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Facile construction of fully sp2-carbon conjugated
two-dimensional covalent organic frameworks
containing benzobisthiazole units
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Developing a facile strategy for the construction of vinylene-linked fully π-conjugated cova-

lent organic frameworks (COFs) remains a huge challenge. Here, a versatile condition of

Knoevenagel polycondensation for constructing vinylene-linked 2D COFs was explored.

Three new examples of vinylene-linked 2D COFs (BTH-1, 2, 3) containing benzobisthiazoles

units as functional groups were successfully prepared under this versatile and mild condition.

The electron-deficient benzobisthiazole units and cyano-vinylene linkages were both inte-

grated into the π conjugated COFs skeleton and acted as acceptor moieties. Interestingly, we

found the construction of a highly ordered and conjugated D-A system is favorable for

photocatalytic activity. BTH-3 with benzotrithiophene as the donor with a strong D-A effect

exhibited an attractive photocatalytic HER of 15.1 mmol h−1g−1 under visible light irradiation.
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Covalent organic frameworks (COFs), in which the building
blocks were connected covalently and arranged precisely, are
attracting increasing attention since the first report by

Yaghi’s group in 20051–11. The unique features of COFs such as the
well-defined structure, high specific surface area, ordered pore
channels, etc. endow them with potential applications in gas storage
and separation12–15, catalysis16–19, sensor20–22, energy storage23,24,
and optoelectronics25, etc. So far, the construction of highly ordered
structures of COFs mainly relies on the reversibility of dynamic
covalent bonds between the building blocks. Schiff base reaction
and boronic acid dehydration reaction are frequently used and
prone to achieve high crystallinity owing to their dynamic
reversibility2,3. Although the reversibility of these dynamic covalent
bonds endows the COFs good crystallinity, it weakens the π-con-
jugation and chemical stability of these materials26–28. On one
hand, hydrolysis of these dynamic covalent bonds usually occurs
under strongly acidic conditions. On the other hand, the poor
electron delocalization caused by the strongly polarized nature of
the dynamic covalent bonds such as the imine bond will hamper
the charge carrier mobility of the COFs26,28. Developing COFs with
fully π-conjugated structures and excellent chemical stability is
highly desirable. Enormous efforts have been done to explore the
facile access to highly stable and fully π-conjugated COFs26–28. New
chemistry reactions for constructing conjugated COFs with opti-
mum electron delocalization have been explored. Oxazole18,29–31,
thiazole31–33, vinylene34–42, pyrazine43,44, imidazole45, and
thieno[3,2-c]pyridine46 as stable and conjugated linkages have been
developed recently. These π-conjugated COFs have displayed
exceptional properties and greatly broadened the application fields.
However, the study of these fully π-conjugated COFs is still in its
infancy stage either in structural diversities or applications. The
synthesis of these non-imine COFs is usually tricky with a low
success rate and bad generality. This is understandable in con-
sideration of the bad reversibility of the coupling reactions. To
simultaneously gain desirable conjugation and refined crystallinity
within the COF structure is still highly challenging.

Knoevenagel polycondensation has been successfully used to
construct fully π-conjugated vinylene-linked 2D COFs40,47. Bene-
fiting from the extended π conjugation along with the 2D skeletons,
these cyano-vinylene-linked 2D COFs have shown excellent per-
formance in magnetic properties40,48, photoluminescence49,50,
photocatalysis35,51–54, and energy storage55. Herein, we developed a
facile way to prepare the cyano-vinylene-linked 2D COFs through
Knoevenagel polycondensation. A new reaction mechanism was
proposed. The neutral AcONH4 was used to catalyze the con-
densation, which was supposed to enhance the reversibility of the
initial step of Knoevenagel polycondensation. This strategy shows
better success rates and universality. Three new fully sp2-carbon π-
conjugated COFs containing benzobisthiazole (BTH) as functional
groups were constructed by Knoevenagel polycondensation under
this new explored reaction condition. The integration of BTH unit
and cyano-vinylene linkage provides an electron-deficient π-con-
jugated C2 symmetrical building block (Fig. 1). Other functional
moieties such as triazine and benzotrithiophene were introduced as
the C3 symmetrical units. The semiconductor properties of the π-
conjugated COFs could be tuned via altering the electronic prop-
erties of C3 symmetrical units. Thanks to the extended π-electron
conjugation and highly ordered D-A structure, BTH-3 with ben-
zotrithiophene as electron-donor unit exhibited an attractive pho-
tocatalytic HER of 15.1mmol h−1 g−1 under visible light irradiation.

Results
Synthesis and characterization of benzobisthiazole-based
COFs. Compound BTH-2CN was prepared according to the
reported literature56. The electron-withdrawing effect of

benzobisthiazole and cyano units increased the activity of
the CH2 protons. Up to now, the cyano-vinylene-linked 2D
COFs were mainly prepared via base-catalyzed Knoevenagel
condensation condition57. We first selected TA as the
C3 symmetrical aldehyde and screened the base catalysts
including DBU, Cs2CO3, and NaOH. Unfortunately, no sign of
crystallinity was observed under these base-catalyzed conditions.
During the condensation reaction, the formation of carbanion
was the initial step of condensation (Fig. 1a). The electron-
deficient BTH unit and the cyano group were supposed to sta-
bilize the carbanion intermediate, which led to the poor reversi-
bility of the first step. Ammonium acetate was then adopted for
the catalyst system. Different from the alkaline conditions, the
Schiff base formation with excellent reversibility was supposed to
become the initial step (Fig. 1b)58. A model reaction between
BTH-2CN and 4-tert-butylbenzaldehyde was first performed to
explore the feasibility (Supplementary Fig. 1). The reaction was
further used to prepare conjugated COFs. Fortunately, crystalline
BTH-1 was finally obtained in a mixture of tetrahydrofuran/
ammonium acetate under 100 °C for 3 days. To explore the
adaptability of this reaction condition and diversify the structures
to adjust the semiconductor properties of the COFs in the
meanwhile, two more C3 symmetrical monomers of TP and TS
were selected to construct a series of fully sp2-carbon conjugated
COFs, respectively (Fig. 1c). BTH-1 and 2 were both obtained as
yellow powders, while BTH-3 was obtained as a deep red powder.
Similar to most of the reported COFs, these conjugated COFs are
also insoluble in common solvents.

The 13C CP-MAS NMR and FT-IR spectra were first
performed to verify the chemical structures and components.
As displayed in Fig. 2, the peaks appearing at 170 ppm confirmed
the existence of the thiazole ring. The peaks at about 110 and
120 ppm further proved the formation of vinylene linkage and the
existence of cyano units. These distinguishing features indicated
the successful condensation of the monomers. FT-IR spectra of
the COFs, monomers and the model compound also provided
strong evidence for the structural identification (Supplementary
Fig. 2). The stretching modes characteristic of the cyano group
were observed at about 2216 cm−1 for all the three COFs. The
signals at about 1553 cm−1 could be attributed to the C=N bond
stretching of thiazole rings. All the results above suggest the
successful preparation of BTH-1, 2, 3. The thermal stabilities of
the three COFs were then evaluated via thermogravimetric
analysis (Supplementary Fig. 3). All of them displayed good
stability with decomposition temperature up to 300 °C. The
morphologies of BTH-1, 2, 3 were further explored by scanning
electron microscopy (SEM) and transmission electron micro-
scopy (TEM) (Supplementary Fig. 4). The SEM images of BTH-1,
3 displayed block-like particles, while a fibrous morphology was
observed in BTH-2. Although the morphologies were different,
obvious layered structures could be observed for all the three
BTH COFs by TEM images.

Powder X-ray diffraction was performed to assess the crystal-
linities of BTH-1, 2, 3. The detailed structure information was
given by comparison of the experimental PXRD profiles and the
predicted profiles. As shown in Fig. 3, the calculated PXRD
profiles for the AA stacking mode were found to match
excellently with the experimental profiles of BTH-1, 2, 3,
respectively. The optimized PXRD data suggested that the (100)
crystal plane of BTH-1, 2 appeared at a similar position of
2θ= 2.3°. Pawley refinement of the AA stacking model based on
the experimental profile gave unit cell with parameters (a= b=
45.07 Å, c= 3.49 Å, α= β= 90°, γ= 120°) for BTH-1 (residuals
Rp= 5.69%, Rwp= 7.01%) and (a= b= 45.58 Å, c= 3.48 Å,
α= β= 90°, γ= 120°) for BTH-2 (residuals Rp= 8.16%, Rwp=
6.64 %), consistent with hexagonal unit cell. The optimized

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-021-27573-1

2 NATURE COMMUNICATIONS |          (2022) 13:100 | https://doi.org/10.1038/s41467-021-27573-1 | www.nature.com/naturecommunications

www.nature.com/naturecommunications


PXRD of BTH-3 displayed a (100) reflection at 2θ= 2.8° due to
the smaller pore size. Pawley refinement data exhibited cell
parameters of a= b= 37.45 Å, c= 3.52 Å, α= β= 90°, γ= 120°,
revealing minimal difference (Rp= 4.09% and Rwp= 5.57%).
Furthermore, the porosities were further examined via nitrogen
adsorption experiments at 77 K. The sharp rise in the low-
pressure range, as a characteristic of the type I sorption
isotherm, indicate their microporous characteristics. The
Brunauer–Emmett–Teller (BET) surface areas were observed to
be 644, 686, 1140 m2 g−1 for BTH-1, 2, 3, respectively. The pore
size distribution curves clearly show two different pore limiting
diameters (PLD) for BTH-1, 2, 3 (Supplementary Fig. 5). A
similar phenomenon has also been observed in the previous
report34,35,37. Due to the limitation of sp2-carbon double bond
formation reaction, stacking faults are indeed expected to broadly
exist in the synthesized COFs. The interlayer slip or stagger of AA
stacking mode induced the diverse pore size distributions.

Photocatalytic and optoelectronic properties. Considering the
unique fully conjugated 2D structures and the porosities of the
obtained COFs, the photocatalytic hydrogen evolution
experiments were then performed by suspending the BTH-
based COFs materials in 0.1 M ascorbic acid solution under
the irradiation of a 300 W Xe lamp. The ascorbic acid acted as
the optimal sacrificial electron donor. As displayed in Fig. 4a,
all the three COFs exhibited photoactivity toward hydrogen
evolution, especially for BTH-1 and BTH-3 (Supplementary
Table 1). BTH-1 displayed a hydrogen evolution rate (HER) of
10.5 mmol h−1 g−1 under visible light (λ > 420 nm), while
BTH-3 reached a higher HER of 15.1 mmol h−1 g−1. Although
BTH-1, 2 possess similar skeleton structures, BTH-2 only
exhibited an HER of 1.2 mmol h−1g−1. The apparent quantum
yields (AQYs) of BTH-1 (5 mg) were measured to be 1.569%,
1.089%, 1.925% and 0.75% at 420, 450, 500, and 550 nm,
respectively. The narrow bandgap of BTH-3 endows its

BTH-1 BTH-2 BTH-3

TA TP TS

BTH-2CN

a)

b)

c)

Fig. 1 Chemical structures. a, b Proposed mechanisms of Knoevenagel polycondensation at different conditions. c Synthetic routes and chemical structures
of COFs BTH-1, 2, 3.

Fig. 2 Solid-state 13C CP-MAS NMR spectra of BTH-1, 2, 3. * signal of residual aldehyde group.
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good photoactivity even at 600 nm. The AQYs of BTH-3 is
0.792%, 0.676%, 1.256%, 0.883% and 0.735% at 420, 450, 500,
550, and 600 nm, respectively. The stability test result suggests
that BTH-3 could keep relatively good photocatalytic perfor-
mance under irradiation (Supplementary Fig. 7). To exclude

the interference factors of the possible impurities, the photo-
catalytic performance of the monomers and model compound
has been further explored. The monomers and model com-
pound did not show any photocatalytic activities towards
hydrogen evolution. Besides, control experiments without the

Fig. 3 Characterizations of the structures. a–c PXRD patterns of BTH-1, 2, 3: experimental pattern (red), Pawley refined profile curve (black), Bragg
diffractions (green), difference (blue), simulated patterns from AA eclipsed (purple); nitrogen adsorption and desorption isotherms of BTH-1 (d), BTH-2
(e), and BTH-3 (f).

Fig. 4 Photocatalytic H2 evolution. a Time course of photocatalytic hydrogen evolution under visible light irradiation (>420 nm) for BTH-1, 2, 3. b AQY of
BTH-1, 2, 3 under different monochromatic light irradiation. c Periodic on/off photocurrent output of BTH-1, 2, 3 casted on FTO glass. d Electrochemical
impedance spectroscopy Nyquist plots of BTH-1, 2, 3.
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existence of Pt or sacrificial electron donors were also
performed. Again no hydrogen evolution process was
observed.

To better understand the structure-photocatalytic perfor-
mance relationship and delve further into the potential
mechanism, solid-state absorption spectra were first measured
(Supplementary Fig. 6). The absorptions of BTH-1, 2, 3 cover
almost the entire visible light region even up to 1000 nm. As a
result, the three conjugated COFs are capable of harvesting
visible light for photocatalysis efficiently. Owing to the strong
intramolecular donor-acceptor effect in BTH-3, a strong
absorption from 400 to 800 nm which overlaps with the solar
energy region was observed. The bandgaps of BTH-1, 2, 3 are
calculated to be 1.91, 2.02, and 1.42 eV based on the absorption
spectra, respectively. All the three bandgaps meet the criteria of
ΔE > 1.23 eV for photocatalytic hydrogen evolution59. For the
triazine-based BTH-1, much previous research has proven the
excellent photocatalytic performance of triazine-containing
COFs or CMPs materials generated from the unique charge
transport properties of the triazine units35,46,60–62. For BTH-3,
the better performance could be attributed to the strong charge
transfer effect, which may prevent inefficient and spontaneous
electron-hole recombination63,64. To further probe the origins
of the difference in photocatalytic performance, the photo-
current measurements of BTH-1, 2, 3 were performed to assess
the separation efficiency of the photogenerated electron-hole
pairs. The efficient charge separation is the key factor in
preventing electron-hole recombination. As depicted in Fig. 4c,
the photocurrent responses were completely followed by the
photocatalytic activities. BTH-3 electrode showed a higher
photocurrent response than that of BTH-1 and BTH-2
electrodes under visible light. Furthermore, the electrochemical
impedance spectroscopy suggests BTH-3 possessed the best
electronic conductivity, while BTH-2 displayed the worst
electronic conductivity (Fig. 4d). These results indicated that
the charge separation and transport properties were greatly
improved due to the introduction of the benzotrithiophene as
donor units incorporated the D-A interactions into the
conjugated 2D COFs. As a result, a significant improvement
of photocatalytic performance was achieved.

Discussion
In summary, a new condition of the Knoevenagel reaction was
first explored for constructing the sp2-carbon conjugated COFs
materials which shows good universality and success rate. Three
fully sp2-carbon conjugated 2D COFs containing benzobisthia-
zole units as an electron-withdrawing group were successfully
prepared via Knoevenagel polycondensation under this mild
condition. The electron-deficient benzobisthiazoles units and
cyano-vinylene linkages were both integrated into the π con-
jugated COFs skeleton. Further introduction of functional
building blocks such as triazine and benzotrithiophene could
successfully adjust the physical properties of the COFs for pho-
tocatalysis applications. It is noted that BTH-3 containing
electron-riched benzotrithiophene as a donor with a strong D-A
effect exhibited an attractive photocatalytic HER of 15.1 mmol
h−1 g−1 under visible light irradiation, much higher than that of
the triazine-containing BTH-1 (10.5 mmol h−1 g−1) and the
benzene-containing BTH-2 (1.2 mmol h−1 g−1). This research
first provides a facile way for the construction of sp2-carbon
conjugated COFs. The conventional intractable preparation of the
sp2-carbon conjugated COFs was greatly simplified. Second, the
fully π conjugated COFs materials with D-A system show
excellent photocatalytic hydrogen evolution performance and will
definitely promote the development of COFs in photocatalysis.

Methods
Synthesis of BTH-1. A Pyrex tube was charged with TA (20.0 mg, 0.051 mmol),
BTH-2CN (20.6 mg, 0.076 mmol), AcONH4 (23.4 mg, 0.304 mmol), tetra-
hydrofuran (2.0 mL). After being degassed by freeze-pump-thaw technique for
three times and then sealed under vacuum, the tube was placed in an oven at
100 °C for 3 d. The resulting precipitate was filtered, washed with tetrahydrofuran
and ethanol for 2 d, dried at 120 °C under vacuum for 12 h. The activated BTH-1
was obtained as a yellow powder insoluble in common organic solvents (23.9 mg,
yield 63.9%) (13C CP/MAS spectra shown as Fig. 2).

Synthesis of BTH-2. A Pyrex tube was charged with TP (20.0 mg, 0.051 mmol),
BTH (20.8 mg, 0.077 mmol), AcONH4 (23.7 mg, 0.308 mmol), tetrahydrofuran
(2.0 mL). After being degassed by freeze-pump-thaw technique for three times and
then sealed under vacuum, the tube was placed in an oven at 100 °C for 3 d. The
resulting precipitate was filtered, washed with tetrahydrofuran and ethanol for 2 d,
dried at 120 °C under vacuum for 12 h. The activated BTH-2was obtained as a
yellow powder insoluble in common organic solvents (25.7 mg, yield 67.7%) (13C
CP/MAS spectra shown as Fig. 2).

Synthesis of BTH-3. A Pyrex tube was charged with TS (16.3 mg, 0.049 mmol),
BTH (20.0 mg, 0.074 mmol), AcONH4 (22.8 mg, 0.296 mmol), tetrahydrofuran
(2.0 mL). After being degassed by freeze-pump-thaw technique for three times and
then sealed under vacuum, the tube was placed in an oven at 100 °C for 3 d. The
resulting precipitate was filtered, washed with tetrahydrofuran and ethanol for 2 d,
dried at 120 °C under vacuum for 12 h. The activated BTH-3 was obtained as a
dark red powder insoluble in common organic solvents (26.3 mg, yield 78.1%) (13C
CP/MAS spectra shown as Fig. 2).

Data availability
All data supporting the findings of this study are available within the article, as well as the
Supplementary Information file, or available from the corresponding authors.
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