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A B S T R A C T   

Purpose: Salt-affected soils have significant enough salt concentrations to impact other land and 
soil resource uses, plant health, soil characteristics, and water quality. Consequently, a study was 
carried out in the South Ethiopian Rift Valley area around the lakes of Abaya and Chamo to 
determine the intensity and the types of salt-affected soil and map their spatial distributions. 
Methods: At 0–20 cm depths, a grid soil sampling scheme was employed to gather data from 
agricultural soils affected by salt. An adequately spaced grid cell of 200 m*200 m or seven 
transects, with seven samples collected every 200 m on each sampling site, was generated by the 
QGIS software’s Fishnet tool, and an auger collected 226 soil samples from the proposed 245 soil 
sampling points. The analysis and interpretation of the data were done using both statistical and 
geostatistical methods. The un-sampled surface was predicted and mapped from laboratory point 
data using the standard Kriging algorithm in QGIS. 
Results: According to the results, the soil in the study area was rated as strongly alkaline and 
moderately alkaline in the reaction. The coefficient of variation (CV) was the lowest for soil pH. 
Except for the Ganta Kanchama site, low CV (<10 %) confirmed the similarity of pH values 
throughout all research areas. The EC values depicted that the study area is slightly saline except 
for the Ganta Kanchame site, which rated moderately saline to strongly saline. The variability of 
soil EC rated moderate to strong variation for the studied area. The exchangeable sodium per
centage (ESP) values distribution between the study sites demonstrates considerable variability 
and difference. The area is dominated by low to high-risk rate soil sodicity, as evidenced by the 
soil ESP CV of the studied area, which was >100 % and showed significant variability among the 
samples. Out of 2274.65ha of the studied area, the type of salt 62.28 %, 26.09 %, 10.99 %, and 
0.63 % were categorized as non-saline non-sodic, saline-sodic, sodic, and saline, respectively. 
Following saline-sodic, sodic, and saline soils, respectively, non-saline and non-sodic soils 
comprise most of the investigated areas. 
Conclusions: The result indicates almost all the salt-affected areas were situated in relatively lower 
slope areas exhibiting a flat to almost flat slope (0–2%). The study’s findings are that the studied 
area needs specific soil management strategies to boost the salinity and sodicity problems around 
the study area and recommended reclamation techniques as the extent of the problems.  
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1. Introduction 

Different proportions of soils affected by salt can be found across all continents. Numerous attempts to quantify the global dis
tribution of these soils may be found throughout the literature. Globally, salt-affected soils are a concern that lowers crop yields, soil 
sustainability, and cultivable land area [1–3]. Salt-affected soils are those with significant enough salt concentrations to have an 
impact on other land and soil resource uses, plant health, soil characteristics, and water quality [1]. According to some academics [4], 
it is also the term used to describe soils that have exchangeable sodium (sodicity), soluble salts, or both in proportions that can impede 
the growth and development of plants. In many nations, soil salinity and sodicity are the two main obstacles to agricultural production, 
which result in large losses in crop yield and land degradation [5,6]. The record of global extent of soil salinity is varied in literature 
[7]. For instance, according to Ref. [1], more than 120 nations worldwide have salt-affected soils, which vary in extent, nature and 
properties. Salinization currently poses a hazard to about 7 % of the world’s land area [8]. According to Ref. [9], the problem of soil 
salinity is getting worse in North Africa, East Africa, the Middle East, East Asia, and South Asia, and it will get even worse in nations like 
America, China, Hungary, and Australia. According to a review of the global soil salinity by Ref. [4], 835 million hectares of land 
worldwide are affected by salt, with varying regional distributions. 

It is commonly known that salt-affected soil occurs across Ethiopia. The areal extent of salt-affected soils encompass 11,033,000 ha 
of land in Ethiopia, most of which are located in the rift valley zone. Similar to this, the around Abaya and Chamo Lakes and Alage 
district’s soil is impacted by salt in the rift valley zone of Ethiopia [10–13]. Soil salinization is a major environmental issue that can 
arise from both natural and human activity. High salt concentrations in parent materials or ground water result in primary salinization, 
a naturally occurring phenomenon that causes salts to build through natural processes [8,14,15]. According to Ref. [16], secondary 
salinization is a frequent result of excessive watering because of poor irrigation practices, poorly managed irrigation infrastructure, 
inadequate soil internal drainage, and improper irrigation water quality. Soil salinization is caused by soluble salts’ upward movement 
and accumulation at or near the soil surface, which is facilitated by ground water [17]. Salts in the soil are transported with soil 
moisture by capillary action and become a cause of saline soil development when the water table is near the soil surface and the 
evaporation rate is high [18,19]. In agricultural soils, evapotranspiration causes salts to accumulate up in the root zone. This is because 
salts are left behind when water evaporates selectively through evapotranspiration [20]. Moreover, poor irrigation water quality, low 
soil permeability or a high water table can cause poor drainage [21], and topographic factors can cause an upslope recharge to cause a 
downslope outflow of salts, all of which can lead to an accumulation of soil salinity [22]. 

Based on research by Refs. [6,23], and others, soil salinity and sodicity development is generally a dynamic process with significant 
consequences for the soil, hydrological, agricultural, climatic, geochemical, social, and economic aspects. Soil salinity and sodicity are 
highly dynamic and varied spatially over time. A key management problem is the heterogeneity of the soil, which is primarily imposed 
by the mosaic distribution of salt and sodicity [24]. Different approaches to management and rehabilitation are predetermined by this 
variability. To enable site-specific management systems, spatial prediction, database setting up [25], and making digital maps of soil 
salinization and sodification patterns that can be used for action is very crucial [26]. Since the goal of developing and implementing 
successful soil reclamation programs is to prevent or reduce soil salinity and sodicity, data regarding the spatial extent, character, and 
distribution of soil salinity is becoming more and more crucial [27]. For agricultural management to be effective and to support 
site-specific management decisions, timely detection of soil salinity and sodicity as well as mapping of the spatial distribution and 
severity of salinity are crucial [28]. Prior to attempting any reclamation operations, mapping the types of salt-affected soils (saline, 
saline-sodic, and sodic) is the first step, as reclamation processes vary depending on the nature of the problem or its severity [29]. 

The two most popular GIS spatial interpolation techniques for forecasting and creating the spatial distribution map of soil prop
erties like salinity are inverse distance weighting (IDW) and ordinary kriging [4]. Kriging is an accurate geostatistics technique that is 
commonly applied in various fields, including soil science [30,31]. Research by Ref. [13] found that the soil in the South Ethiopian Rift 
Valley surrounding Abaya and Chamo Lakes is prone to salinity and sodicity. Previous studies in this sector have been few and have 
primarily concentrated on taxonomic classification, soil characterization, and related topics due to the need for precise data regarding 
the extent and distribution of salt-affected soils in the region. It is essential to map the geographic distribution of salt-affected soil at 
each research site and determine its current condition. Agricultural productivity and environmental sustainability are seriously 
compromised by salt-affected soils, defined by high concentrations of soluble salts. Enabling informed decision-making and resource 
allocation for restoration and management options, mapping these soils offers an in-depth comprehension of their spatial distribution 
and extent. Therefore, identifying the various types of salt and the intensity of salt degradation is essential to managing and restoring 
soils damaged by salt. Decision-makers, researchers, and land managers can use this information to efficiently solve salt problems and 
advance environmentally friendly and sustainable farming practices. This would reduce further salinization and sodicity to sustain the 
agricultural lands through reclamation of the study area. Therefore, to support site-specific soil management tasks, strategies, and 
intervention, the study aimed to investigate the intensity and types of salt-affected soil and map their spatial distribution patterns 
around Abaya and Chamo Lakes in the South Ethiopia Rift Valley. 

2. Materials and methods 

2.1. Descriptions of the study area 

The Abaya-Chamo sub-basin of the South Ethiopia Rift Valley that splits Ethiopia down the middle in a north-south direction. The 
basin comprises two lower-lying lakes, Abaya Lake and Chamo Lake [13,32]. The latitude of the study area falls between 5o 50′00″N 
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and 60 10′ 0″N, and the Longitude of the study area falls between 37o 26′0″ E and 37o 40′0″ E. The altitude of the study area ranges from 
1107 m around Chamo Lake to 1191 m at around Abaya Lake range. Besides this, the altitude of the Institutional University Coop
eration (IUC) Project area ranges from 972 m around Abaya and Chamo lakes shores to 3464 m in the highland mountain range. The 
total area of the four watersheds is 807 km2: Elgo (249 km2), Sile (227 km2), Baso (167 km2), and Shafe (164 km2). Elgo and Sile 
catchments drain Lake Chamo, whereas Baso and Shafe drain Lake Abaya. Of all Abaya-Chamo Lake watersheds, the area around two 
lower lying lakes, Abaya and Chamo Lakes, are selected for this specific study based on accessibility and the productive potential of the 
site for crop production and covered a 2019sq.km area (Fig. 1). Still, the specific sampling sites were selected based on the findings of 
the article of [13], which suggested detailed salinity and sodicity studies on the type, intensity, and distribution to specific sampling 
sites were recommended to apply the reclamation strategies in the study area. Accordingly, the Omo Lante, Lante, and Abulo sampling 
sites are located around Abaya Lake and Ganta Kanchama, and Zeyise Elgo sampling sites are located around Chamo Lakes South 
Ethiopia Rift Valley (Fig. 1) (appendix 1). 

The climate around the Abaya and Chamo Lakes basin region is tropical, hot, and semi-arid [33]. The weather patterns in the 
Abaya-Chamo watersheds are, and it seems that the inter-tropical convergence zone (ITCZ) brings a humid breeze from the Indian 
Ocean that contributes to the bimodal rainfall system in the area. Altitude plays a role in the distribution of rainfall. The region ex
periences short rains in spring (belg) and long rains in summer (kremt), resulting in a bimodal rainfall distribution in most parts of the 
watershed [34]. In the study area, the rainfall peaks during April and May, with Chamo Lakes recording 152 mm and 133.5 mm, 
respectively, while around Abaya Lakes, the recorded rainfall is 146.5 mm and 118.5 mm. On the other hand, the lowest rainfall is 
recorded during January and February, with 9 mm and 20 mm for Chamo Lakes and 12.5 mm and 21.5 mm for around Abaya Lakes, 
respectively. The temperature is high for three months in the study area. For instance, around Chamo Lake, the temperature increases 
in February, March, and April, with 34.6oc, 35.1oc, and 33.9oc respectively. Around Abaya Lakes, the temperature is high during 
January, February, and March, with 31.4oc, 32.3oc, and 32.2oc, respectively. The mean annual rainfall in the area ranges from 500 to 
1100 mm, and the average yearly air temperature is 17–39◦c. According to the AMU-IUC Project 4 (Fig. 2), the mean soil temperature 

Fig. 1. Location map of the study sites. Where Omo Lante sampling site, which is the boundary between Omo Lante and Fura kebeles; Lante 
sampling sites, which represents Lante kebele; Abulo sampling sites, which are the boundaries between Shara kebele, Arba Minch University 
demonstration farm (AMU Demo Farm), and Abulo village; Ganta Kanchama sampling sites, which are the boundaries between Ganta Kanchama 
and Shele Mela kebeles; and Zeyise Elgo sampling site, which represents Zeyise Elgo kebele; SNNPR represents, South Nation Nationality Peo
ple Region. 
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ranges from 22 to 35 ◦C depending on the depth (appendix 2). Agriculture seems to be dominant in the area, with crops such as banana, 
mango, papaya, maize, cotton, sweet potato, tomato, onion, and haricot beans being cultivated. However, it seems that soil salinity and 
sodicity are also present in the area. These phenomena are brought on by factors of nature such nearby or nearby water tables, 
weathering rocks and minerals, low rainfall and high evaporation rates. Unfortunately, these problems are made worse by human 
actions including inadequate irrigation, deforestation, and overgrazing of livestock [16]. 

2.2. Material used and soil sampling procedure 

Measured field data (EC, ESP, and pH), soil, landform, and other maps, as well as additional data, were used together with the 
digital elevation model (DEM) at a resolution of 30 m. This investigation’s Software tools include QGIS and Garmin GPS. The study 
area was demarcated from the Ethiopia Kebele administration boundary shape file and created a polygon layer for being studied. A grid 
sampling scheme was designed, and soil samples were collected from agricultural salt-affected soils around Abaya and Chamo Lakes 
South Ethiopia Rift Valley using an auger (appendix 3). It is one of the soil sampling strategies that deliver more information about the 
spatial distribution of salt-affected soil [19,35–37]. The QGIS software’s Fishnet tool was utilized to create a grid of sampling points 
inside the polygon layer that were consistently spaced (appendix 4). A 200 m × 200 m grid cell was created, and nine (9) composite soil 
samples were taken from each grid node. Every composite soil sample was taken within a 15-m radius of the sampling point’s center. 
An auger collected two hundred twenty-six (226) soil samples from 0 to 20 cm from the proposed 245 soil sampling points by 200 m ×
200 m grid cell or seven transects, with seven samples collected every 200 m on each sampling site. We can estimate the total number 
of samples with the following formula: Total samples =Number of transects x Samples per transect. Total samples = seven (7) transects 
x 7 samples/transect, total samples = 49 samples for each sampling site, for five (5) sampling sites = 49*5 = 245. However, some 
sampling points fall on the mountains nearby, villages, and lakes around the sampling sites, then a total of 226 soil sampling points 
(Omo lante = 39, Lante = 44, Abulo = 48, Ganta Kanchama = 49, and Zeyize Elgo = 46) were used for this study (appendix 4). Before 
the field survey, the soil sampling point made by the Fishnet tool of the QGIS software was added to handheld GPS with coordinates for 
tracking the route and finding the sampling point. A global positioning system (GPS) was used to record the coordinates of each 
composite soil sampling point with an accuracy of ±3 m. Samples were taken accordingly, and their absolute locations were recorded. 
The collected samples were put in a clean plastic tray, crushed, mixed thoroughly, and transferred 1 kg composite soil sample to a 
plastic sampling bag. 

2.3. Soil sample preparation and laboratory analyses 

According to Ref. [38], field soil samples were dried by air at a suitable laboratory temperature of 24 ◦C in order to reduce soil 
mineralization. Soil samples were mechanically crushed with a mortar and pestle after drying, and then they passed through a 2-mm 
mesh sieve for laboratory analysis. Following a standard laboratory procedure, the collected soil samples have been determined for pH, 

Fig. 2. Annual climate data around Abaya and Chamo lakes (1983–2020 average) where rain falls (RF) in millimetre (mm) and temperature (T) in 
degrees Celsius (0C) (source: AMU-IUC project meteorology station). 
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exchangeable bases (Ca2+, Mg2+, K+, and Na+), and electrical conductivity (EC). A pH meter with a combined glass electrode in water 
(H2O) was used to measure the pH of the soil at a ratio of 1:2.5 soil to water, in accordance with [39] recommendations. Saturated soil 
paste extracts were used to measure electrical conductivity using a conductivity meter, as described by Ref. [40]. The percolation tube 
method was followed by removing any excess ammonium ions from the soil solution by repeatedly washing it with 96 % ethanol after 
the exchangeable bases were determined using the 1M-ammonium acetate (pH 7) method [41]. The atomic absorption spectropho
tometer was used to measure the exchangeable Ca2+ and Mg2+ from the extract and calculate the Ca and Mg saturation ratio. A flame 
photometer was used to determine the exchangeable K+ and Na+ from the same extracts, following [42] directions. The method 
described in Hand Book No. 60 was used to calculate the sodium adsorption ratio (SAR) and exchangeable sodium percentage (ESP) 
[43]. 

SAR=
Na+

(
Ca2++Mg2+

2

)1
2

(1)  

ESP=(100(− 0.0126+0.01475(SAR)) /1+( − 0.0126+0.01475(SAR) (2) 

Finally, using [44] limit as a guide, the soil types affected by salt have been determined. 

2.4. Land form 

The Digital Elevation Model (DEM) of the study area was clipped from a 30 m resolution of Ethiopia in a GIS platform by masking 
QGIS software. The slope of the study area was generated from the Digital Elevation Model (DEM) of the study area in a GIS platform 
using surface analysis in QGIS software. The landform was used as one layer since landform features influence the process of salt 
accumulation on the soil surface due to its slope variability, which influences percolation and surface water flow [45]. Indirect features 
such as landscape may aid in identifying soil salinity and sodicity issues. The Combined action of topographic factors and climate has a 
significant influence on the spatial distribution of soil salinity, causing variations in soil salinity and sodicity distributions, particularly 
in arid areas [28,46,47]. 

Table 1 
Descriptive statistics for selected soil properties around Abaya and Chamo Lakes.  

Sampling site Dis. Sta Soil Parameters 

pH EC Ex. Na Ex. K Ex. Ca Ex. Mg Ca: Mg SAR ESP 

Omo Lante N 39 39 39 39 39 39 39 39 39  
Min 7.30 0.38 0.40 0.08 17.43 5.73 0.37 0.07 0.30  
Max 8.57 6.13 78.45 11.46 51.72 47.69 7.33 13.75 19.21  
Mean 7.98 1.01 4.28 1.31 36.57 11.56 3.67 0.82 1.03  
Std. D 0.33 0.98 12.20 1.89 7.67 6.60 1.36 2.13 2.99  
CV% 4.14 96.62 285.11 144.85 20.98 57.11 37.07 258.80 289.47 

Lante N 44 44 44 44 44 44 44 44 44  
Min 8.04 0.34 0.07 0.08 11.23 4.44 0.68 0.02 0.73  
Max 9.64 4.68 75.72 16.78 47.37 40.94 4.63 17.84 25.31  
Mean 8.37 1.25 3.15 1.88 31.63 13.97 2.48 0.85 2.14  
Std. D 0.25 1.02 12.91 3.83 6.26 5.99 0.71 3.49 4.73  
CV% 2.94 81.81 409.26 203.73 19.78 42.89 28.65 411.34 220.58 

Abulo N 48 48 48 48 48 48 48 48 48  
Min 7.73 0.33 0.03 0.05 5.51 2.25 0.93 0.01 0.24  
Max 9.25 11.33 71.83 4.79 47.14 17.12 14.17 35.61 51.77  
Mean 8.33 1.69 5.26 0.85 29.25 9.46 4.33 1.88 2.88  
Std. D 0.26 2.22 13.01 0.92 10.70 4.84 3.52 5.82 8.31  
CV% 3.17 131.15 247.45 107.94 36.59 51.14 81.43 310.20 288.15 

G/Kanchama N 49 49 49 49 49 49 49 49 49  
Min 7.64 0.74 0.41 0.24 1.31 1.74 0.13 0.09 0.37  
Max 11.01 25.40 451.68 10.62 35.80 22.58 3.63 216.22 320.84  
Mean 8.82 4.22 158.96 2.78 19.92 12.13 1.67 51.24 75.63  
Std. D 0.92 4.93 144.99 2.28 9.16 4.19 0.71 54.97 81.37  
CV% 10.46 117.04 91.21 82.29 45.97 34.51 42.47 107.28 107.59 

Zeyise Elgo N 46 46 46 46 46 46 46 46 46  
Min 7.40 0.40 0.23 0.01 8.60 5.36 0.82 0.05 0.39  
Max 8.80 7.64 61.50 16.47 45.63 24.93 2.44 23.28 33.40  
Mean 8.16 1.43 6.18 1.23 28.44 16.27 1.80 1.63 2.60  
Std. D 0.28 1.44 11.93 2.39 6.41 4.60 0.33 3.88 5.28  
CV% 3.41 100.67 193.18 194.06 22.53 28.27 18.54 238.27 203.12  
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2.5. Cross-validation 

The cross-validation was done to evaluate the accuracy of interpolation methods through mean error (ME), root mean square 
standardized error (RMSSE), and root means square error (RMSE). Closer values of the mean error (ME) to 0, and closer values of the 
root mean square standardized error (RMSSE) to 1, suggested that the prediction values were close to measured values, hence facil
itating the selection of the best-fitted semivariogram model for an interpolation map, which could provide the most accurate pre
dictions [48,49]. 

2.6. Data analysis 

To analyze and interpret data, both statistical and geostatistical techniques were used. To analyze soil properties, descriptive 
statistics data were analyzed using SAS software, version 9.4 [50]. The coefficient of variation was used for the determination of soil 
properties variability. The variability is low when the CV is < 10 %, moderate between 10 and 100 %, and strong when > 100 % [51]. 
The rating and interpretation of determined values were based on a guide to standardized analytical methodologies for soil data. The 
spatial distribution of salt-affected soil in the study area was determined by importing the laboratory results into a GIS environment 
using their corresponding coordinates (latitude and longitude) in Microsoft Excel. Using interpolation techniques, the spatial pre
diction and mapping of the un-sampled surface from laboratory point values were carried out in a GIS environment. From laboratory 
point data, the un-sampled surface was predicted and mapped using the standard kriging algorithm in QGIS [52]. The map of the 
preliminary layers of the salt-affected soil indicator, including pH, EC, and ESP, and the predicted final salt-affected soil distribution 
map was generated. 

3. Results and discussion 

3.1. Descriptive statistics for salt-affected soil characteristics around Abaya and Chamo Lakes 

Soil chemical properties are essential for developing different plants and crops [53]. Data presented in Table 1 shows the statistical 
summary of selected soil characteristics of agricultural salt-affected soils around Abaya and Chamo Lakes. This study evaluated the 
variables’ dispersion using the coefficient of variation (CV) value. The CV in soil science can be categorized into three distinct cate
gories. The variability is low when the CV is < 10 %, moderate between 10 and 100 %, and strong when > 100 % [51]. Among the soil 
properties analyzed, the coefficients of variation (CV) for Ex. Na+, SAR, and ESP were the strong (Table 1). The coefficient of variation 
(CV) for soil pH was the lowest. Thus, low CV(<10 %) approved the similarity of pH values in all the study areas except the Ganta 
Kanchama site, which was categorized as moderate variability since the CV value is 10.46. As indicated in Table 1, the soil pH of the 
study area ranged from 7.30 to 8.57, 8.04 to 9.64, 7.73 to 9.25, 7.64 to 11.01, and 7.40 to 8.80, respectively, in the Omo Lante, Lante, 
Abulo, Ganta Kanchama, and Zeyise Elgo sites. According to US Salinity Laboratory Staff (1954) and [54] rating, the result depicted 
that the study area is characterized by non-alkaline to strongly alkaline to Omo Lante, Abulo, and Zeyise Elgo sites and moderately 
alkaline to strongly alkaline levels to Lante and Ganta Kanchama sites respectively. 

The range values of EC varied from 0.38 to 6.13, 0.34 to 4.68, 0.33 to 11.33, 0.74 to 25.40, 0.40 to 7.64 dS m− 1, respectively, in the 
Omo Lante, Lante, Abulo, Ganta Kanchama, and Zeyise Elgo sites. According to soil quality standards given by Ref. [55], the result 
depicted that the study area is slightly saline except for the Ganta Kanchame site, which rated moderately saline to strongly saline. The 
CV of soil EC for the studied soils was between 10 % and 100 % for the Omo Lante and Lante sites and >100 % for the Abulo, Ganta 
Kanchama, and Zeyise Elgo sites. Based on [51] variability, the Omo Lante, and Lante were rated with moderate variation, and Abulo, 
Ganta Kanchama, and Zeise Elgo sites were rated with strong variation (Table 1). This variation of CV values for EC is supported by the 
findings of [30], who reported that low CV approved the similarity of soil properties, and high CV ratified the variations of soil 
properties. 

The overall range values of ESP varied from 0.30 % to 19.21 % with a mean value of 1.03 %, 0.73–25.31 % with a mean of 2.14 %, 
0.24 %–51.77 % with mean of 2.88 %, 0.37 %–320.84 % with mean value of 75.63 % and 0.39 %–33.40 % with mean of 2.6 %, in Omo 
Lante, Lante, Abulo, Ganta Kanchama and Zeyise Elgo sites (Table 1). The CV of soil ESP for the studied area was >100 %, indicating 
strong variability among the samples. However, the numerical CV (107.59) value of the Ganta Kanchama site revealed nearly mod
erate variability of ESP. This variation might be due to the difference in parent material, topographic position, drainage, groundwater 
table, temperature variation, soil texture variations, land use type, degree of removal of basic cations by crop harvest, and management 
types. This is supported by the finding of [56], who reported high water tables, insufficient soil permeability, inadequate drainage from 
irrigation systems, and topographic factors that cause an upslope recharge to cause a downslope salt outflow can all lead to an 
accumulation of soil salinity [57]. also found that land-use patterns, reclamation history, soil texture, and vegetation coverage were 
the most influential factors affecting spatial variation of soil salinity and sodicity. 

The exchangeable Ca ranged from 17.43 to 51.72 cmol(+)/kg with a mean of 36.57 cmol(+)/kg, 11.23 to 47.37 with a mean value 
of 31.63 cmol(+)/kg, 5.51–47.14 cmol(+)/kg with a mean of 29.25 cmol(+)/kg, 1.31–35.8 cmol(+)/kg with a mean of 19.92 cmol 
(+)/kg, 8.6–45.63 cmol(+)/kg with a mean of 28.44 cmol(+)/kg in Omo Lante, Lante, Abulo, Ganta Kanchama, and Zeyise Elgo sites 
soils, respectively (Table 1). According to Ref. [55] rating, exchangeable Ca in the Omo Lante and Lante sites rated high to very high, 
and in Abulo and Zeise Elgo sites rated medium to very high, respectively, while in Ganta Kanchama Site rated very low to very high. 
The CV of soil exchangeable Ca for the studied soils was between 10 % and 100 % for the studied soils, which had moderate variability 
based on ratings of [51]. The exchangeable Mg ranged from 5.73 to 47.69 cmol(+)/kg with a mean of 11.56 cmol(+)/kg, 4.44 to 40.94 
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Table 2 
Semivariogram models and model parameters for selected soil properties.  

Soil Property Fitted Model Nugget (Co) Partial Sill (C) Sill Range (m) SPD SPD Level Estimated Error 

(Co + C) (Co/Co + C)*100 ME RMSSE 

Ex. Bases pH  Sph 0.754 0.350 1.104 2875.2 68.297 Mo − 0.002 0.84 
EC Exp 0.256 1.023 1.279 9101 20.016 St 0.098 0.551  

Ca2+ Exp 0.198 0.855 1.053 15129 18.834 St − 0.035 0.96 
Mg2+ Sph 0.748 1.130 1.878 1344 39.830 Mo − 0.001 1.157 
Na+ Sph 0.425 0.516 0.941 3106 45.207 Mo 0.027 0.045 
K+ Gau 0.230 0.990 1.220 7824 18.852 St 0.044 0.956 

SAR  Sph 0.369 0.553 0.922 3111 39.994 Mo 0.024 0.048 
ESP Sph 0.388 0.441 0.829 4208 46.822 Mo − 0.169 1.181 

Where: Mo = Moderate, St = Strong, Sph = Spherical, Gau = Gaussian, Exp = Exponential. 
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with a mean value of 13.97 cmol(+)/kg, 2.25–17.12 cmol(+)/kg with a mean of 9.46 cmol(+)/kg, 1.74–22.58 cmol(+)/kg with a 
mean of 12.13 cmol(+)/kg, 5.36–24.93 cmol(+)/kg with a mean of 16.27 cmol(+)/kg in Omo Lante, Lante, Abulo, Ganta Kanchama, 
and Zeyise Elgo sites soils, respectively (Table 1). According to Ref. [55] rating, exchangeable Ca in the Omo Lante, Lante, and Zyise 
Elgo sites rated high to very high, and in Abulo and Ganta Kanchama sites rated medium to very high, respectively. The CV of soil 
exchangeable Mg had moderate variability based on ratings of [51] since its range falls CV between 10 % and 100 % for the studied 
soils. 

The Ca: Mg ratio is used to evaluate the potential impact of calcium on the uptake of Mg and P. As indicated in (Table 1) the soil Ca: 
Mg ratio of the study area varied from 0.37 to 7.33 ratio with a mean of 3.67 ratio, 0.68 to 4.63 with a mean value of 2.48 ratio, 0.93 to 
14.17 ratio with a mean of 4.33 ratio, 0.13 to 3.65 ratio with a mean of 1.67 ratio, 0.82 to 2.44 ratio with a mean of 1.8 ratio in Omo 
Lante, Lante, Abulo, Ganta Kanchama, and Zeyise Elgo sites soils, respectively (Table 1). According to Ref. [55], when Ca: Mg ratios are 
less than 3:1, phosphorous (P) uptake may be inhibited, and it is suggested that the lowest acceptable limit with more subordinate Ca: 
Mg values, Ca availability slightly reduced [55]. Thus, the mean Ca: Mg ratio is less than 3:1 in the Lante, Abulo, Ganta Kanchama, and 
Zeyise Elgo sites where P uptake may be inhibited. In the Omo Lante site, the Ca: Mg ratio falls in the range of 3:1 to 4:1, which was the 
approximate optimum range for most crops, according to Ref. [55]. The CV of Ca: Mg was moderate variability in the study area. 

The exchangeable Na ranged from 0.40 to 78.45 cmol(+)/kg with a mean of 4.28 cmol(+)/kg, 0.07 to 75.72 with a mean value of 
3.15 cmol(+)/kg, 0.03–11.33 cmol(+)/kg with a mean of 5.26 cmol(+)/kg, 0.41–451 cmol(+)/kg with a mean of 158.96 cmol(+)/kg, 
0.23–61.50 cmol(+)/kg with a mean of 6.18 cmol(+)/kg in Omo Lante, Lante, Abulo, Ganta Kanchama, and Zeyise Elgo sites soils, 
respectively (Table 1). According to Ref. [54] rating, exchangeable Na in the Omo Lante and Ganta Kanchama sites rated medium to 
very high, and in the Lante and Abulo sites rated very low to very high, respectively, while the Zeyise Elgo Site rated low to very high. 
The CV of soil exchangeable Na for the studied soils had strong variability except for the Ganta Kanchama site, which had moderate 
variability based on the ratings of [51]. 

3.2. Geostatistical analysis and mapping of selected soil properties 

The spatial attribute is defined by the nugget/sill ratio or spatial dependence (SPD) Co/(Co + C). When the value of Co/(Co + C) is 
less than 0.25, the variable is said to have a strong spatial dependency; when it is between 0.25 and 0.75, it is considered to have a 
moderate geographic dependence; and when it exceeds 0.75, it is considered to have a weak spatial dependence [48,49,58,59]. Table 2 
shows the semivariogram obtained from the geostatistical study, illustrating the various geographical distribution models and levels of 

Table 3 
The areal extent of the different classes of selected soil chemical properties with respect to sampling sites.  

Soil 
properties 

Rating Status Soil sampling sites 

Omo Lante Lante Abulo Ganta Kanchama Zeyise Elgo 

Area 
(ha) 

Area 
(%) 

Area 
(ha) 

Area 
(%) 

Area 
(ha) 

Area 
(%) 

Area 
(ha) 

Area 
(%) 

Area 
(ha) 

Area 
(%) 

EC <4 Non-Saline 558.01 99.71 250.49 99.36 420 96.11 263.46 42.35 422.01 98.83 
4–8 Slightly-Saline 1.64 0.29 0.6 0.24 16 3.66 339.82 54.62 5 1.17 
8–15 Moderately 

Saline 
– – – – 1 0.23 16.07 2.58 – – 

>15 Strongly Saline – – – – – – 2.78 0.45 – – 
ESP <5 Low 553.86 98.97 232.94 92.77 419.36 95.96 4.59 0.74 420 98.36 

5–15 Medium 5.18 0.93 14.15 5.63 10.81 2.47 15.54 2.5 5.01 1.17 
>15 High 0.62 0.11 4 1.59 6.7 1.53 601.98 96.76 2 0.47 

pH 7.5–8.5 Moderately 
alkaline 

558.6 99.81 232.8 92.71 109.25 25.00 246.89 39.69 427 100 

>8.5 Strongly 
alkaline 

1.5 0.19 18.29 7.29 327.75 75.00 375.23 60.32 0.1 0.02 

Ex_Na <0.10 Very Low – – 0.47 0.19 4.43 1.01 – – – – 
0.1–0.3 Low – – 28.38 11.3 27.99 6.41 – – – – 
0.3–0.7 Medium 0.03 0.01 146.38 58.3 18.98 4.34  – 0.3 0.07 
0.7–2.0 High 6.1 1.09 12.91 5.14 181.11 41.44 0.13 0.02 0.7 0.16 
>2.0 Very High 553.56 98.9 62.94 25.07 204.37 46.77 621.99 99.99 426 99.76 

Ex_Ca 2–5 Low – – – – – – 1.32 0.21 – – 
5–10 Medium – – – – 3.18 0.73 10.34 1.66 – – 
10–20 High 0.33 0.06 1.57 0.63 23.19 5.31 177.58 28.55 0.01 0.02 
>20 Very High 559.32 99.94 249.52 99.37 410.51 93.94 432.77 69.58 426.57 99.99 

Ex_K <0.2 Very Low 0.38 0.07 1.01 0.4 7.72 1.77 – – 0.5 0.12 
0.2–0.5 Low 9.86 1.76 57.47 22.89 101.1 23.14 0.32 0.05 0.5 0.12 
0.5–1.5 Optimum 504.06 90.05 185.41 73.85 301.08 68.9 38.24 6.15 152 35.6 
1.5–2.3 High 30.16 5.39 7.17 2.86 26.92 6.16 153.9 24.74 230 53.86 
>2.3 Very High 15.3 2.73 – – – – 429.7 69.07 44 10.3 

Ex_Mg 1.51–3.3 Medium – – – – 40.31 9.22 0.7 0.11 – – 
3.31–8.3 High 15.69 2.8 1.08 0.43 92.23 21.1 11.68 1.88 0.07 0.02 
>8.31 Very High 543.96 97.2 250.02 99.58 304.3 69.63 609.73 98.01 426.53 99.98  
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Fig. 3. This figure shows the spatial distribution map of the study area’s pH, EC, ESP, SAR, and Exchangeable bases. Where (A) Omo Lante, Which is 
represented by the Omo Lante sampling site, shows the intensity and spatial distribution map of EC, pH, ESP, and SAR. (B) Lante: It represents the 
Lante sampling site and shows the intensity and spatial distribution map of EC, pH, ESP, and SAR. (C) Abulo: The Abulo sampling site shows the 
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spatial dependency associated with the soil parameters. Semivariance revealed variations in the spatial dependence of soil parameters 
(Table 2). The nugget-to-sill ratio [Co/(Co + C)] of [pH, Mg, Na, SAR, and ESP] ranged from 0.25 to 0.75, as shown in Table 2, 
suggesting a moderate spatial dependence. 

This implies that the properties were controlled by both intrinsic and extrinsic factors. It could be the continuous use of salt-affected 
irrigation water on the field, cultivation practices including plowing, fertilization, and other soil management practices [58,60–62]. 
This is in agreement with the findings of [63] who reported that moderate spatial dependence is due to both intrinsic and extrinsic 
factors. According to Ref. [49], the nugget/sill ratio (C0/C0 + C) < 25 % reflected a strong spatial dependence of [EC, Ca, and K]. The 
results of the distribution were explained by the model which shows to be affected by natural factors which are mostly geological in 
nature. This could be mainly due to the inherent/intrinsic sources of variability (e.g., natural variations in soils, such as soil texture, 
parent materials, and topography) [64]. The majority of the researchers also stated that random extrinsic factors like soil management 
techniques like fertilization and plowing are related to weak spatial dependency, while strong spatial dependency is related to 
structural intrinsic factors like parent material, mineralogy, texture, climate, and topography. Conversely, a considerable degree of 
spatial dependence is probably influenced by both extrinsic and intrinsic variables [65–67]. For soil EC, the nugget effect was typically 
higher (Table 2). This indicated that differences in soil qualities existed at short distances. The spatial variability at smaller distances 
than the lowest separation between measurements is associated with the nugget effect [64,68]. 

The results indicated that the mean errors (ME) were near zero and the root mean square standardized error (RMSSE) was close to 1 
for all studied soil parameters (Table 2). The result is similar to the finding of [66] who reported closer values of the mean error (ME) to 
0, and closer values of the root mean square standardized error (RMSSE) to 1, suggesting that the prediction values were close to 
measured values, hence providing the most accurate predictions. 

A wider range value means that different values of the soil property over longer distances have an impact on the observed values of 
this property [64,69]. As indicated in Table 2, the spatial range values for all studied soil properties varied from 1344 m to 15,129 m, 
which is greater than the average sampling distance (200 m), implying that the sampling interval in this study was sufficient to capture 
the spatial variability in studied soil properties. Thus, results indicate the sampling strategy was adequate. Similarly [70], reported that 
if the range value is greater than the actual sampling distance, the sampling strategy is adequate to capture the spatial variability of 
studied soil properties. 

intensity and spatial distribution map of EC, pH, ESP, and SAR. (D) Ganta Kanchama: The Ganta Kanchama sampling site shows the intensity and 
spatial distribution map of EC, pH, ESP, and SAR. (E) Zeyise Elgo: This is represented by the Zeyise Elgo sampling site and shows the intensity and 
spatial distribution map of EC, pH, ESP, and SAR. (F) Omo Lante: Which is represented by the Omo Lante sampling site, shows the intensity and 
spatial distribution map of Exchangeable bases (Na, K, Ca, and Mg). 

Fig. 3. (continued). 
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3.3. Spatial distribution map of selected soil chemical properties 

3.3.1. Mapping the spatial distribution of soil pH 
The area calculated from the interpolated map of salt-affected soil parameters created from measured point data is presented in 

Table 3, and its spatial distribution is shown in Fig. 3. According to the US Salinity Laboratory Staff [43] rating, the interpolation result 
depicted that the study area is moderately alkaline to strongly alkaline (Table 3). The area calculated from the predicted map shows 
that 558.6ha (99.8 %), 232.8ha (92.71 %), 327.75ha (75 %), 375.25ha (60 %), and 427ha (100 %), respectively, for Omo Lante, Lante, 
Abulo, Ganta Kanchama, and Zeyise Elgo sampling sites. The studied area had pH values greater than 8.5 for Omo Lante, Abulo, and 
Ganta Kanchama and between 7.5 and 8.5 for Lante and Zeyise Elgo (Table 3 and Fig. 3). It was rated as strongly alkaline and 
moderately alkaline in the reaction, respectively, according to the US Salinity Laboratory Staff [71] rating, indicating that a significant 
portion of the studied area requires alkalinity management practices. The studied area has a pH value greater than 7.5 (Table 3 and 
Fig. 3). This showed that alkaline soils dominate the study area. In the case of the Abaya and Chamo Lakes region, the low rainfall and 
high evaporation rates are likely the primary factors contributing to the increased alkalinity of the soils. The area is in a semi-arid 
climate, with an average annual rainfall of less than 600 mm. However, the evaporation rate is very high due to the hot and dry 
environment [13,72] This leads to the accumulation of salts in the soil, which can make it alkaline. The strongly alkaline soils may be 
attributed to low leaching of bases, especially in clay soils [55,73]. The application of poor-quality water would increase pH. This 
might be due to the continuous irrigation practices with salt-affected irrigation water and shallow ground water table that happened in 
the [13,19]. This result is supported by the findings of [74–76] that alkalinity in arid and semi-arid areas is caused by irrigation water. 
The reason for this is that irrigation water can gradually introduce more salts into the soil by evaporating water and concentrating the 
dissolved salts in the soil solution [77,78]. In addition to this, additional factors may contribute to the alkalinity of the study soils since 
it is in the Rift Valley, a region of volcanic activity, and the volcanic ash that has fallen over the area is often alkaline. Some fertilizers, 
such as lime and urea, can make the soil more alkaline, and some minerals, such as sodium bicarbonate and sodium carbonate, release 
alkaline ions when they dissolve in water [79–81]. The high alkalinity of the soils around Abaya and Chamo Lakes can negatively 
impact agriculture. Alkaline soils can reduce crop yields, make it difficult for plants to absorb nutrients, and increase disease risk [82, 
83]. 

3.3.2. Mapping the spatial distribution of soil electrical conductivity (EC) 
Fig. 1 shows the soil EC map generated by interpolating the point data result. There was substantial variation in soil electrical 

conductivity (EC) in various parts of the research area, as indicated by the area computed based on the projected map. About 558.01 ha 
(99.71 %), 250.49 ha (99.36 %), 420 ha (96.11 %), and 422.01 ha (98.93) of the studied soils had EC values less than 4 dS/m (Table 3), 
respectively, for Omo Lante, Lante, Abulo, and Zeyise Elgo. These soils were generally categorized as free of excess salt, having no 
adverse effect on the growth and productivity of most crops according to the soil quality standards established by Refs. [54,55]. Table 3 
shows that EC values for 339.82ha (54.60 %) and 428.36 ha (57.38 %) were between 4 and 8 dS/m. These values could be rated 
slightly saline soil class throughout the studied area (Fig. 3). One of the leading causes of soil salinization and sodicity in the area is the 
irrigation of agricultural land with subsurface and river water for more than 15 years. Salts may be brought to the soil’s surface by 
irrigation water over time, where they can accumulate and harm crops. This is especially true in dry and semi-arid areas with little 
precipitation and considerable evaporation [84,85]. It is encouraging that most of the studied agriculturally salt-affected soil area is 
non-saline and non-sodic. It implies that there is still time to take action to prevent further damage and that the problem still needs to 
be severe [86,87]. According to the soil EC maps, it is incredibly reassuring to see that non-saline and slightly saline soils are mainly 
concentrated throughout the entire study area [88,89]. It indicates that successful crop cultivation is still possible in various locations. 
The following recommendations can be used to reduce soil salinization and sodicity in agricultural areas: Grow salt-tolerant crops, 
drain the soil frequently to eliminate accumulated salts, and use irrigation water wisely and effectively [90]. Incorporate organic 
matter into the soil to enhance water retention and drainage, and use gypsum to improve soil structure [91]. 

3.3.3. Mapping the spatial distribution of soil ESP 
The distribution pattern of ESP values is shown in Fig. 3. The distribution of ESP values shows a substantial difference in the study 

area. The spatial interpolation result (Fig. 3) indicated a considerable variation in soil ESP across different parts of the study area. The 
spatial interpolation result (Fig. 3) suggested that the area is dominated by soil sodicity of low to high risk rated according to Ref. [55]. 
In terms of risks, 553.86ha (98.97 %), 232.94ha (92.77 %), 419.36ha (95.96 %), and 420ha (98.36 %) of the studied area for Omo 
Lante, Lante, Abulo and Zeise Elgo sampling sites is classified under low (ESP <5 %) risks of sodicity, respectively (Table 3 and Fig. 3). 
Under the low-risk level of ESP (<5 %), those sampling sites could be medium to high soil exchangeable calcium amounts. A high 
sodicity problem area with ESP (>15 %) was observed in the Ganta Kanchama sampling site of the study area (Table 3 and Fig. 3). The 
highest ESP (>15 %) values were concentrated in the Ganta Kanchama sampling site of the studied area due to the higher exchangeable 
sodium found in the soil of these sampling sites (Fig. 3). These may result from the relatively high clay content of soils in this study area 
site. The higher ESP results in this area are most likely due to the relatively high clay content of the soils in the Ganta Kanchama 
sampling site [13]. Because clay particles have a large surface area, there are more sites for sodium ions to bind to them. Furthermore, 
in sodic soils, certain clay minerals, including smectite, are especially prone to dispersion [92,93]. Smaller clay particles that are 
released into the soil have the potential to clog soil pores. This decreased water and air uptake may impede plant growth into the soil 
[89]. Additionally, plants may find getting nutrients from sodic soils challenging due to their high sodium level [94]. It is very 
encouraging that the study area is dominated by low to high-risk soil sodicity. This means that the area is generally suitable for crop 
production [30,95]. However, there is a need to manage and follow up on the status of the soil properties to ensure that the area 
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Fig. 4. This figure shows the study area’s intensity and spatial distribution map of exchangeable bases (Na, K, Ca, and Mg). Where (G) Lante, (H) 
Abulo, (I) Ganta Kanchama, and (J) Zeyise Elgo sampling sites, respectively, in the study area. 
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remains favorable for crop growth. Here are some specific things that can be done to manage and follow up on the status of soil 
properties in the study area: monitor soil sodicity levels, maintain soil organic matter levels, use irrigation water that is low in sodium, 
and manage irrigation practices carefully. It is also important to select crops that are tolerant of soil sodicity [47,96–98]. 

3.3.4. Mapping the spaial distribution of exchangeable sodium 
Fig. 4 depicts the distribution pattern of exchangeable sodium values. There is a noticeable variation in the exchangeable sodium 

value distribution within the research area. There was an important variation in soil exchageable sodium in different areas of the 
research region, according to the spatial interpolation result (Fig. 4). As per [55], the spatial interpolation result (Fig. 4) revealed that 
exchangeable sodium with a high rate dominates the area. The Omo Lante(Fig. 3), Abulo, Ganta Kanchama, and Zeise Elgo sampling 
sites have very high exchangeable sodium amounts in terms of area, with classifications of 553.56ha (98.9 %), 204.37ha (46.77 %), 
621.99ha (99.99 %), and 426ha (99.76 %); the exchangeable sodium amount of the Lante sampling site, on the other hand, was rated 
as medium by Refs. [54,55] (Table 3 and Fig. 4). It is evident that the research area’s soil exchangeable sodium varies significantly, 
with much of it having very high levels of exchangeable sodium. This is probably caused by a number of factors, such as land use, soil 
type, and climate [99,100]. There are several detrimental effects that high exchangeable sodium levels may have on soil health and 
plant growth. Waterlogging and root rot can result from exchangeable sodium’s potential to decrease soil permeability and aeration 
[101,102]. Additionally, it may make nutrient loss and soil erosion more likely. To make sure that the management strategies work, it’s 
critical to periodically monitor the soil’s Na level [103–105]. 

3.3.5. Mapping the spaial distribution of exchangeable calcium 
There was a slight variation in soil exchangeable calcium in different areas of the research region, according to the spatial 

interpolation result (Fig. 3). The results of the investigation show that, overall, the soil exchangeable calcium in the study area is very 
high. The Ganta Kancham sampling site, on the other hand, was rated by Ref. [55] to range between low and very high. According to 
Refs. [54,55], the Omo Lante (Fig. 3), Lante, Abulo, Ganta Kanchama, and Zeise Elgo sampling sites have very high exchangeable 
calcium amounts in terms of area, about 559.32ha (99.9 %), 249.52ha (99.37 %), 410.51ha (93.94 %), 432.77ha (69.58 %), and 426.5 
(99.99 %) respectively(Table 3 and Fig. 4). The findings suggest that the Ganta Kancham sampling site should be amended with 
calcium-rich amendment materials, like gypsum and organic materials, to increase the availability of calcium, since according to Refs. 
[106,107], calcium is an essential nutrient for plant growth and development. However, the findings also note that the exchangeable 
calcium amount is generally sufficient for crop production if the exchangeable sodium is managed regularly. Exchangeable sodium is a 
harmful ion that can displace calcium from the soil exchange complex, making it unavailable to plants [108–110]. Therefore, it is 
essential to monitor the soil’s exchangeable sodium levels and apply appropriate management practices to reduce sodium levels, such 
as leaching and gypsum. This will help ensure the soil has sufficient calcium for crop production [111–113]. 

3.3.6. Mapping the spaial distribution of exchangeable magnesium 
There was a variation in soil exchageable magnesium in different areas of the research region, according to the spatial interpolation 

result (Fig. 4). The findings of the study indicates that the soil exchangeable magnesium in the study area is generally very high, with 
the exception of the Abulo sampling site which was rated medium to very high according to the rating of [55]. The Omo Lante (Fig. 3), 
Lante, Abulo, Ganta Kanchama, and Zeise Elgo sampling sites have very high exchangeable calcium amounts in terms of area, with 
classifications of 543.96ha (97.2 %), 250.02ha(99.58 %), 304.3ha(69.63 %), 609.73ha (98.01 %), and 426.53 (99.98 % respectively 
according to Refs. [54,55] (Table 3 and Fig. 4). The research region exhibits high levels of soil exchangeable magnesium, with all sites 
except Abulo sampling site rated as medium to very high. These factors, including divalent cations like magnesium and calcium, are 
essential for plant growth [114,115]. This allows them to bind to negatively charged clay particles in the soil [116,117]. The com
bination of high soil pH, limited rainfall, and parent material rich in calcium is probably what causes the raised calcium levels [118]. 
The similar trends in distributions, interpolations, and ratings of these nutrients suggest that similar factors control these nutrients, 
aiding farmers and land managers in better soil fertility and crop production [119,120]. 

3.3.7. Mapping the spaial distribution of exchangeable potasium 
Fig. 4 shows the soil exchangeable potassium map generated by interpolating the point data result. Variation in soil exchangeable 

potassium in various parts of the research area, as indicated by the area computed based on the projected map. Generally, the study 
area’s exchangeable potassium values were rated in the range of optimum to very high. About 504.06 ha (90.05 %), 185.41 ha (73.85 
%), 301.08 ha (68.9 %), and 429.7ha (69.07) of the studied soils were rated optimum exchangeable potassium (0.5–1.5 cmol(+)/kg) 
amount and very high (>2.3 cmol(+)/kg) for Omo Lante (Fig. 3), Lante, Abulo, and Ganta Kanchama sites respectively, while for 
Zeyise Elgo site 230 ha (53.86 %) area had exchangeable potassium values between 1.5 and 2.3 cmol(+)/kg, was rated high according 
to Refs. [54,55] (Table 3 and Fig. 4). The parent material that the soils in the study area formed is probably what causes the raised 
potassium levels there. The Rift Valley is a volcanically active location, and the fallen volcanic ash contains a lot of potassium. 
Moreover, the Rift Valley’s typically alkaline soils help to better retain potassium [10,121]. Potassium is required for photosynthesis, 
disease resistance, and fruit production. Among the crops that respond well to potassium are sweet potatoes, potatoes, and bananas 
[122,123]. The overall results of the study indicate that the high potassium levels in the soils of the Abaya and Chamo Lakes in the 
South Ethiopian Rift Valley seem to make them generally suitable for crop growth [13,82]. It is important to keep in mind that a 
number of variables, such as soil pH, organic matter content, and nutrient availability, influence crop growth. Farmers in the research 
area should test their soil to apply fertilizers based on the precise nutritional requirements of their crops [124,125]. 
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3.4. Mapping the spatial distribution of salt-affected areas 

The distribution of salt-affected soil in the studied area showed spatially heterogeneous patterns throughout the studied area. The 
classified salt-affected soils by Ref. [44] revealed that the studied area is classified as neutral (non-saline non-sodic), saline, 
saline-sodic, and sodic. Results showed that 558.01ha (99.71 %), 419.4ha (96 %), and 420ha (98.36 %) of Omo Lante site, Abulo, 
Zeyise Elgo site soil of the study area were found to be non-saline non-sodic. While 228.71ha (99.98 %) and 352.69ha (56.65 %) of the 
Lante site and Ganta Kanchama studied areas were found to be saline-sodic soils, respectively. The Ganta Kanchama site of 249.51ha 
(40.1 %) was sodic soil (Table 4 and Fig. 5). From all sampling sites, the Ganta Kanchama site was found to be affected severely, 
recording 602.96ha (97.54 %) (Table 4 and Fig. 5). The Ganta Kancham site had heavy clay soil texture, high temperature and shallow 
ground water table which can facilitate the soil salinity and sodicity formation in the study area [13]. Similarly, shallow groundwater 
depth has a higher influence on soil salinity rise and a higher depth of groundwater level has a lower influence on soil salinization. A 
shallow ground water table leads to high capillary movement of water and increases the risk of salinization [19,126]. Due to capillary 
action, the salts in the soil are carried by soil moisture and contribute to the production of salty and sodic soil when the water table is 
near the soil’s surface and the rate of evaporation is high [127,128]. The result indicates that the type of salt 1416.76ha (62.28 %), 
593.57ha (26.09 %), 250.15ha (10.99 %), and 14.16ha (0.63) were categorized according to Ref. [44] to non-saline non-sodic, 
saline-sodic, sodic and saline respectively. Thus, non-saline, non-sodic soils take the most significant part of the total 2274.64 ha 
studied area (Table 4 and Fig. 5). 

3.5. Salt-affected soil type and distribution with respect to land form 

As indicated in Fig. 5 sodic and saline soils area laid on a relatively flat area in <0–5% in deep red and light red, respectively. Saline 
soils also found in the slope range 1–2% and slope range 0.5–1% in orange and deep yellow color respectively as show in Fig. 5. Most 
non-saline non-sodic soils was found the slope <2 % as showed in the figure with different colors. The result indicates almost all the 
salt-affected area was situated in relatively lower slope areas exhibiting the flat to the almost flat slope (0–2%) (Fig. 5). Salt-affected 
areas dominantly cover the flat terrain of the studied area around Abaya and Chamo Lakes South Ethiopia Rift Valley [72,82]. During 
the high rainy season, the runoff collected from the surrounding elevated and steep topography landform of Gamo highlands area and 
flooded the flat terrains of around the Abaya and Chamo Lakes [129,130]. These areas developed on almost flat to flat landforms 
(0–2%) and sometimes Sile, Elgo, Hare, Baso, and Kulfo Rivers overflowed and flooded the area during the high rainy season. It is 
prone to flooding during the rainy season. The result suggested that landform in the study area may influence the pattern and 
magnitude of spatial variability in salinity and sodicity of the study area. The lower elevation areas were very susceptible to soil 
salinization, whereas the higher had the least influence on the process [131,132]. Excessive evaporation and low-lying topography 
could be some of the factors responsible for the rising of soil salinity and sodicity at the lower elevations [133]. This is probably 
because if the land had high fine particles with poor drainage it allows soluble salts within the irrigation waters to accumulate in soil 
profiles and increase the salt concentration on the soil surface and then, evaporation selectively removes the waters and leaves soluble 
salts on the soil [134,135]. The result is supported by the findings of [19] that their study area with low laying land form and area with 
shallow water table are greatly affected by salinity. Similarly low-lying topography and poor vegetation cover greatly enhanced the 
salinization [136,137]. [19] also confirmed that salt accumulation is more prevalent in low-lying landforms with relatively low el
evations than in relatively steep landform areas. 

3.6. Recommended reclamation strategies of the studied agricultural salt-affected soils 

It is important to note that the recommendations for soil remediation vary depending on the site’s specific conditions, including the 

Table 4 
Salt-affected soils type of salt class and areas concerning sampling sites.  

Sampling Sites Salt-affected soils type of salt class and area 

Omo Lante Type of salt class SSO S NSNSO – Total area  
Area(ha) 0.62 1.02 558.01 – 559.65  
Area (%) 0.11 0.18 99.71 – 100 

Lante Type of salt class NSNSO SO S SSO Total area  
Area (ha) 0.02 0.01 0.01 228.77 228.81  
Area (%) 0.01 0 0 99.98 100 

Abulo Type of salt class SO S NSNSO SSO Total area  
Area (ha) 0.2 10.78 419.41 6.5 436.9  
Area (%) 0.05 2.47 96 1.49 100 

G/Kanchama Type of salt class S SSO SO NSNSO Total area  
Area (ha) 0.76 352.69 249.51 19.32 622.28  
Area (%) 0.12 56.68 40.1 3.11 100 

Z/Elgo Type of salt class S SSO NSNSO SO Total area  
Area(ha) 1.59 4.99 420 0.43 427.01  
Area (%) 0.37 1.17 98.36 0.1 100 

Where: S= Saline, SO = Sodic, SSO= Saline Sodic, NSNSO = Non-saline non-sodic. 
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type and severity of salt-affectedness, the availability of water resources, and the cost of different remediation options [138–140]. In 
general, leaching with irrigation water of high quality removes salts from the soil effectively. However, this can be expensive and 
time-consuming, especially in areas with limited water resources [141–143]. Amendments with organic matter, such as compost or 
manure, chemical amendments (gypsum), and phytoremediation can also help improve soil structure and drainage, reducing salt 
accumulation. The Omo Lante, Abulo, and Zyise Elgo sites recommend leaching with good-quality irrigation water. In contrast, the 
Lante and Ganta Kanchama sites suggest amendment with organic matter and chemicals (gypsum) and recommend leaching with 
good-quality irrigation water (Fig. 6). Farmers should consult with soil science experts for a specific remediation plan. Additional tips 
include drip irrigation, planting salt-tolerant crops, avoiding over-fertilization, and monitoring soil salinity levels. 

4. Conclusion 

The major land degradation mechanisms and agricultural productivity reduction have been recognized as soil sodication and 
salinization. Alkaline soil reactions dominated the study area. Soils were generally categorized as free of excess salt, having no adverse 
effect on the growth and productivity of most crops. The spatial interpolation result in exchangeable sodium percentage (ESP) sug
gested that the area is dominated by low to high-risk soil sodicity and a noticeable variation in the exchangeable sodium value dis
tribution within the research area and overwhelmed with high rates. The current study reveals a wide range of spatial heterogeneity in 
terms of types and severity among different salt-affected soil classes, implying that site-specific reclamation measures are required to 
address the studied area’s current salinity and sodicity problems. The study area should be prevented, monitored, and implemented by 
using appropriate salt-affected soil reclamation measures to sustain soil productivity in the studied area. Generally, amendments with 
organic matter, such as compost or manure, chemical amendments (gypsum), and phytoremediation can also help improve soil 
structure and drainage, reducing salt accumulation. It is advised that soluble salts be leached using high-quality irrigation water on the 
Omo Lante, Abulo, and Zyise Elgo sites. Meanwhile, the Lante and Ganta Kanchama sites advocate amending salinity and sodicity with 
organic matter and chemicals (gypsum) and leaching high-quality irrigation water. Farmers must consult a soil science expert to 
develop an appropriate reclamation strategy. 

Fig. 5. This figure displays the salt-affected soil type and spatial distribution and salt-affected soil versus landform (slope) concerning all sampling 
sites of the study area, respectively. Where (K) Salt-affected soil type represented each sampling site’s salt-affected soil type, (L) Salt-affected soil 
type vs. slope represented the salt-affected soil type and distribution concerning landform. 
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