2000).
This raises some question of whether the criticism we raise
here could generalize to that body of research. Whether the
issues we raise affects the radiology literatures depends on
whether or not those analyses eliminated successful target
detections based on detection order (whether one uses ROC
analysis or not is irrelevant). On this point, some reports have
included all detections and still found significant SSM effects.
For instance, Berbaum et al.’s (1990) influential paper explic-
itly states that they “included all cases, even those in which the
distractor was not detected” (p. 139). However, later in that
paragraph they go on to suggest that “a more informative
analysis of subgroups of cases may include only cases in
which the distractor was detected initially.” In later papers
investigating this effect, those authors did rely on analyses
that considered only those trials where the distractor was de-
tected first, thereby introducing the potential bias we discuss
here. For instance, Berbaum et al. (1994) state, “When all
cases in the experiment were analyzed, the satisfaction of
search effect was not statistically significant. However, when
analysis was limited to cases in which the distracter was re-
ported (85% of the cases), the satisfaction of search effect
became statistically significant” (p. 244). This statement dem-
onstrates that, in that case, the effect is only apparent when one
eliminates 15% of the trials in which the distractor was missed
from the analysis. Given that the likelihood of missing both
the distractor and the true target (miss both) is far lower than
that of missing only one item (see Fig. 2), the vast majority of
these eliminated trials are likely to be trials where the target of
interest was successfully detected. Eliminating these detec-
tions from the dual-target condition introduces the bias we
have been discussing. In sum, although there are clearly pa-
pers in the radiology field that have used unbiased methods
and found second-target deficits, others have used methods
that might introduce bias, and for those a reanalysis of the data
is likely appropriate.

Recommendations for analyses of SSM effects In future stud-
ies of SSM effects, we recommend that, as a first pass, re-
searchers calculate the hit rates for a given target in the
single-target and dual-target conditions while including all
trials with that target (i.e., without throwing out any of the
hits). This is akin to what we did for Fig. 6. If there is a
substantial subsequent target cost, the overall accuracy in the
dual-target condition should be lower than in the single-target
condition, even if it is watered down by also including dual-
target trials where the target of interest is found first. If there is

no indication whatsoever of such of a reduction, the data have
no evidence of a dual-target cost. If there is at least a margin-
ally significant reduction in accuracy in the dual-target condi-
tion, there may be a significant SSM effect that is being
washed out by the inclusion of trials in which the order of
detection is not consistent with an SSM explanation. In those
cases, we recommend applying the method we described
above, which use the single-target reaction-time data to esti-
mate the expected value of the second-target hit data under the
null (see Formula 4, above). This estimate of the expected
value should be computed at the subject level, and doing so
will allow the use of traditional inferential statistics to com-
pare observed second-target detection rates with expected
rates.

As a practical matter, although the simulation method we
propose based on single-target reactions times may be ideal3

in that it involves only single-target data to generate dual-
target predictions, our results show minimal differences be-
tween this ideal method and simply using the observed rever-
sal rate from the dual-target trials. So, if it is not possible to
generate a predicted reversal rate based on single-target reac-
tion times (e.g., those data were not collected), it is probably
acceptable to use the observed dual-target reversal rate.
Regardless, doing so would be highly preferable to using the
traditional approach.

Finally, while our method can be applied to preexisting
data from much of the research, some existing research in
radiology did not measure single-target performance for each
target. In those experiments, a second “distractor” target was
added to scans with native targets (evidence of disease), but
there was no attempt to artificially remove the existing native
lesions from the scan, thus there is no data from the distractor
alone condition. For this reason, neither of our proposed
methods for estimating second target performance under the
null hypothesis can be used. Here we, again, recommend
performing the analysis of total target detections (without
eliminating any detections), to see if the dual-target condition
exhibits lower accuracy. If it does, one could calculate the
SSM effect using the biased traditional calculation, and then
compare this calculated SSM effect with the expected level of
bias in the calculation for the observed native lesion-detection
rate and switch rate. The formula for the expected amount of
bias in the traditional calculation that does not require infor-
mation on the single-target detection rate for the distractor
lesion is:

3 While the reaction-time method of predicting reversal rates has the benefit of
allowing an estimate of dual-target performance exclusively from single-target
trials, it is worth noting that the reaction time includes differences, not just in
search time, but also in decision-making and response selection, which may
introduce noise into the predictions made based on reaction time. This noise
factor may become particularly pronounced in studies that require the partic-
ipant to localize the target during the response, in which case the reaction time
will also include the time to make the localization.
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F5 P Að Þ− P Að Þ � SR

P Að ÞSRþ 1−P Að Þ ð5Þ

In which P(A) would be the single-target hit rate for the
native lesion, and SR is proportion of dual-target trials where
both targets were detected in which the distractor lesion was
detected first. The derivation of this formula is provided in
Appendix 1. The magnitude of the SSM effect using the tra-
ditional formula and the expected magnitude of the bias for
that formula could be calculated at the subject level, and in-
ferential statistics could be used to compare the observed SSM
effect to the expected SSM effect due to calculation bias; a real
SSM effect would be significantly larger than the expected
measurement bias.

Conclusion

Missing visual search targets can have serious, life or death,
consequences in the context of tasks like radiological exami-
nation and baggage screening. Thus, attempts to understand
the mechanisms responsible for high miss rates may hold the
key to developing interventions that target those mechanisms
and improve search performance. As such, the work is impor-
tant and valuable.

However, the high stakes also increase the need for accu-
rate scientific conclusions. What we report here suggests that
the traditional method of analysis used in the scientific inves-
tigations of the SSM effect is biased and can produce spurious
results. Further, recent attempts to address this bias by
matching trial layouts (Adamo et al., 2019) fail to fully ad-
dress the core source of the bias. We emphasize that without
the appropriate subject-level data, we cannot say definitively
which published papers, if any, may have erroneous findings,
but we believe the issues we raise here warrant a reevaluation
of existing data. Further, we do not intend to imply that the
potential bias in analyses was intentional, but that it resulted
from an assumption regarding the method of analysis that may
not be justified. Indeed, to their credit, many of the researchers
who have investigate the SSM effect continue to try to im-
prove on their analysis methods to ensure that the conclusions
drawn are appropriate. We hope that the work we present here
motivates those researchers to reevaluate whether their prior
results may have been contaminated by the bias we have doc-
umented to ensure that the scientific record is accurate.
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Appendix 1

To calculate the bias in the traditional measure, one first cal-
culates the expected hit rate for the traditional calculation. To
do so, we begin with Eq. 2 from the manuscript, and then
replace the verbal descriptions with the terms used to calculate
those probabilities (see Fig. 2).We then reduce the equation to
factor the term P(B) out of the denominator. Once this p(B)
term is factored out, it cancels with the P(B) term in the nu-
merator, leaving a formula for calculating the expected value
for the traditional calculation that does not rely on knowing
p(B). In the equation, P(A) is the single-target probability of
detecting Target A (the target of interest; in radiology, the
native lesion), P(B) is the single-target probability of detecting
Target B (the target not of interest; in radiology, the distractor
lesion), and SR is the switch rate (defined as the proportion of
dual-target trials in which both targets were detectedwhere the
order of detection was B then A).

trials with B then A detected

trials with B then A detectedþ trials with only B detected
P Að Þ � P Bð Þ � SR

P Að Þ � P Bð Þ � SRþ P Bð Þ � 1−P Að Þð Þ½ �
P Að Þ � P Bð Þ � SR

P Að Þ � P Bð Þ � SRþ P Bð Þ−P Að ÞP Bð Þ
P Að Þ � P Bð Þ � SR

P Bð Þ P Að Þ � SRþ 1−P Að Þ½ �
P Að Þ � SR

P Að ÞSRþ 1−P Að Þ

To find the bias in this traditional measure, its expected
value (calculated above) is subtracted from the single-target
detection rate for Target A, P(A). So, the measure of bias
becomes:

P Að Þ− P Að Þ � SR

P Að ÞSRþ 1−P Að Þ
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