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Abstract

The established approach to unsupervised protein contact prediction estimates coevolving 

positions using undirected graphical models. This approach trains a Potts model on a Multiple 

Sequence Alignment. Increasingly large Transformers are being pretrained on unlabeled, 

unaligned protein sequence databases and showing competitive performance on protein contact 

prediction. We argue that attention is a principled model of protein interactions, grounded in real 

properties of protein family data. We introduce an energy-based attention layer, factored attention, 

which, in a certain limit, recovers a Potts model, and use it to contrast Potts and Transformers. We 

show that the Transformer leverages hierarchical signal in protein family databases not captured 

by single-layer models. This raises the exciting possibility for the development of powerful 

structured models of protein family databases.
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1. Introduction

Inferring protein structure from sequence is a longstanding problem in computational 

biochemistry. Potts models, a particular kind of Markov Random Field (MRF), are the 

predominant unsupervised method for modeling interactions between amino acids. Potts 
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models are trained to maximize pseudolikelihood on alignments of evolutionarily related 

proteins.1–3 Features derived from Potts models were the main drivers of improved 

performance at the CASP11 competition.4 Potts models were subsequently used as input 

features for top performing supervised neural network models in CASP13.5–7

Inspired by the success of BERT,8 GPT9 and related unsupervised models in NLP, 

a line of work has emerged that learns features of proteins through self-supervised 

pretraining.10–14 This new approach trains Transformer15 models on large datasets of protein 

sequences. Pretrained model performance raises questions about the importance of data and 

model scale,11,16 whether neural features compete with evolutionary features extracted by 

established bioinformatic methods,12 and the benefits of transfer learning.17–19

In CASP14, Alphafold2 achieved breakthrough performance by replacing the Potts model 

with an attention-based model that directly used the MSA as input.20 This approach was 

adapted subsequently in RoseTTAFold.21 The performance of these methods established 

attention as state-of-the-art for extracting features from MSAs. This raises a natural question 

of how Potts models and attention mechanisms are related.

In this paper, we investigate the ways in which attention-based models and Potts models 

trained on alignments can learn meaningful interactions in biological sequence data. To do 

so, we introduce a simplified energy-based attention model trained on alignments, factored 
attention, which interpolates between the standard attention mechanism and Potts models. 

We show that factored attention can successfully share parameters across positions within a 

family or share amino acid features across hundreds of families.

2. Background

Proteins are polymers composed of amino acids and are commonly represented as strings. 

Along with this 1D sequence representation, each protein folds into a 3D physical structure. 

Physical distance between positions in 3D is often a much better indicator of functional 

interaction than proximity in sequence. One representation of physical distance is a contact 
map C, a symmetric matrix in which entry Cij = 1 if the beta carbonsa of i and j are within 

8Å of one another, and 0 otherwise.

Multiple Sequence Alignments.

To understand structure and function of a protein sequence, one typically assembles a 

set of its evolutionary relatives and looks for patterns within the set. A set of related 

sequences is referred to as a protein family, commonly represented by a Multiple Sequence 

Alignment (MSA). Gaps in aligned sequences correspond to insertions from an alignment 

algorithm,22,23 ensuring that positions with similar structure and function line up for all 

members of the family. After aligning, sequence position carries significant evolutionary, 

structural, and functional information.

aIn the case of glycine, the alpha carbon is used.
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Coevolutionary Analysis of Protein Families.

The observation that statistical patterns in MSAs can be used to predict couplings has been 

widely used to infer structure and function from protein families.24–27

3. Methods

To explore how attention and Potts models learn interactions in protein sequence data, we 

compare a number of unsupervised methods which learn contacts with sequence-modeling 

objectives. Many of these methods are based on the formalism of Markov Random Fields 

(MRFs). We do not extend our analysis to supervised contact prediction models which take 

MRF features as input, as these are outside the scope of this work.

Throughout this section, x = x1, …, xL  is a sequence of length L from an alphabet of size 

A. This sequence is part of an MSA of length L with N total sequences. Recall that a 

fully-connected Pairwise MRF over p variables X1,...,Xp specifies a distribution

pθ x1, …, xp = 1
Z exp ∑

i < j
Eθ xi, xj , (1)

where Z is the partition function and Eθ xi, xj  is an arbitrary function of i, j, xi and xj. For 

all models below, we can introduce an explicit functional Eθ(xi) to capture the marginal 

distribution of Xi. When introduced, we parametrize the marginal with Eθ xi = bi, xi for 

b ∈ ℝL × A.

3.1. Potts Models

A Potts model is a fully-connected pairwise MRF with L variables, each representing a 

position in the MSA. An edge (i, j) is parametrized with a matrix W ij ∈ ℝA × A. These 

matrices are organized into an order-4 tensor which form the parameters of a Potts model. 

Note that W ij = W ji. The energy functional of a Potts model is given through lookups, 

namely

Eθ xi, xj = W ij xi, xj . (2)

3.2. Factored Attention

Factored attention has two advantages over Potts for modeling protein families: it shares a 

pool of amino acid feature matrices across all positions and it estimates O(L) parameters 

instead of O L2 .

Sharing amino acid features.—Many contacts in a protein are driven by similar 

interactions between amino acids, such as many types of weakly polar interactions.28,29 

If two pairs of positions (i, j) and (l, m) are both in contact due to the same interaction, a 

Potts model must estimate completely separate amino acid features Wij and Wlm. In order to 

share amino acid features, we want to compute all energies from one pool of A × A feature 
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matrices. The simplest way to accomplish this is by associating an L × L matrix A to every 

A × A feature matrix WV. For H such pairs (A, WV), we could introduce a factorized MRF:

Eθ xi, xj = ∑
ℎ = 1

H
symm softmax Aℎ

ijW V
ℎ xi, xj . (3)

A row-wise softmax is taken to encourage sparse interactions and aid in normalization. This 

model allows the pairs (i, j) and (l, m) to reuse a single feature W V
ℎ , assuming Aij

ℎ  and Alm
ℎ

are both large.

Scaling linearly in length.—Both Potts and the factorized model in Equation 3 have 

O L2  parameters. However, contacts are observed to grow linearly over the wide range of 

protein structures currently available.30,31 Given that the number of interactions we wish 

to estimate grows linearly in length, the quadratic scaling of these models can be greatly 

improved. One way to fix this is by introducing the factorization A = W QW K
T , where 

W Q, W K ∈ ℝL × d. We use the subscripts Q, K, and V in analogy with the “Query”, “Key”, 

and “Value” nomenclature from the attention literature.15 As before, we employ a row-wise 

softmax for sparsity and normalization. Combining feature sharing with linear length scaling 

leads to factored attention, defined in Equation 4.

Like Potts, factored attention is a fully-connected pairwise MRF with L variables. The 

parameters of this model consist of H triples (WQ, WK, WV), where W Q, W K ∈ ℝL × d; 

W V ∈ ℝA × A; and d is a hyperparameter. Each such triple is called a head and d is the head 

size. Unlike a Potts model, the parameters for each edge (i, j) are tied through the use of 

heads. The energy functional is

Eθ xi, xj = ∑
ℎ = 1

H
symm softmax W Q

ℎ W K
ℎT

ijW V
ℎ xi, xj , (4)

where symm (M) = M + MT /2 ensures the positional interactions are symmetric.

Adding sequence-dependent interactions leads to standard attention, see Appendix A.1.

3.3. Single-layer attention

Our single-layer attention model consists of a single Transformer encoder layer: an 

attention layer followed by a dense layer, with layer normalization32 to aid in optimization. 

Transformer implementations typically use a sine/cosine positional encoding15 or learned 

Gaussian positional encoding,33 rather than the one-hot positional encoding used in our 

single-layer models.

Self-Supervised Losses.—Given an MSA, many standard methods estimate Potts model 

parameters through pseudolikelihood maximization.2,31 On the other hand, BERT-like 

attention-based models are typically trained with variants of masked language modeling.8 

Pseudolikelihood is challenging to compute efficiently for generic models, unlike the 
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masked language modeling loss. Both of these losses require computing conditionals of 

the form pθ xi ∣ x ∖ M , where M is a subset of {1,...,L} containing i. The losses ℒPL and 

ℒMLM for pseudolikelihood and masked language modeling, respectively, are

ℒPL(θ; x) = ∑
i = 1

L
logpθ xi ∣ x ∖ i , ℒMLM(θ; x, M) = ∑

i ∈ M
logpθ xi ∣ x ∖ M .

Regularization for Potts and factored attention are both based on MRF edge parameters, 

while single-layer attention is penalized using weight decay. More details can be found in 

Appendix A.2.

3.4. Pretraining on Sequence Databases

All single-layer models are trained on a set of evolutionarily related sequences. Given a 

large database of protein sequences such as UniRef10034 or BFD,35,36 these models cannot 

be trained until significant preprocessing has been done: clustering, dereplication of highly 

related sequences, and alignment to generate an MSA for each cluster. In contrast, the 

self-supervised approach taken by works such as Refs. 10–13 applies BERT-style pretraining 

directly on the database of proteins with minimal preprocessing.

Given a new sequence of interest and a database of sequences, single-family models require 

more steps for inference than pretrained Transformers. To apply a single-family model, one 

must query the database for related sequences, dereplicate the set, align sequences into an 

MSA, then train a model to learn contacts. On the other hand, a Transformer pretrained on 

the database simply computes a forward pass for the sequence of interest and its attention 

activations are used to predict contacts. No explicit querying or aligning is performed.

3.5. Extracting Contacts

Potts.—We follow standard practice and extract a contact map C ∈ ℝL × L from the order-4 

interaction tensor W by setting Cij = W ij
F .

Factored Attention.—Since factored attention is a pairwise MRF, we can compute its 

order-4 interaction tensor W and use the same procedure as Potts. See Equation A.2.

Single-Layer Attention.—To produce contacts for an MSA, we compute attention maps 

from only the positional encoding (without sequence) and average attention maps from all 

heads. Each single-layer attention model is trained on one MSA, so the positional encoding 

is a feature shared by all sequences in the MSA.

ProtBERT-BFD.—We extract contacts from ProtBERT by averaging a subset of attention 

maps for an input sequence x. Of the 16 heads in 30 layers, we selected six whose attention 

maps had the top individual contact precisions over 500 families randomly selected from the 

Yang et al.6 dataset. Predicted contacts for x are given by averaging the L × L attention maps 

from these six heads, then symmetrizing additively. See Appendix Table A1.
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Average Product Correction (APC).—Empirically, Potts models trained with 

Frobenius norm regularization have artifacts in the outputs C. These are removed with 

the Average Product Correction (APC).37 Unless otherwise stated, we apply APC to all 

extracted contacts.

4. Results

Experimental Setup.

We use a set of 748 protein families from Ref. 6 to evaluate all models. For Potts 

models and single attention layers, we train separate models on each individual MSA. 

ProtBERT-BFD is frozen for all experiments. We train models using PyTorch-Lightning38 

and Weights and Biases.39 We extract contacts from each model following the procedure 

outlined in Appendix A.4.2. We compare predicted contact maps C to true contact maps 

C using standard metrics based on precision. A particularly important metric is precision 
at L, where L is the length of the sequence.40,41 This is computed by masking C to only 

consider positions ≥ 6 apart, predicting the top L entries to be contacts, and computing 

precision. We provide more information on data and metrics in Appendix A.4 and on model 

hyperparameters in Appendix A.5.

Attention assumptions reflected in 15,051 protein structures.

We examine all 15,051 structures in the dataset in Ref. 6 for evidence of two key properties 

useful for single-layer attention models: few contacts per residue and the number of contacts 

scaling linearly in length. In Appendix Figure A2, we see that 80% of the 3,747,101 million 

residues in these structures have 4 or fewer contacts. Only 1.8% of residues have more than 

ten contacts. This shows that the row-wise softmax, which encourages each residue to attend 

to only a few other residues per-head, reflects structure found in the data.

Factored attention matches Potts performance on 748 families.

Figure 1 shows a representative sample of good quality contact maps extracted from 

all models. Figure 2a summarizes the performance of all models over the set of 748 

protein families. Factored attention, Potts, and ProtBERT-BFD have comparable overall 

performance, with median precision at L of 0.46, 0.47, and 0.48, respectively. Stratifying by 

number of sequences reveals that ProtBERT-BFD has higher precision on MSAs with fewer 

than 256 sequences. For MSAs with greater than 1024 sequences, Potts, factored attention, 

and ProtBERT-BFD have comparable performance. Single-layer attention is uniformly 

worse over all MSA depths.

Next, we evaluate the impact of sequence length on performance. Figure 2b shows that 

factored attention and Potts achieve similar precision at L over the whole range of family 

lengths, despite factored attention having far fewer parameters for long families. This shows 

that factored attention can successfully leverage sparsity assumptions where they are most 

useful.

Long-range contacts are particularly important for downstream structure-prediction 

algorithms – long-range precision at L/5 is reported in both CASP12 and CASP13.40,41 
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Figure 3 breaks down contact precisions based on position separation into short (6 ≤ sep < 

12), medium (12 ≤ sep < 24), and long (24 ≤ sep). We see that ProtBERT-BFD performs best 

on short-range contacts, with a median increase of 0.068 precision at L/5. On long-range 

contacts, there is no appreciable difference in performance to Potts and factored attention. 

Across the range of contact bins, factored attention and Potts perform very similarly.

Fewer heads can match Potts on L/5 contacts.

We probe the limits of parameter sharing by lowering the number of heads in factored 

attention and evaluating whether fewer heads can be used to precisely estimate contacts. 

Figure 4a shows that 128 heads can be used to estimate L/5 contacts as precisely as Potts 

over the full set of 748 families. In Figure 4b, we see that factored attention with 32 and 64 

heads is still able to achieve reasonable overall performance compared to Potts. 32 and 64 

heads have precision at L/5 at least as high as Potts for 329 and 348 families, respectively. 

If we wish to recover the top L contacts, 256 heads are required to match Potts across all 

families, as seen in Appendix Figure A3. Having more heads than 256 does not further 

increase performance. Intriguingly, Appendix Figure A4 demonstrates that both Spearman 

and Pearson correlation between the order-4 interaction tensors of factored attention and 

Potts improve even when increasing to 512 heads. We do not observe the same trends for 

increasing head size, as shown in Appendix Figure A5

For some families, the number of heads can be reduced even further. We show an example 

on the MSA built for PDB entry 3n2a. In Figure 5a, we see that merely 4 heads are required 

to recover L/5 contacts nearly identical to those recovered by Potts. This shows that shared 

amino acid features and interaction parameters can enable identical performance with a 

300×reduction in parameters. The training dynamics of these models are shown in Figure 

5b. Both factored attention with 256 heads and Potts converge after roughly 100 gradient 

steps, whereas factored attention with 4 heads requires nearly 10,000 steps to converge. In 

Appendix Figure A6, we show that the top L contacts are significantly worse for 4 heads 

compared to Potts.

One set of amino acid features can be used for all families.

Thus far we have only examined models that share parameters within single protein families. 

Since ProtBERT is trained on an entire database, it can leverage feature sharing across 

families to attain greater parameter efficiency and improved performance on small MSAs.

To explore the possibility that attention can share parameters across families, we train 

factored attention using a single set of frozen value matrices. We first train factored attention 

normally on 3n2a with 256 heads, then freeze the learned value matrices for the remaining 

747 families. The query and key parameters are trained normally. In Figure 6, we compare 

the precision at L of factored attention with frozen 3n2a features to that of factored attention 

trained normally. Using a single frozen set of features results in only 6 families seeing 

precision at L decrease by more than 0.05, with a maximum drop of 0.11. This suggests that, 

even for a single-layer model, a single set of value matrices can capture amino acid features 

across functionally and structurally distinct protein families.
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Factored attention reduces total parameters estimated.

For an MSA of length L with alphabet size A, Potts models require 
L
2 A2 parameters. 

Factored attention with H heads and head size d requires H(2Ld+A2) parameters. In Figure 

A7, we plot number of parameters versus length for various values of H and d = 32. Potts 

requires a total of 12 billion parameters to model all 748 families. Factored attention with 

256 heads and head size 32 has 3.2 billion parameters; lowering to 128 heads reduces this 

to 790 million. Half of this reduction comes from 107 families of length greater than 400. 

ProtBERT-BFD is the most efficient, with 420 million parameters.

Impact of training loss function.

The choice of loss function had a uniform but small impact for factored attention and 

Potts. As seen in Figure 7, pseudolikelihood training slightly improves contact accuracy over 

masked language modeling training.

Ablations.

APC has a considerable impact on both Potts and factored attention, creating a median 

increase in precision at L of 0.1 and 0.07, respectively. The effect of APC is negligible 

for single-layer attention and ProtBERT. Addition of the single-site potential bi increases 

performance slightly for attention layers, but not enough to change overall trends. To 

compare to ProtBERT-BFD, we train our single-layer attention models on unaligned families 

and found that performance degrades significantly. See Appendix Figures A8-A10.

5. Discussion

We have shown that single-layer factored attention models and the ProtBert-BFD 

Transformer achieve performance comparable to Potts models on unsupervised contact 

extraction. We have also shown that the assumptions encoded by attention reflect important 

properties of protein families. These results suggest that attention has a natural role in 

protein representation learning, without analogy to attention’s success in the domain of NLP.

Our results also show that hierarchical signal within and across families can be captured 

by even simple attention models. The MSA Transformer42 explicitly ties weights within 

families to achieve improved results on contact extraction, showing that modeling of 

hierarchical structure is beneficial for larger models trained on entire databases. There have 

been extensive efforts to organize the relationships between protein families and folds, most 

notably the SCOP43 and CATH44 hierarchies. Further leveraging such rich structure will be 

essential to the development of powerful protein representations.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1: 
Predicted contact maps and Precision at L for each model on PDB entry 2BFW. Blue 

indicates a true positive, red indicates a false positive, and grey indicates a false negative.
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Fig. 2: 
Model performance evaluated on MSA depth and reference length. ProtBERT-BFD has 

higher precision on MSAs with fewer than 256 sequences. For larger MSAs, Potts, Factored 

Attention, and ProtBERT-BFD perform comparably. Across a variety of protein lengths, 

Factored Attention performs comparably to Potts with substantially fewer parameters.

Bhattacharya et al. Page 13

Pac Symp Biocomput. Author manuscript; available in PMC 2022 January 11.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 3: 
Contact precision for all models stratified by the range of the interaction, with the same 

color correspondence as in Figure 2a. Potts, Factored Attention, and ProtBERT-BFD 

perform comparably for long and medium-range contacts, while ProtBERT-BFD has slightly 

better precision on short-range contacts.
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Fig. 4: 
Examining impact of number of heads on precision at L/5. Left: Comparing performance of 

Potts and 128 heads over each family shows comparable performance. Right: Precision at 

L/5 drops off slowly until 32 heads, then steeply declines beyond that.
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Fig. 5: 
Factored attention with 4 heads can learn the top L/5 contacts on PDB 3n2a.
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Fig. 6: 
Precision at L comparison, which illustrates that a single set of frozen value matrices can be 

used for all families.
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Fig. 7: 
Effect of loss on precision at L over many families. Pseudolikelihood has a uniform but 

small benefit over masked language modeling for both models.
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