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Abstract: Structure-based drug discovery (SBDD) is becoming an essential tool in assisting fast and cost-efficient lead 
discovery and optimization. The application of rational, structure-based drug design is proven to be more efficient than the 
traditional way of drug discovery since it aims to understand the molecular basis of a disease and utilizes the knowledge 
of the three-dimensional structure of the biological target in the process. In this review, we focus on the principles and ap-
plications of Virtual Screening (VS) within the context of SBDD and examine different procedures ranging from the ini-
tial stages of the process that include receptor and library pre-processing, to docking, scoring and post-processing of top-
scoring hits. Recent improvements in structure-based virtual screening (SBVS) efficiency through ensemble docking, in-
duced fit and consensus docking are also discussed. The review highlights advances in the field within the framework of 
several success studies that have led to nM inhibition directly from VS and provides recent trends in library design as well 
as discusses limitations of the method. Applications of SBVS in the design of substrates for engineered proteins that en-
able the discovery of new metabolic and signal transduction pathways and the design of inhibitors of multifunctional pro-
teins are also reviewed. Finally, we contribute two promising VS protocols recently developed by us that aim to increase 
inhibitor selectivity. In the first protocol, we describe the discovery of micromolar inhibitors through SBVS designed to 
inhibit the mutant H1047R PI3K  kinase. Second, we discuss a strategy for the identification of selective binders for the 
RXR  nuclear receptor. In this protocol, a set of target structures is constructed for ensemble docking based on binding 
site shape characterization and clustering, aiming to enhance the hit rate of selective inhibitors for the desired protein tar-
get through the SBVS process. 

Keywords: Computer-aided drug design, docking and scoring, ensemble docking, lead optimization, library design, PI3K , 
RXR , virtual screening. 

1. INTRODUCTION 

The identification of lead compounds showing pharma-
cological activity against a biological target and the progres-
sive optimization of the pharmacological properties and po-
tency of these compounds are the focal points of early-stage 
drug discovery. To this end, the pharmaceutical industry has 
adopted the experimental screening of large libraries of 
chemicals against a therapeutically-relevant target (high-
throughput screening or HTS) as a means to identify new 
lead compounds. Through HTS, active compounds, antibod-
ies or genes, which modulate a particular biomolecular 
pathway, may be identified; these provide starting points for 
drug discovery and for understanding the role of a particular 
biochemical process in biology. Although HTS remains the 
method of choice for drug discovery in the pharma industry, 
the various drawbacks of this method, namely the high cost, 
the time-demanding character of the process as well as the 
uncertainty of the mechanism of action of the active ingredi-
ent have led to the increasing employment of rational, struc-
ture-based drug design (SBDD) with the use of computa-
tional methods. 
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SBDD is nowadays central to the efficient development 
of therapeutic agents and to the understanding of metabolic 
processes. SBDD is proven to be more efficient than the tra-
ditional way of drug discovery since it aims to understand 
the molecular basis of a disease and utilizes the knowledge 
of the three-dimensional (3D) structure of the biological tar-
get in the process. By using computational methods and the 
3D structural information of the protein target, we are now 
able to investigate the underlying molecular interactions in-
volved in ligand-protein binding and thus interpret experi-
mental results in atomic-level detail. The use of computers in 
drug discovery bears the additional advantage of delivering 
new drug candidates more quickly and cost-efficiently.  

State of the art structure-based drug design methods in-
clude virtual screening (VS) and de novo drug design; these 
serve as an efficient, alternative approach to HTS. In virtual 
screening, large libraries of drug-like compounds that are 
commercially available are computationally screened against 
targets of known structure, and those that are predicted to 
bind well are experimentally tested [1, 2]. However, database 
screening does not provide molecules that are structurally 
“novel” as these molecules have been previously synthesized 
by commercial vendors. Existing molecules can only be pat-
ented with a “method of use” patent covering their use for a 
unique application and not their chemical structure. In the de 
novo drug design approach, the 3D structure of the receptor 
is used to design structurally novel molecules that have 
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never been synthesized before using ligand-growing pro-
grams and the intuition of the medicinal chemist [3]. 

Computer-aided drug discovery has recently had impor-
tant successes: new biologically-active compounds have 
been predicted along with their receptor-bound structures 
and in several cases the achieved hit rates (ligands discov-
ered per molecules tested) have been significantly greater 
than with HTS [1, 4-6]. Moreover, while it is rare to deliver 
lead candidates in the nM regime through VS, several reports 
in the recent literature describe the identification of nM leads 
directly from VS; these strategies will be discussed herein 
[7-9]. Therefore, computational methods play a prominent 
role in the drug design and discovery process within the con-
text of pharmaceutical research.  

In this review, we focus on the principles and applica-
tions of VS in the SBDD framework, starting from the initial 
stages of the process that include receptor and library pre-
processing, to docking, scoring, and post-processing of top-
scoring hits. We also highlight several successful studies and 
protocols that led to nM leads, discuss novel applications of 
Structure-Based VS (SBVS) such as substrate identification 
for the discovery of novel metabolic pathways, and provide 
recent trends in library design. Limitations of SBVS are also 
examined. Finally, we present two developed VS protocols 
that aim to enhance inhibitor selectivity for the target protein 
structure. 

2. VIRTUAL SCREENING IN STRUCTURE-BASED 
DRUG DISCOVERY 

The general scheme of a SBVS strategy is shown in Fig. 
(1) [1, 2, 5]. SBVS starts with processing the 3D target struc-
tural information of interest. The target structure may be 
derived from experimental data (X-ray, NMR or neutron 
scattering spectroscopy), homology modeling, or from Mo-
lecular Dynamics (MD) simulations. There are numerous 
fundamental issues that should be examined when consider-
ing a biological target for SBVS; for example, the druggabil-
ity of the receptor, the choice of binding site, the selection of 
the most relevant protein structure, incorporating receptor 
flexibility, suitable assignment of protonation states, and 
consideration of water molecules in a binding site, to name a 
few. In fact, the identification of ligand binding sites on bio-
logical targets is becoming increasingly important. The need 
for novel modulators of protein/gene function has recently 
directed the scientific community to pursue druggable allos-
teric binding pockets. Another consideration for SBVS in-
cludes the careful choice of the compound library to be 
screened in the VS exercise according to the target in ques-
tion, and the preprocessing of libraries in order to assign the 
proper stereochemistry, tautomeric, and protonation states.  

Following library and receptor preparation, each com-
pound in the library is virtually docked into the target bind-
ing site with a docking program. Docking aims to predict the 
ligand-protein complex structure by exploring the conforma-
tional space of the ligands within the binding site of the pro-
tein. A scoring function is then utilized to approximate the 
free energy of binding between the protein and the ligand in 
each docking pose. Docking and scoring produce ranked 
compounds, which are then post-processed by examining 
calculated binding scores, validity of generated pose, unde-

sirable chemical moieties, metabolic liabilities, desired phys-
icochemical properties, lead-likeness, and chemical diver-
sity. Post-processing results in a small number of selected 
compounds, which proceed to experimental assaying [1, 2, 5, 
10]. 
 

  
Fig. (1). Structure-Based Virtual Screening work-flow. 
 
2.1. Protein Preparation Schemes for SBVS 

The success of a SBVS campaign largely depends on rea-
sonable starting structures for both the protein and the 
ligand. A typical PDB structure file consists only of heavy 
atoms (if the input is an X-ray structure) and may contain 
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water molecules, cofactors, activators, ligands, and metal 
ions as well as several protein subunits. Moreover, the struc-
ture has generally no information on bond orders, topologies, 
or formal atomic charges. Terminal amide groups and aspar-
agine residues may be misarranged as X-ray structures can-
not unambiguously distinguish between O and NH2 groups. 
Ionization and tautomeric states are also unassigned in most 
cases, residue side chains or larger loops may be missing 
because of low resolution of a particular protein area, and 
steric clashes may exist. 

To efficiently address the above-mentioned structural is-
sues, several protein preparation schemes have been pro-
posed [5, 11, 12]. The general proposed strategy is to first 
determine the protonation states of the aminoacids in the 
protein using available software. Popular freely available 
software include PROPKA [13], H++ [14], SPORES [15]. 
The next step is to assign hydrogen atoms and optimize pro-
tein hydrogen bonds according to an optimal hydrogen bond 
network. A widely-used software for these tasks is the 
PDB2PQR software [16]. The next steps are assignment of 
partial charges, capping of residues, treating metals, filling in 
missing loops and missing side chains, and minimizing the 
protein structure to relieve steric clashes. In addition, a deci-
sion needs to be made regarding whether water molecules 
will be left in or removed from the binding site. Several 
methods have been developed to tackle this challenging 
problem, such as 3D RISM [17-19], SZMAP [20], JAWS 
[21], WaterMap [18, 22], which are utilized in commercial 
software [23-25]. In case the protein is co-crystallized with 
substrates, cofactors, etc., these ligands must be prepared to 
create 3D geometries, assign proper bond orders, and gener-
ate accessible tautomer and ionization states prior to VS. 
These tasks may be performed within available free software 
packages such as the “Protein Preparation Wizard” of Maes-
tro [26] or scripts that use a variety of different programs to 
prepare a protein structure for SBVS, e.g. WebPDB (see 
Table 1 for a full list of freely-available programs). 

The importance of protein preparation in docking per-
formance has been recently reported [11]. Docking per-
formance is significantly improved when employing a best-
practice preparation scheme over using minimally-prepared 
structures from the PDB structure. In the only systematic 
study available in the literature regarding the influence of 
the protein preparation procedure in the success of a SBVS 
workflow, Sastry et al. have explored each of the steps in-
volved in preparing a system for VS [11]. In their study, a 
large number of parameters in protein preparation is exam-
ined using the Glide validation set of 36 crystal structures 
and 1,000 decoys. Several protocols are considered and 
applied on the Directory of Useful Decoys (DUD) database 
[27, 28], showing that database enrichment is improved 
after proper receptor preparation and that neglecting certain 
steps of the preparation process produces a systematic deg-
radation in enrichments, which may be large for some tar-
gets.  

2.2. Binding Site Identification 

Binding site identification is often an additional prerequi-
site for performing SBVS, when the binding site is not 
known or when new, allosteric modulators of protein func-

tion are sought. Ideally, the target binding site is a pocket, 
typically a concave, having a variety of probable hydrogen 
bond donors and acceptors and hydrophobic characteristics. 
Currently four approaches in the identification of putative 
binding sites exist in the literature: 1) Static approaches, 
where computational solvent mapping with chemical probes 
(small organic molecules) is utilized to identify binding hot 
spots on a 3D structure (from Xray, MD, etc). These ap-
proaches determine the hot spot druggability and provide 
information for drug design. Examples of such an approach 
include SiteMap [29], FTMap [30], Fpocket [31], MDpocket 
[32], QsiteFinder [33], MED-SUMO [34] and SiteHound-
web [35]. Selecting a different chemical probe each time 
may result in the identification of a different type of binding 
site. 2) Dynamic approaches, where the probes and the pro-
tein evolve dynamically in time and more than one probe 
may be used in one simulation. Analysis of these simulations 
provides direct access to interaction free energies between 
the protein and small organic molecules, which can then be 
used to detect binding sites and predict the maximal affinity 
that a drug-like fragment could attain. Programs following 
this approach are MDMix [36], SILCS [37], MixMD [38]. In 
this context, studies that aim to understand ligand binding 
mechanisms using microsecond MD simulations or enhanced 
sampling techniques [39-41] may also be used for revealing 
new binding pockets using small organic molecules as 
probes, although this approach is not computationally-
efficient. 3) In the mixed approach, the detection of ligand 
binding sites is performed with a chemical probe as in the 
static approach and in addition, the putative binding site is 
evaluated in terms of flexibility. Flexibility can be deter-
mined by performing normal mode analysis or by identifying 
flexible residues within the binding site and probing residue 
alternative conformations using a rotamer library. FTFlex, 
which is an extension of the FTMap server, uses the latter 
approach [42]. 4) The last approach uses water as a probe to 
identify putative binding sites on proteins. Approaches fol-
lowing the inhomogeneous solvation theory [43] include 
JAWS [21], WaterMap [22], and WATMD (Novartis), but 
also other methods have been developed such as 3D-RISM 
[17] and SZMAP [20].  

2.3. Compound Database Preparation 

The construction of compound databases is the next im-
portant step in the SBVS process. Databases for SBVS con-
tain drug-like small molecules, often freely available or 
available via purchase or synthesis, which possess desirable 
characteristics such as stability and solubility in aqueous 
media, existence of appropriate functional groups to interact 
with biological targets and absence of toxic and undesirable 
moieties. Several rules have been applied to ensure ‘drug-
likeness’, with the most popular being the “Lipinski Rule of 
Five" [44], which states that drug-like compounds should 
have molecular weight lower than 500, lipophilicity (logP) 
lower than 5, less than five hydrogen bond donors, and less 
than 10 hydrogen bond acceptors. As increasingly more 
compounds break some of these rules and enter the market 
(e.g. natural product drugs as well as 50% of marketed drugs 
do not comply with the “Rule of Five”) [45], attempts to 
improve the predictions of druglikeness have spawned many 
extensions to the Lipinski Rule of Five. Molecules may be
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Table 1.  Free available software and tools for performing a SBVS workflow. 

Program Functionality Link to Download 

PROPKA [13] Determination of protonation states http://propka.ki.ku.dk/ 

H++ [14] Determination of protonation states http://biophysics.cs.vt.edu 

SPORES [15] Determination of protonation states http://www.tcd.uni-konstanz.de/research/spores.php 

Maestro [125] Protein Preparation http://www.schrodinger.com/downloadcenter/ 

PDB2PQR [16] Protein Preparation http://www.poissonboltzmann.org/pdb2pqr/ 

WebPDB Protein Preparation http://reccr.chem.rpi.edu/Software/WebPDB/WebPDB-index.html 

JAWS [21] Prediction of water molecules in binding site http://www.julienmichel.net/lab/ 

SiteHound-web [35] Binding Site Identification http://scbx.mssm.edu/sitehound/sitehound-web/Input.html 

FTMap [30] Binding Site Identification http://ftmap.bu.edu/param/ 

Fpocket [31] Binding Site Identification http://fpocket.sourceforge.net/ 

MDpocket [32] Binding Site Identification http://fpocket.sourceforge.net/ 

QsiteFinder Binding Site Identification http://www.modelling.leeds.ac.uk/qsitefinder/ 

MED-SUMO [34] Binding Site Identification http://www.medit-pharma.com/index.php?page=med-sumo 

MDMix [36] Binding Site Identification http://sourceforge.net/projects/mdmix/ 

FTFlex [42] Binding Site Identification http://ftflex.bu.edu/ 

CLEVER [71] Library Design http://datam.i2r.a-star.edu.sg/clever/ 

e-LEA3D [72] Scaffold Hopping, Library Design, VS http://chemoinfo.ipmc.cnrs.fr/ 

FAF-Drugs2 [59] Compound Filtering http://bioserv.rpbs.univ-paris-diderot.fr/FAF-Drugs/ 

ChemBioServer [58] Compound Filtering, Post-processing of  
docking results http://bioserver-3.bioacademy.gr/Bioserver/ChemBioServer/ 

DISI [67] Ligand Preparation http://wiki.uoft.bkslab.org/index.php/Preparing_the_ligand 

MAPS [66] Ligand Preparation http://scienomics.com/products/molecular-modeling-platform 

Grinter et al. [70] Ligand and Protein Preparation Contact authors 

Autodock [64] Docking, Protein and Ligand Preparation http://autodock.scripps.edu/ 

Drugster [87] Docking, Protein and Ligand Preparation http://www.bioacademy.gr/bioinformatics/drugster/Home.html 

Dock [80] Docking, Protein and Ligand Preparation http://dock.compbio.ucsf.edu/ 

SLIDe [126] Docking http://www.bmb.msu.edu/~kuhn/software/slide/ 

ROSETTA_DOCK [127] Docking http://graylab.jhu.edu/docking/rosetta/ 

CovalentDock [128] Covalent docking http://docking.sce.ntu.edu.sg/ 

Computer-Aided  
Drug-Design Platform using 

PyMOL [129] 
Docking, MD, QSAR http://people.pharmacy.purdue.edu/~mlill/software/pymol_plugins 

For a list of available programs for SBVS: 
http://bip.weizmann.ac.il/toolbox/structure/binding.htm http://bioinformatictools.blogspot.gr/2012/02/in-silico-binding-site-prediction-in.html 
http://www.click2drug.org/directory_StructureBasedLigandDesign.html 
 
considered as drug-like within a range of log P in 0.4 to 
+5.6, molar refractivity from 40 to 130, molecular weight 
from 180 to 500, number of atoms from 20 to 70 (includes 
H-bond donors (e.g.; OH's and NH's) and H-bond acceptors 
(e.g.; N's and O's), polar surface area no greater than 140 Å2, 
and/or fewer than ten rotatable bonds [46]. Moreover, the 
“Rule of Three” is an extension to the Rule of Five specifi-
cally for fragments (molecular weight < 300, logP < 3, num-
ber of hydrogen bond donors and acceptors < 3, number of 

rotatable bonds < 3) [47]. However, in a recent study by 
Klebe and coworkers, it was shown that only four of their 11 
discovered fragments were compliant with the Rule of Three 
[48]. Strict compliance to this rule would have strongly lim-
ited the variety of chemotypes among the fragment hits, in-
dicating that it is advisable to follow these rules with a cer-
tain degree of flexibility, i.e. allow one violation to the rule 
each time [49]. The overly rigid application of strict cut-off 
points may introduce artificial distinctions between similar 
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compounds and runs the risk of missing valuable opportuni-
ties [50]. A more recent rule accounting for the physico-
chemical properties relating to preclinical toxicology out-
comes is the “Pfizer's Rule of 3/75", which is based on the 
values of calculated partition coefficient (ClogP) and topo-
logical polar surface area (TPSA). According to this rule, 
compounds with ClogP lower than 3 and TPSA higher than 
75 are approximately 2.5 times more likely to be safe in in 
vivo assays [51]. The “Jorgensen Rule-of-Three” is another 
widely-followed rule for lead like properties and states that 
the aqueous solubility measured as logS should be greater 
than -5.7, the apparent Caco-2 cell permeability should be 
faster than 22 nm/s, and the number of primary metabolites 
should be less than 7; these limits are based on the properties 
of 90% of 1700 oral drugs [52]. Bickerton et al. have pro-
posed a measure of drug-likeness based on the concept of 
desirability called “the quantitative estimate of drug-
likeness” (QED) [53]. The QED functions rank chemical 
structures by their merit relative to the properties of oral 
drugs. Moreover, QED functions have the additional advan-
tage that they are based on the underlying distribution data of 
drug properties and may identify cases in which a generally 
unfavorable property may be tolerated when the other pa-
rameters are close to ideal. Other metrics of promise include 
ligand efficiency (LE = potency/heavy atom count) and lipo-
philic LE (LLE = potency - cLogP), which is a measure of 
lipophilicity that leads to the observed potency. These met-
rics show how well a molecule engages in receptor interac-
tions; taking these rules into account provides excellent in-
sights for lead optimization [49].  

It should be noted that the majority of commercial com-
pounds found in chemical libraries have a larger molecular 
weight and higher hydrophobicity compared to orally avail-
able drugs. This shift to higher hydrophobicity and lower 
solubility is also reflected in compounds with significant 
biological activity found in the ChEMBL database, indicat-
ing a trend towards larger, more hydrophobic compounds. In 
particular, drugs that have been recently approved were 
found to possess much lower median logP values than those 
previously suggested as optimal [54]. 

It has been demonstrated that docking huge compound 
collections such as PubChem (30M compounds) and Chem-
Spider (26M compounds), in other words ‘blind docking’, 
not only is time-consuming and computationally demanding, 
but also results in redundant possibilities and poses a great 
burden for compound selection. Apart from filtering for 
lead-like properties, one should exclude known toxicophores 
or metabolically liable moieties [55]. Moreover, several 
novel filters have been recently developed, aiming at the 
quality enhancement of database content. The Pan Assay 
Interference Compounds (PAINS) [56] and the ALARM-
NMR [57] filters, contain compounds found to be chemically 
reactive and assay-interfering, appear as frequent hitters, and 
are not identified by toxicophoric filters. Therefore, a com-
bination of filtering for desired pharmacological and adsorp-
tion, distribution, metabolism, excretion, and toxicological 
(ADMET) properties is advisable early in the drug design 
process. To efficiently filter a library of compounds against 
such criteria, several online tools have been developed. 

Chembioserver is a publicly available online application 
specializing in filtering and selection of small molecules 

[58]. The objective of this application is to facilitate com-
pound preparation prior to (or after) VS computations by 
utilizing its many sections, such as (i) basic search, (ii) filter-
ing (steric clashes and toxicity), (iii) advanced filtering based 
on custom chosen physicochemical properties, (iv) clustering 
(according to structure and compound physicochemical 
properties providing representative compounds for each clus-
ter), (v) customized pipeline and (vi) visualization of com-
pound' properties through property graphs and thus, increase 
the efficiency and the quality of compounds that proceed to 
in vitro assaying. The FAF-Drugs2 server is a public tool for 
computationally filtering compounds by considering AD-
MET and physicochemical properties, and identifying key 
functional or undesirable moieties [59]. Moreover, users 
have the opportunity to select filtering thresholds and rules 
among 23 physicochemical and 204 substructure searching 
rules. Last but not least, this tool provides numerous distri-
bution diagrams of the properties of the filtered compounds 
in a web-server version [60]. 

Finally, compound datasets should be preprocessed in 
realistic 3D representations. Therefore, the compound set to 
be used for SBVS should have realistic bond lengths and 
angles as these may not change during docking. Also, it 
must be devoid of accompanying fragments such as 
counter-ions, metals, and solvent molecules, all compounds 
need to have assigned bond order and filled valences, par-
tial charges, an appropriate protonation state at physiologi-
cal pH or at the pH of the interest and proper tautomeric 
states [61, 62]. However, it was shown that consideration 
of all possible tautomers (stable and unstable) yields 
slightly poorer results than including only the most stable 
form in water [63]. Docking programs usually include 
ligand preparation software such as Autodock Tools [64], 
LigPrep within the Schrödinger suite [65], MOE [23] and 
the MAPS platform [66]. Moreover, stand-alone programs 
exist for ligand preparation such as DISI [67], Pipeline pi-
lot [68], or Hyperchem [69]. Grinter et al. have created a 
workflow through custom-made script files for preparing 
large libraries for docking, including scripts for ligand 
preparation, which are offered freely to the academic com-
munity [70]. 

2.4. Library Design 

Although numerous drug-like compound libraries are 
freely available online [1, 5], users may often need to create 
a custom-made library. Libraries may be divided in a) ge-
neric virtual high throughput (vHTS) libraries, which contain 
large sets of compounds, b) diversity-oriented, containing 
highly chemically diverse compounds, c) target-oriented, 
which are designed with a specific target in mind, d) molecu-
lar property diversity libraries, which are designed with spe-
cific molecular property profiles (i.e. solubility, lipophilicity 
etc.), e) natural product libraries. 

Online tools for library design include CLEVER [71] that 
supports chemical library manipulation, combinatorial 
chemical library enumeration using user-specified chemical 
components, chemical format conversion, as well as chemi-
cal compound analysis and filtration with respect to drug-
likeness, lead-likeness, and fragment-likeness based on the 
physicochemical properties computed from the derived 
molecules. Also provided is an integrated property-based 
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graphing component that visually depicts the diversity, cov-
erage and distribution of selected compound collections. 
Another tool for library design is e-LEA3D, which performs 
combinatorial library design that is based on a user-drawn 
scaffold and reactants coming, for example, from a chemical 
supplier [72]. More freely-available as well as commercial 
software packages are listed in Table 2. A review on how to 
design target-focused compound libraries, e.g. for kinases, 
ion channels, GPCRs, protein-protein interfaces can be 
found in Ref. [73]. In another approach, by using a genetic 
algorithm, Lisurek et al. have identified substructures typi-
cally occurring in bioactive compounds using the World 
Drug Index; subsequently available compounds containing 
the selected substructures were collected from vendor librar-
ies [74]. 

In order to build a compound library with a range of pos-
sible replacements for a single substructure, Wirth et al. have 
developed a useful platform for the applicability of Matched 
Molecular Pairs (MMPs) to optimize the binding affinity of a 
small-molecule ligand to a target protein, namely the Swiss-
Bioisostere database [75]. In this scheme, MMPs are defined 
as two molecules, which differ in one particular substituent 
and exhibit different properties. The underlying assumption 
of MMPs is that the difference in properties can be extrapo-
lated to another pair of molecules exhibiting the same substi-
tution pattern. Weber et al. have improved the bridging be-
tween MMPs and structural data by developing the Virtually 
Aligned Matched Molecular Pairs Including Receptor Envi-
ronment (VAMMPIRE) database [76]. In their work, they 

have proposed that the involved atoms in the ligand-protein 
complexes play a critical role in the exchange of the sub-
stituent and therefore in the binding affinity change, provid-
ing the possibility to extrapolate activities from one biologi-
cal system to another. In seek of designing diverse libraries 
to enrich the screening collection, Vainio et al., have con-
structed “Virtual Library”, a virtual automatic system that 
uses validated synthetic protocols and available starting ma-
terials to generates a large number of virtual compound li-
braries [77].  

An informative analysis and novel insights on preparing 
a high-quality database of lead-like compounds for SBVS 
are presented in Ref. [78]. The application of functional 
group, lead-like, PAINS, and Tanimoto similarity exclusion 
filters is discussed resulting in a library of ~350,000 com-
pounds that represent 80% of available leadlike space based 
on vendor information in what is proposed to be the globe’s 
highest quality collection of available screening compounds. 
The article is a nice review of filtering process steps also 
providing detailed information on the filters and pointing out 
several issues as resupply, minimum concentration to be 
tested, etc., which is of practical use to medicinal chemists. 

Constructing libraries with inherent chemical diversity 
such as in Ref. [78] may be desired when investigating 
underexplored targets with few known ligands. However, the 
construction of targeted libraries based on properties of 
known ligands may also be required in order to identify hits 
with improved potency. Xing et al., designed combinatorial 
libraries to search for novel soluble epoxide hydrolase (sEH) 

Table 2.  Free and commercial software packages for library design. 

Software Free Academic License Website 

GLARE [130] Yes http://glare.sourceforge.net/ 

CDK-Taverna [131] Yes http://cdktaverna.wordpress.com/ 

CLEVER [71] Yes http://datam.i2r.a-star.edu.sg/clever/ 

e-LEA3D [72] Yes http://chemoinfo.ipmc.cnrs.fr/ 

SmiLib v2.0 [132] Yes http://gecco.org.chemie.uni-frankfurt.de/smilib/ 

Library synthesizer (Tripod) [133] Yes http://tripod.nih.gov/?p=370 

Swissbioisostere [75] Yes http://www.swissbioisostere.ch/ 

VAMMPIRE [76] Yes http://vammpire.pharmchem.uni-frankfurt.de/#!home 

Virtual Library [77] Yes Contact authors 

Pipeline pilot (Accelrys) [68] No http://www.accelrys.com 

Reactor [134](ChemAxon) No www.chemaxon.com 

OELib library enumeration [135] No http://www.eyesopen.com 

CombiLibMaker and Legion (Tripos) [136] No http://www.tripos.com 

QuaSAR-CombiGen [137] No http://www.chemcomp.com 

ChemOffice CombiChem [138] No http://www.cambridgesoft.com/ 

ICM-Chemist [139] No http://www.molsoft.com 

LUCIA [140] No http://www.eidogen-sertanty.com/ 
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inhibitors based on a benzoxazole template forming con-
served hydrogen bonds with the catalytic machinery of sEH 
[79]. Consequently, screening of these libraries resulted to 
90% hit rate and more than 300 submicromolar sEH inhibi-
tors were finally discovered. 

2.5. Docking & Scoring 

A large number of docking programs have been devel-
oped recently, including AutoDock [64], Dock [80], FlexX 
[81], Glide [82], Gold [83], Surflex [84], ICM [85], Ligand-
Fit [86], Drugster [87], and eHiTS [88] (also reviewed in 
[5]). Docking entails predicting the protein-ligand complex 
structure and is followed by scoring in SBVS in order to 
rank the compounds. Docking programs utilize various 
methods of conformational search in order to explore the 
ligand conformational space; these are categorized as follow-
ing: a) Systematic methods, which place ligands in the pre-
dicted binding site after considering all degrees of freedom, 
b) Random or stochastic torsional searches about rotatable 
bonds, such as Monte Carlo and genetic algorithms to 
“evolve” new low energy conformers, (c) Molecular Dynam-
ics simulation methods and energy minimization for exploring 
the energy landscape of a molecule [reviewed in Ref. 89]. 

In order to rank compounds, docking programs utilize 
scoring functions that aim to estimate the free energy of 
binding of a ligand to a specific target based on a generated 
docked pose after docking different ligands of a database. A 
variety of scoring functions have hitherto been developed 
(reviewed in [1, 5]). Commonly-used scoring functions can 
be categorized as follows: (a) Force field-based functions 
that estimate the binding free energy by summing the 
strength of intermolecular van der Waals, electrostatic inter-
actions and hydrogen bonding between all atoms of the two 
binding partners in the complex. Solvation and entropy con-
tributions are also taken into account. (b) Empirical scoring 
functions that are based on counting the number of various 
types of interactions between the two binding partners, i.e. 
hydrophobic contacts, number of hydrogen bonds and num-
ber of rotatable bonds immobilized in complex formation. 
These functions have proven to be successful for many pro-
tein-ligand complexes. LUDI, FlexX, F-Score, ChemScore 
and Fresno are a few examples of functions that are con-
tained in this group. (c) Knowledge-based functions that use 
statistical observations of intermolecular contacts in recep-
tor-ligand complexes with known structural conformations. 
For instance, some functions of this category are Potential of 
Mean Force (PMF), DrugScore and SMoG (Small Molecule 
Growth). Furthermore, there exist scoring functions that 
combine two or more of the above mentioned scoring func-
tion categories. 

It is commonly accepted that while docking results to 
successful binding pose prediction, scoring usually fails to 
correctly rank different compounds with the difficulty in-
creasing in congeneric series [95, 96]. Hence, identifying 
correctly the right binding pose as the top-ranked one still 
remains a challenge [1]. Addressing the correspondence be-
tween predicted and experimental binding affinities in em-
pirical scoring functions still remains unresolved. Based on 
that critical issue, Zilian et al. have developed a new scoring 
function, SFCscoreRF, with significantly improved perform-

ance in comparison to previously developed SFCscore func-
tions, by using SFCscore descriptors and a PDBbind set of 
1005 complexes as a training set in combination with ran-
dom forest for regression [97]. HYDE is another novel scor-
ing function for protein-ligand complexes which is based on 
HYdration and DEsolvation terms. It consistently describes 
hydrogen bonds, the hydrophobic effect and desolvation. 
Recently, Schneider et al. have validated the HYDE scoring 
function through large-scale docking experiments, which 
resulted to successful prediction of the correct binding mode 
in 93% of complexes when checked with the Astex diverse 
set [98]. Alternatively, Ravindranathan et al. have defined a 
physics based scoring function and more precisely, a vari-
able dielectric model based on residue types for better de-
scription of protein–ligand electrostatics in MM-GBSA scor-
ing, which results in a higher correlation with affinity data 
[99]. Certainly, while much progress has been made in de-
livering more accurate scoring functions, further improve-
ments in this direction are desirable.  

The assessment of the efficiency and accuracy of scoring 
functions has been addressed in a number of studies. Cross et 
al., have assessed six molecular docking programs (DOCK, 
FlexX, GLIDE, ICM, PhDOCK, and Surflex) in order to 
evaluate docking pose, scoring and thus VS accuracy [90]. 
The results revealed that ICM, GLIDE, and Surflex repro-
duced accurately the X-ray poses, while GLIDE and Surflex 
showed superior receiver operating characteristic (ROC) 
areas under the curve (AUC) and ROC enrichments after 
performing a VS exercise on the 40 protein targets in the 
Directory of Useful Decoys (DUD). McGann et al. have 
compared the performance of FRED and HYBRID docking 
programs on known datasets, where the second utilizes a 
modified version of FRED that uses both ligand- and struc-
ture-based information for docking [91]. The results have 
shown that HYBRID scoring function increases identified 
actives. Especially, when using multiple crystal structures 
considering protein flexibility, HYBRID efficiency increases 
even more without increasing significantly the docking time 
(~ 15 %). Liebeschuetz et al. have tested the four GOLD 
scoring functions in docking and scoring computations and 
demonstrated that the ChemPLP scoring function comes first 
for both pose and affinity prediction [92].  

In an attempt to improve docking and scoring perform-
ance, Spitzer et al. used Surflex-Dock to incorporate protein 
flexibility in the docking process. Ligand-protein optimiza-
tion before VS, resulted in large differences in the VS per-
formance, indicating that ligand re-docking for pose predic-
tion assessment may have limitations [93]. Docking proto-
cols, which incorporate protein flexibility, performed better 
in terms of pose prediction. Applying various VS protocols 
(docking, 2D molecular similarity, and 3D molecular simi-
larity) resulted in achieving better hit rates. Neves et al. have 
investigated the ICM flexible docking and scoring bench-
marks for 85 co-crystal structures of the modified Astex data 
set and derived significant improvements, compared to sin-
gle rigid docking [94]. Reparsky et al. also have obtained 
enrichment results for WScore, a new scoring function and 
sampling methodology incorporating WaterMap results into 
Glide screening [27]. In this study, WScore results show 
early enrichment and outerperform the DUD best-practices 
Glide SP results. 
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2.6. Improving Pose/Compound Selection After Docking 

(Post-processing) 

A rate-limiting step in SBVS is often the need for a com-
putational chemist expert to post-process compounds that 
result from a VS/docking exercise before selecting the ones 
that will pass to the experimental test phase. The implemen-
tation of the simplified scoring functions and sometimes the 
inadequate sampling of the conformational space for the 
ligand may lead to unrealistic poses, intra-ligand steric 
clashes, twisted amides, E/Z esters, imperfect hydrogen-
bonding network, and poses based on shape complementar-
ity. These poses may result to an unreasonably high score 
and need to be discarded. Therefore, visual inspection of 
thousands of docking poses is normally needed by the me-
dicinal chemist in order to select the appropriate compound 
set for assaying. To this end, significant efforts have been 
dedicated to increase the efficiency and the quality of com-
pound selection [58, 106]. 

In the process of post-processing the results, one may re-
sort to rescoring. To examine the reliability of VS results 
without post-processing, Malmstrom et al. have investigated 
a set of known binders and non-binders of L99A T4 
lysozyme using both free energy of binding (FEB) rescoring 
and other empirical docking scores and concluded that FEB 
rescoring may assist lead identification resulting from a 
SBVS exercise [107]. Ding et al. have introduced a direc-
tional approach, MIECs (molecular interaction energy com-
ponents), which successfully predicted the binding affinities 
of protein-ligand complexes or distinguished binding from 
non-binding ligands [108]. This methodology was extended 
to SBVS. HIV-1 protease was used as a model system to 
assess the performance of the method on ranking docking 
poses and docked ligands and a support vector machine 
(SVM) was trained in evaluating the energetic and geometric 
characteristics that discriminate binding ligands from the 
non-binding ones. As previously-mentioned, several tools 
exist for the pre-processing of ligand libraries prior to the VS 
procedure. These tools may be also used for post-processing 
of SBVS results are readily available. The ChemBioServer 
for example, uses vdW filtering to remove compounds with 
steric clashes. Poses that are far from the energy minimum 
are unlikely to be adopted in nature and hence, should be 
discarded. Compounds that pass vdW filtering may be then 
subjected to more stringent physicochemical property filter-
ing compared to the initial compound selection for SBVS. 
Subsequently, hierarchical clustering may be performed 
in order to group compounds with similar struc-
tures/physicochemical properties and derive subsets with 
maximal chemical diversity [58]. 

2.7. Improvements in SBVS Efficiency 

2.7.1. Ensemble Docking (ED) 

Selecting the ideal crystal structure of a receptor target is 
the first step in the SBVS process. Unfortunately, crystal 
structures provide a single conformation of the protein, 
which is influenced by the crystallization conditions, and do 
not include any information on protein dynamics. Further-
more, crystal structures are highly affected by ligand bind-
ing, which leads to conformational changes in both the pro-
tein and the ligand. Proteins can exhibit induced fit effects 

upon binding of a ligand, in which the protein conformation 
changes significantly. Hence, although crystal structures are 
a preferable starting point for SBDD, in some cases they 
provide misleading information. Therefore, many efforts 
have been made to include receptor flexibility in docking 
programs, as it confers a more realistic depiction of the mod-
eled system [100]. In order to avoid biasing towards one 
protein conformation and implicitly including protein flexi-
bility, one may use an ensemble of representative structures 
to dock candidate ligands. ED comprises docking a single 
ligand library against multiple rigid receptor conformations, 
contrary to the standard single rigid receptor docking meth-
ods. In this way, ED mimics the realistic structural variation 
of the protein-target [101].  

Currently, a huge amount of protein structures that can be 
used as biological targets for specific diseases is available. 
Therefore, the challenge in SBVS has changed from “Is there 
a promising structure available?” to “How do I appropriately 
select a single or multiple protein structures for my screening 
exercise?”. Consequently, standardized protocols that spe-
cialize in the selection of suitable conformations for ensem-
ble-based virtual screening and finally result to potent leads 
of the target are needed. For instance, Rueda et al. conclude 
that the largest binding sites in X-ray structures lead to the 
highest enrichments [102]. Osguthorpe et al. apply a shape-
based characterization of the binding site using molecular 
dynamics (MD) to construct ensembles with structural diver-
sity [103]. The ensembles for the performance of ED may be 
selected through X-ray crystallography, NMR spectroscopy 
or a combination of both and through computational tech-
niques (molecular dynamics simulations, homology model-
ing) [100]. 

There are certain advantages that distinguish ED among 
other flexible-receptor docking methods, i.e. the capability of 
accounting for any type of protein motion. The major disad-
vantage of ED is the computational effort, which scales line-
arly with the number of receptor conformations in the en-
semble. As a result, the ED calculations have a significantly 
longer duration comparing to standard docking protocols. 
Moreover, possible inaccurate results being output from ED 
computations may be due to the possible imperfections in 
scoring functions, which may lead to inaccurate predictions 
of certain protein-ligand interactions [101, 103]. 
2.7.2. Consensus Induced-Fit Docking 

Consensus Induced Fit Docking (cIFD) is an alternative 
docking approach, which allows the protein binding site to 
adapt to multiple ligands during SBVS. This methodology 
has been practiced by Kalid et al., firstly by validating the 
cIFD protocol on COX-2, the estrogen receptor, and HIV 
reverse transcriptase, which were previously shown to be 
challenging for docking programs and then by proving the 
utility of cIFD in discovering novel irreversible Crm1 inhibi-
tors [104]. Houston et al. have introduced Consensus Dock-
ing for improving the probability of identifying accurately 
docked poses [105]. In cIFD, a similar approach to consen-
sus scoring schemes is applied; this methodology combines 
information about predicted binding modes rather than pre-
dicted binding affinities. It results in 82% success rate of 
pose prediction by using more than one docking program, 
while the success rate was found to be lower for each dock-
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ing program alone, e.g. 55% for Autodock, 58% for DOCK, 
and 64% for Vina. 

3. PROPOSED WORKFLOWS-PROTOCOLS 

Nasr et al. have introduced a set of “binding site proper-
ties-based” guidelines that aim to optimize future prospec-
tive drug discovery protocols in presence of several available 
receptor structures [109]. Several trends in the properties of 
binding sites, including hydrophobicity, volume, and open-
ing, were identified and tested in SBVS with several pro-
grams (Surflex-dock or ICM). Planesas et al. have proposed 
a three-step VS protocol to improve actives from decoys 
selection using VEGFR-2 (Kdr-kinase) inhibitors. This pro-
tocol includes the conventional docking step, a pharma-
cophore post-filter step, and a similarity search post-process 
[110]. When this protocol is retrospectively applied to 
VEGFR2 inhibitors, both the overall and early VS perform-
ance are improved. Osguthorpe et al. have generated a SBVS 
protocol through which a set of target structures is con-
structed for ED based on binding site shape characterization 
and clustering, in order to account for protein flexibility into 
the VS process [103]. The protocol’s steps are: a) receptor 
structures selection from X-ray crystallography and MD, b) 
binding site shape characterization, c) pairwise volume over-
lap computation, d) hierarchical clustering, e) docking calcu-
lations of known actives and decoys to the shape-diverse 
binding sites, and f) comparison of ED results with the per-
formance of a single rigid receptor. 

One approach to achieve nM hits directly from VS is to 
bias the compound selection toward known chemotypes of 
high potency. This high potency may be achieved through 
the design of target-focused libraries for virtual screening. 
Schröder et al. discovered covalent reversible inhibitors of 
cathepsin K through virtual screening of a focused library 
built for this purpose, which included compounds bearing 
electrophilic groups that act as warheads in mediating cova-
lent reversible inhibition [8]. Substantial effort was invested 
in developing appropriate electrophilic warheads in their 
corresponding transition state. Covalent docking of this fo-
cused library resulted in identifying 21 inhibitors of cathep-
sin K, including 3 nanomolar leads, out of the 44 initially-
selected putative binders.  

In another SBVS for 2-adrenergic receptor ligands, vir-
tual screening was performed on the lead-like subset of the 
ZINC database using the available crystal structure [9]. 
0.05% of the top-ranked compounds (500 molecules) were 
visualized, and 25 molecules were finally selected based on 
their chemical diversity, commercial availability, and overall 
balance between polar and non-polar complementarity to the 
binding site. These efforts resulted in the identification of a 
9 nM inverse agonist of the 2-adrenergic receptor. Al-
though the virtual screening procedure was unbiased, it was 
later found that the lead-like subset of the ZINC database is 
biased towards GPCR ligands. 

A novel approach targeting GPCR inhibition, has unrav-
eled nanomolar leads for the melanin-concentrating hor-
mone-1 receptor (MCH-1R) [7]. This approach integrates 
GPCR modeling, prediction of antagonist binding site, de-
sign, synthesis, in combination with utilizing a focused li-
brary for screening. A primary hit compound from a 

pyranose-based VAST library (pyranose scaffolds mimic 
active GPCR peptides) was initially utilized to construct a 
high quality MCH-1R model. Subsequently, the model was 
validated by a virtual enrichment experiment and the model-
driven structure-based expansion of the original hit was used 
to identify key interactions in the binding site of the protein. 
Following the model validation, a structure-based virtual 
screen of a library with  0.7 Tanimoto similarity to known 
MCH-1R ligands, provided a 14% hit rate and 10 novel 
chemotypes of potent MCH-1R antagonists, including two 
nanomolar leads. Ligand selection also took into considera-
tion AMBER interaction energies in the range of the top 
10% of known MCH-1R antagonists. 

In all the above-mentioned approaches, a high hit rate 
and high affinity binders were achieved by using a focused 
library to identify lead candidates.  

Apart from identifying novel lead candidates, other ap-
plications of SBVS may be envisaged such as the screening 
for novel substrates for genetically-engineered proteins. Re-
cently, it has been shown that new specific substrates of ge-
netically-engineered proteins can be used for identifying the 
direct protein targets of enzymes [111-113]. In this context, 
SBVS could be applied for the identification of substrates 
specifically-designed to target the mutated enzymes that are 
then used to elucidate signal transduction pathways. In this 
direction, the group of Matt Jacobson has recently unveiled a 
strategy for assigning valid biological functions to proteins 
identified in genome projects using SBVS [114]. Computer-
aided strategies for functional discovery with ‘metabolite 
docking’ were used to predict substrate specificities of sev-
eral enzymes encoded by a bacterial gene cluster. This work 
led to the correct prediction of the in vitro activity of a struc-
turally characterized enzyme of unknown function (PDB 
2PMQ), and also to the correct identification of the catabolic 
pathway in which Hyp-B 2-epimerase participates. These 
studies establish the utility of structure-guided functional 
predictions to enable the discovery of new metabolic and 
signal transduction pathways. 

Another emerging application of SBVS is the search for 
inhibitors of multifunctional proteins. Stumpfe et al. [115] 
report a virtual screening approach for finding inhibitors of 
the cytohesins, a family of cytoplasmic proteins with multi-
ple known functions. Two virtual screening approaches, fin-
gerprint similarity searching, and support vector machine 
modeling were combined to identify structurally diverse 
compounds capable of inhibiting the different functions of 
the cytohesins. Specific inhibitors of guanine nucleotide ex-
change, insulin signaling, and leukocyte adhesion were iden-
tified from the screen. 

3.1. Protocol for the Discovery of Mutant-Specific PI3K  
Inhibitors 

The PIK3CA gene is one of the most frequently mutated 
oncogenes in human cancers. It encodes p110 , the catalytic 
subunit of phosphatidylinositol 3-kinase,  (PI3K ) isoform. 
The PI3K  protein is implicated in signaling cascades, which 
lead to cell proliferation, survival, and cell growth. One of 
the most frequent mutations in PI3K  is a histidine changed 
to arginine in exon 20 (H1047R) [116]. Here, we describe a 
VS workflow to identify novel inhibitors of the H1047R 
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mutant form of PI3K  [95]. The workflow incorporates the 
use of ChemBioServer [58], a free web-based application, 
which enables the efficient final selection of compounds to 
be tested experimentally. 

Initially, the crystal structure of the mutant H1047R 
PI3K  (PDB ID: 3HIZ) was constructed using a combination 
of homology and loop modeling and the atomistic model of 
the full-length H1047R mutant was created using Modeller 
9v8 [117]. The resulting model was solvated in water and 
employed in Molecular Dynamics (MD) simulations using 
the NAMD package [118] for ~70ns. The final snapshot of 
the simulation was extracted and used for binding site identi-
fication calculations through SiteMap module of Schrödinger 
v2.4. A non ATP binding site close to the H1047R mutation 
was identified to be among the top-ranked and was used in 
the present study. After binding site identification, we per-
formed VS using the docking program Glide 5.7 [82]. The 
drug-like subset of the HitFinder collection from the May-
bridge database (www.maybridge.com) was used for the VS 
exercise [119]. All structures were docked and scored using 
the Glide standard precision (SP) mode. The 10,000 top-
ranked structures from the SP filter were redocked and res-
cored using the Glide extra precision (XP) mode. The com-
plexes for the top-ranked 1,000 compounds resulting from 
the XP processing were submitted to further post-processing 
with the ChemBioServer. In order to filter out poses far from 
the energy minimum, we used the van der Waals filter of the 
server to remove compounds with steric clashes. The re-
maining compounds were then subjected to physicochemical 
property filtering based on the “Jorgensen rule of 3” [52] as 
well as toxicity filtering based on a database available in 
ChemBioServer, which contains known toxic moieties. Sub-
sequently, a hierarchical clustering was performed for the 
remaining compounds using the Tanimoto coefficient and 
the Ward Clustering Linkage in order to maximize chemical 
diversity but at the same time minimize visual inspection 
efforts. Finally, the resulting cluster representatives were 

visually inspected and the ten most promising compounds 
were purchased and submitted to in vitro assay testing. Four 
out of the ten purchased molecules inhibited the PI3K  pro-
tein activity in vitro in μm concentrations, indicating that the 
workflow described herein can be successfully applied in 
drug discovery [120]. The process is described in Fig. (2). 

3.2. A Proposed Method to Increase the Probability of 

Virtual Screening Hits: Application on the RXR  Nu-
clear Receptor 

The availability of multiple solved protein structures of 
the same protein may offer the opportunity to increase the hit 
rate in biological assays of compounds selected in silico. The 
case of receptors in particular, which represent the majority 
of targets for pharmaceutical intervention, could be good 
examples for such approaches since several crystal structures 
of a particular receptor with agonists or antagonists are 
available. We propose to use such available structures in 
combination with the protocol developed below in order to 
increase the rate of compound identification that can indeed 
modulate the target in question.  

Here, we use the nuclear receptor Retinoid X receptor al-
pha (RXR ) as an example for a selective SBVS screening 
protocol, which is based on ensemble docking in order to 
discover novel selective agonists. Retinoid X receptor (RXR) 
is a heterodimer partner for about one third of the 48 human 
nuclear receptor superfamily members, thus, its ligand bind-
ing pocket may be altered upon binding to a different het-
erodimerization partner. Heterodimerization greatly en-
hances DNA binding and transcriptional activation [121] and 
RXR  overexpression has been reported to enhance the tran-
scriptional response to ligand binding. RXR-selective reti-
noids can potentiate the antiproliferative and apoptotic re-
sponses of breast cancer cell lines to PPAR ligands. Re-
cently, RXR-selective ligands were discovered that inhibited 
proliferation of all-trans RA resistant breast cancer cells in 

 

Fig. (2). Workflow for the discovery of mutant-specific PI3K  inhibitors based on a SBVS protocol involving conformer generation, binding 
site prediction, and compound post-processing. 
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vitro and caused regression of the disease in animal models. 
Therefore, RXR  is potentially a therapeutic target for can-
cer [121, 122]. 

Based on the fact that multiple RXR  receptor conforma-
tions exist depending on binding of the receptor to different 
heterodimerization partners, we seek to increase the specific-
ity of identified binders for a given heterodimer partner by 
carefully choosing the RXR  receptor structure for SBVS. In 
our method, the choice of RXR  conformations for the 
SBVS is based on four criteria: a) Pairwise comparison of 
the receptor conformations according to RMSD calculations, 
b) analysis and clustering of RXR  structures comparing the 
binding-site shape and volume using SiteMap (Fig. 3), c) 
docking of a small-database of known actives for a specific 
heterodimer partner to the resulting shape-diverse subset of 
binding sites resulting from (a) and (b) using Glide 5.8 SP 
and XP [82], d) retrieving representative protein conforma-
tions for the structure of interest from MD simulations using 
GROMACS [123]. VS performed on three different subsets 
of RXR  receptor conformations, which arise by binding to 
different heterodimerization partners, selected as mentioned 
above, may enhance the success rate of the process (Fig. 3).  

Docking compound databases for this SBVS exercise en-
tails pre-processing to assign protonation and tautomeric 
states as described in [119]. Compounds for assying are se-
lected as follows: Molecules that score high when docked in 
the RXR  protein ensemble that binds to the heterodimer 
partner of interest and at the same time score low for RXR  
structures that bind to heterodimer partners of no interest, 
may be selected in order to achieve selectivity. Finally, a 
post-processing step is imposed to the top-scoring com-
pounds by using Chembioserver [58] and FAF-Drugs2 [60] 
filtering tools as well as pharmacological property prediction 
with the QikProp software [124]. The workflow of this pro-
tocol is shown in Fig. (4). 

CONCLUSION 

For decades, drug discovery was carried out using trial 
and error experimental techniques for screening large librar-

ies of chemicals against a biological target. Recent advances 
in computer-aided drug design allow the tailored design of 
drugs for a target protein, shortening the development cycle 
of new drugs. The advent of Structure Based Virtual Screen-
ing has undoubtedly changed and improved the drug discov-
ery process and has been established as one of the most 
promising in silico techniques for drug design. The focal 
point of this review is the detailed description of the SBVS 
steps in drug design, in combination with the presentation of 
recent advances and the introduction of various protocols 
that facilitate the identification of inhibitors with nM po-
tency.  

Furthermore, we also propose herein two novel VS pro-
tocols that aim to enhance inhibitor selectivity for the target 
protein against close homologs. First, a SBVS workflow, 
which was utilized to discover novel inhibitors of the 
H1047R mutant form of PI3K  is presented. In this 
workflow, MD simulations in aqueous solution were carried 
out for both WT and mutant PI3K  proteins. Binding site 
analysis in the kinase domain identified cavities in the vicin-
ity of the H1047R mutation and the membrane binding re-
gions. SBVS was performed in several binding pockets and 
top-ranked compounds in terms of predicted binding affinity 
were carefully post-processed to ensure the validity of 
docked poses, chemical diversity, desirable physicochemical 
properties and the absences of toxic or metabolically liable 
moieties. Finally, ten promising compounds were selected 
for in vitro assaying, four of which emerged as M inhibitors 
of the H1047R mutant PI3K  protein validating our ap-
proach [120]. A second SBVS protocol is contributed for the 
identification of binders for the RXR  nuclear receptor that 
are selective depending on the protein’s heterodimer partner. 
A structural RXR  ensemble was created for this purpose by 
selecting different RXR  crystal structures based on (i) 
RMSD calculations, (ii) binding-site shape and volume, (iii) 
docking of a small database of known actives, and (iv) 
choosing representative structures from MD simulations. 
SBVS was then performed on three different subsets of 
RXR  arising from different heterodimer complexes of

 
Fig. (3). (A) Superposition of different RXR  receptor structures arising from different heterodimer complexes and/or binding to different 
ligands and (B) shape-based binding site comparison using SiteMap 2.6 (Schrödinger, LLC). 
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Fig. (4). Workflow for the discovery of selective RXR  ligands based on a SBVS protocol of ED and counter-screening. 
 
Table 3.  Advantages and Drawbacks of SBVS. 

Virtual Screening 

Advantages Limitations 

Time and cost reduction of screening process of millions of small mole-
cules, compared to HTS 

Many VS tools are applicable and successful to specific case studies  
(based on the training set) and not in general cases. 

There is no need for physically existing compounds to perform the  
screening process, unlike HTS. 

Compounds being identified by HTS are usually more bioactive than  
compounds identified by VS. 

Different approaches of VS have been created for lead discovery depending 
each time on the availability of experimental information (SBVS  

Ligand-Based VS, Fragment-Based VS,etc.) 

Weakness in perfect inclusion of receptor structural flexibility and of  
water in docking computations due to computational-cost and high com-

plexity of its modeling 

Several successful examples of identifying low nM leads that show the 
intended biological activity 

Very potent leads (i.e. low nM) are rarely identified through VS. 

A large number of docking programs and scoring functions 

Scoring is still challenging in predicting accurately the correct binding pose 
and ranking of the compounds due to the difficulty in parameterizing the 

complexity of the ligand-receptor binding interactions and the  
approximations in calculating desolvation and entropic terms. 

VS can use as input a desirable target structure complexed with a specific 
ligand even if there are no experimental data, through molecular modeling. 

Predicted protein structures from homology modeling and predicted  
protein-ligand complexes may result to increased rates of  

false positive/negative results. 

 Does not perform in congeneric series. 

 
RXR  and/or its binding to different ligands. Candidate 
binders of RXR  were selected for purchase with an eye on 
their different orientation at the binding site of the various 
structures and different interactions with specific surround-
ing residues in order to maximize their selectivity potential. 
In vitro assying of these compounds is still pending experi-
mental testing. 

Although SBVS is widely used nowadays by multiple 
academic and industrial research groups in the drug discov-
ery process, it suffers from limitations that restrict its effec-
tiveness (reviewed in Table 3). Significant breakthroughs are 
required in order to address fundamental challenges such as, 
for example, scoring, target flexibility and appropriately 
treating water molecules. Such challenges ultimately lead to 
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the query: Is SBVS an indispensable tool for modern drug 
design? The significant reduction in time and cost compared to 
the high-throughput screening process, the continuous efforts 
in improving the efficiency of docking programs and scoring 
functions, and the plentiful successful case studies that have 
led to low nM leads are only a few representative examples 
showing that SBVS is here to stay. However, prospective us-
ers of the method should remember that SBVS is not as simple 
as running a computer program. Careful choices need to be 
made; appropriately selecting the structural ensemble for the 
screening exercise, cautious preparation of the biological tar-
get and the database to be used, treatment of water molecules 
in the cavity, and careful post-processing of SBVS results are 
of utmost importance that ultimately result in enhancing lead 
identification and selectivity rates. 
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