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Blood-brain-barrier (BBB) dysfunction is a hallmark of aging and aging-related disorders,
including cerebral small vessel disease and Alzheimer’s disease. An emerging biomarker
of BBB dysfunction is BBB water exchange rate (kW) as measured by diffusion-weighted
arterial spin labeling (DW-ASL) MRI. We developed an improved DW-ASL sequence
for Quantitative Permeability Mapping and evaluated whole brain and region-specific
kW in a cohort of 30 adults without dementia across the age spectrum. In this cross-
sectional study, we found higher kW values in the cerebral cortex (mean = 81.51 min−1,
SD = 15.54) compared to cerebral white matter (mean = 75.19 min−1, SD = 13.85)
(p < 0.0001). We found a similar relationship for cerebral blood flow (CBF), concordant
with previously published studies. Multiple linear regression analysis with kW as an
outcome showed that age was statistically significant in the cerebral cortex (p = 0.013),
cerebral white matter (p = 0.033), hippocampi (p = 0.043), orbitofrontal cortices
(p = 0.042), and precunei cortices (p = 0.009), after adjusting for sex and number of
vascular risk factors. With CBF as an outcome, age was statistically significant only in
the cerebral cortex (p = 0.026) and precunei cortices (p = 0.020). We further found
moderate negative correlations between white matter hyperintensity (WMH) kW and
WMH volume (r = −0.51, p = 0.02), and normal-appearing white matter (NAWM) and
WMH volume (r = −0.44, p = 0.05). This work illuminates the relationship between BBB
water exchange and aging and may serve as the basis for BBB-targeted therapies for
aging-related brain disorders.
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INTRODUCTION

The blood-brain barrier (BBB) is comprised of endothelial cells connected by tight junctions,
pericytes, and astrocytic end-feet, and regulates homeostasis of fluid and solutes at the blood-
central nervous system (CNS) interface (Ballabh et al., 2004). Converging evidence suggests that
BBB dysfunction plays a central role in the aging brain (Weiss et al., 2009; Banks et al., 2021).

One emerging sensitive probe of BBB water permeability is through imaging-based
measurement of water exchange across the BBB (Dickie et al., 2020). Vascular compromise in
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AD is reflected in impaired transport of water across the
blood-CSF and CSF-brain barriers. Mechanistically, the system
is impacted by age as are the cellular vascular membrane
properties. Further, Aquaporin-4 (AQP4) water channels
localizing to perivascular astrocytic endfeet (also known as AQP4
polarization) form a central pathway for the glymphatic system,
enabling water transport across the BBB (Haj-Yasein et al., 2011;
Iliff et al., 2012; Hladky and Barrand, 2014; MacAulay, 2021).
Decreased AQP4 polarization is associated with aging and with
β-amyloid (Aβ) deposits in animal models (Yang et al., 2011;
Kress et al., 2014; Ishida et al., 2020) and humans (Zeppenfeld
et al., 2017). This feature cannot be adequately characterized with
dynamic contrast-enhanced (DCE) MRI due to the molecular
properties of a Gadolinium-based contrast agent (GBCA),
given that GBCA are several orders of magnitude larger than
water and unlike water cannot enter the brain parenchyma via
transcellular route. BBB permeability to GBCA mapped with
DCE MRI, expressed as KTRANS, has been shown to be mildly
increased at baseline in the hippocampus of young healthy
subjects (Ivanidze et al., 2019). Moreover, hippocampal KTRANS
elevation has been shown to be associated with normal aging
(Montagne et al., 2015), and more recently has been implicated
in age-related cognitive dysfunction (Bowman et al., 2018;
Nation et al., 2019) and Alzheimer’s disease (AD) (Halliday
et al., 2016; Van De Haar et al., 2016; Montagne et al., 2021).
However, KTRANS primarily measures the paracellular leakage
of the relatively large GBCA molecules through the endothelial
tight junctions (Laurent et al., 2006) and cannot capture the
transcellular transport of the much smaller water molecules
through AQP4 channels on astrocyte end-feet (Solenov et al.,
2004; Papadopoulos and Verkman, 2005; Kress et al., 2014; Ma
et al., 2017), nor via other co-transport mechanisms (Steffensen
et al., 2018). Furthermore, electrophysiological experiments
demonstrated that BBB permeability to macromolecules such as
albumin is not directly correlated to BBB permeability for small
ions such as potassium (Kang et al., 2013).

An emerging technique to image BBB water exchange rate
(kW) is diffusion-weighted arterial spin labeling (DW-ASL), an
approach that obviates the need for GBCA injection. DW-ASL
techniques have been employed to evaluate changes in kW in
obstructive sleep apnea (Palomares et al., 2015), cerebral small
vessel disease (CSVD) (Shao et al., 2019), and ischemic infarction
(Tiwari et al., 2017). While promising, the previously developed
gradient spin echo (GRASE) based DW-ASL approaches for
in vivo imaging suffer from low spatial resolution, limited brain
coverage, and off-resonance artifacts particularly at higher static
field strengths. Furthermore, it is unclear whether water exchange
increases or decreases with age; given that water transport into
the brain parenchyma may occur via either transcellular water
channel regulated by aquaporin-4 (AQP4) (the expression of
which decreases with age) or paracellular BBB leakage (which
increases with age), or a combination of both.

We have recently developed an improved DW-ASL sequence
based on the more robust stacks-of spirals 3D fast spin echo (FSE)
data acquisition and adiabatic diffusion preparation, termed
Quantitative Permeability Mapping (QPM) (Zhang et al., 2020)
that mitigates existing technical challenges. The purpose of this

study was to demonstrate the relationship between age and
region-specific BBB water exchange, as measured by kW using
QPM sequence, in normal volunteers across the age spectrum.

MATERIALS AND METHODS

Ethics Statement, Subject Recruitment,
Selection, and Consent
Following institutional review board approval and written
informed consent, 36 volunteers aged 25 years and above
who had previously expressed their interest in participating
in brain imaging research were contacted. Thirty volunteers
agreed to participate in the study. Based on subject interview
and electronic medical record review, none of the volunteers
satisfied exclusion criteria, which included the following:
medical history of neurodegenerative disorder, chronic territorial
infarction, illicit substance abuse disorder, neuropsychiatric
disorder, cerebrovascular accident, or traumatic brain injury.
To obtain an even distribution of ages, we aimed to recruit
approximately 10 subjects per age group 25–44, 45–64, and 65+.

Vascular Risk Factor and Cognitive
Assessment
Using subject interview and electronic medical record review,
subjects were evaluated for four vascular risk factors:
hypertension, hyperlipidemia, type 2 diabetes mellitus, and
tobacco use. These risk factors were selected given that they are
among the most common contributors to microvascular disease
(Khan et al., 2007). Subjects were evaluated on the presence
or absence of vascular risk factors (see section “Statistical
Analysis” below).

All subjects were evaluated in-person with the Montreal
Cognitive Assessment (MoCA) version 8.1 (English). MoCA is
a screening test designed to detect subjects with mild cognitive
impairment (MCI) and dementia. The performing physician
(JF) was certified by MoCA Test Inc., to administer the MoCA
examination in the standardized, validated format, including
the 0–15-point Memory Index Scale (MIS), allowing to identify
subjects at risk for dementia (Julayanont et al., 2012). For both
the MoCA and MIS, higher scores indicate more correct items on
the examination (Nasreddine et al., 2005).

Quantitative Permeability Mapping
Sequence and MRI Scanning Protocol
All scans were performed on a single GE Discovery 3.0T 750 MRI
system using a product 32-channel head coil for signal reception.
To mitigate the heterogeneity of caffeine effects on perfusion and
water permeability (Wengler et al., 2019), subjects abstained from
caffeine for at least 3 h prior to image acquisition, a pre-scan
protocol which has been reported previously (Shao et al., 2019).

Our QPM sequence (Zhang et al., 2020) is based on a
signal-to-noise ratio-efficient 3D stack-of-spirals FSE acquisition
developed previously for pseudo-continuous ASL (pCASL)
imaging (Dai et al., 2008) and can achieve whole brain coverage
with a 1.9 × 1.9 × 4 mm3 resolution. Spiral FSE readout was
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used to enhance robustness against off-resonance artifacts at 3T
field strength (Alsop et al., 2015). This was combined with a
BIR-4 adiabatic pre-pulse which provides more robust diffusion
preparation than the more commonly used composite hard pulse
design at 3T (Nguyen et al., 2016).

QPM data acquired at multiple post-labeling delays (PLD) and
b-values were used to calculate kW, cerebral blood flow (CBF),
and arterial transit time (ATT) by fitting a two-compartment
signal model as follows:

I = 4Mb (t)+ (1− sign
(
b
)
)4Mc (t) (1)
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−
2CBFεM0β

λ

[
e−(R1a−R1b)ATT

R1b

(
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− e−R1bt
)

−
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(
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− e−αt
)

(3)

Here, I is the acquired QPM image, 4Mb (t) and 4Mc (t) are
signals in tissue and capillary compartments, respectively, sign(b)
is 1 if diffusion preparation is applied and 0 otherwise, ε = 0.6
is the product of the initial labeling efficiency (0.8) and the
loss of labeling due to the background suppression pulses (0.75)
(Mutsaerts et al., 2014), M0 is reference proton density image,
λ = 0.9 mL/g is the blood-brain partition coefficient (Alsop et al.,
2015), R1a and R1b are the longitudinal relaxation rates of blood
and brain tissue, respectively [R1a = 0.6s−1 (Lu et al., 2004), R1b
is calculated using a FAST-T1 mapping sequence (Nguyen et al.,
2017)], δ = 1.5 s is the labeling time, and t = δPLD, α = kWR1a

and β = kW
kWR1a−R1b

. Given QPM images I1 to IN acquired with
different PLDs and b-values, kW, CBF, and ATT maps can be fit
from Eqs 1–3 by minimizing the following cost function with L2
regularization:
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||
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2
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2
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kW, CBF and ATT maps were generated from a multi-
PLD multi-b QPM scan acquired with b = 20 s/mm2 at
PLD = 1,000, 1,500, 1,800, 2,000, and 2,500 ms [number of
excitations (NEX) = 3] and b = 0, 10, 20, 50, 100 s/mm2 at
PLD = 1,200 (NEX = 1) ms in 27 min. The optimal regularization
parameter µ was chosen based on the L-curve method (Hansen,
1992), and the noise weighting term was set as γi =

√
NEX.

Equation 4 was solved using a custom iterative gradient descent
algorithm with the maximum number of iterations of 100 and
the tolerance of relative change in the solution set to 0.01. For
initialization, kW map was set to 0, CBF map was calculated from
QPM scan acquired at PLD = 1,500 ms (Mutsaerts et al., 2014),

and ATT map was calculated as the signal-weighted PLDs as
previously described (Dai et al., 2012).

Additionally, a 3D T1-weighted BRAVO sequence was
obtained for anatomic definition, and a 3D T2-weighted FLAIR
(T2-FLAIR) sequence was acquired in 20 of the 30 subjects to
identify and quantify white matter hyperintensity (WMH). T2-
FLAIR imaging was reserved for subjects 45+ years old given
than WMH would be expected to be rare in healthy subjects
under 45 years old. To minimize partial volume effects from small
areas of WMH, a threshold of WMH volume of 100?mm3 (0.1 cc,
approximately 5 mm in linear dimension) was set as inclusion
criteria for the analysis based on the recommendation that lesion
size should be at least 5 times larger than the voxel size for lesion
geometry to be captured reliably and also to minimize the effect
of imperfect coregistration between scans (Firbank et al., 1999).

Region of Interest Segmentation and
Analysis
The following regions selected for analysis and bilateral
regions were analyzed as a single region of interest (ROI):
cerebral cortex, cerebral white matter, hippocampi, precunei
cortices, and orbitofrontal cortices. The regions selected show
differential vulnerability in aging and AD, with the hippocampus
and precuneus typically demonstrating greater metabolic and
perfusion effects (Cavedo et al., 2014; Riederer et al., 2018).
FreeSurfer (Dale et al., 1999) (Charlestown, Massachusetts;
Massachusetts General Hospital) was used to obtain brain ROI
segmentation from the T1-weighted BRAVO anatomical image.
The kW, CBF, and ATT values for each ROI was obtained from
the corresponding co-registered parametric maps in ITK-SNAP
using FreeSurfer-generated brain labels.

White Matter Hyperintensity
Segmentation
In the 20 subjects with T2-FLAIR image, WMH within the
cerebral white matter was manually segmented in ITK-SNAP
(Yushkevich et al., 2006)1 by a neuroradiology fellow (JF). To
obtain WMH-specific average kW and CBF values, the WMH
masks were linearly coregistered to kW and CBF maps using FSL
FLIRT command (Jenkinson et al., 2002) with rigid-body motion
(translation and rotation) and trilinear interpolation followed by
thresholding at 0.5 probability level.

Statistical Analysis
All statistical analyses were performed in GraphPad Prism 9.1.1
(GraphPad Software, San Diego, CA, United States). The non-
parametric Wilcoxon signed-rank test was used to compare kW
values measured in the cerebral cortex and cerebral white matter,
and the non-parametric Kruskal-Wallis test with a Dunn’s test for
multiple comparisons was used to compare kW values between
hippocampi, orbitofrontal cortices, and precunei cortices. To
determine the association between kW and age, a multiple linear
regression model with kW measured in the cerebral cortex,
cerebral white matter, hippocampi, orbitofrontal cortices, and

1www.itksnap.org
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precunei cortices as an outcome and age, sex, and the total
number of vascular risk factors (minimum 0, maximum 4) as
predictors. The same analysis was then repeated for CBF and
ATT. The non-parametric Mann-Whitney U-tests were used
to compare kW values in subjects with and without vascular
risk factors. Pearson correlations were performed to evaluate
the relationship between WMH kW and WMH volume, and
between normal-appearing white matter (NAWM) kW and
WMH volume, with corresponding analyses for CBF. To test
the hypothesis that kW is significantly different in WMH vs.
NAWM in the same subject, a Wilcoxon signed-rank test was
used for the 20 subjects with WMH volume over 100 mm3 (0.1
cc). P-values < 0.05 were considered as statistically significant.

RESULTS

Demographic Characteristic of Study
Participants
Age and sex distribution, cognitive scores, and vascular risk
factors of study participants are outlined in Table 1.

Age-Related Regional Differences in kW
and Cerebral Blood Flow
Regional Analysis: kW values were consistently higher in cerebral
cortex (mean = 81.51 min−1, SD = 15.54) compared to cerebral
white matter (mean = 75.19 min−1, SD = 13.85) in all subjects
(p < 0.0001), indicating greater BBB water exchange. CBF
values were also higher in the cortex (mean = 39.60 mL/100
g/min, SD = 12.44) relative to cerebral white matter
(mean = 32.47 mL/100 g/min, SD = 9.18) (p < 0.0001). In
sub-lobar cortical regions, there were no significant differences
between the hippocampi, orbitofrontal cortices, and precunei
cortices with respect to either kW or CBF (Figure 1).

Age Effects
In the multiple linear regression model with kW as an outcome,
age was found to be statistically significant in the cerebral
cortex (β = −4.43 min−1/decade, p = 0.013), cerebral white
matter (β = −3.54 min−1/decade, p = 0.033), hippocampi
(β = −4.32 min−1/decade, p = 0.043), orbitofrontal cortices
(β = −4.00 min−1/decade, p = 0.042), and precunei cortices
(β = −5.03 min−1/decade, p = 0.009), after adjusting for sex
and number of vascular risk factors. With CBF as an outcome,

age was found to be statistically significant only in the cerebral
cortex (β =−2.96 mL/100 g/min/decade, p = 0.026) and precunei
cortices (β = −4.04 mL/100 g/min/decade, p = 0.020) (Figure 2).
Age was also statistically significant in the model with ATT as an
outcome in the cerebral cortex (p = 0.002), cerebral white matter
(p = 0.008), orbitofrontal cortices (p = 0.021), and precunei
cortices (p = 0.001), but not in the hippocampi (p = 0.113).
Univariate linear regression analyses for kW and CBF vs. age
are shown in Supplementary Figure 1. Representative kW maps,
CBF maps, and T2-FLAIR images from two subjects are shown in
Figure 3.

Cognition Assessments
Results from the cognitive assessments revealed that no subject
had a MoCA score < 17, a cutoff that has been previously
validated as the threshold between mild cognitive impairment
(MCI) and dementia (Trzepacz et al., 2015). Four subjects had
a MoCA score compatible with MCI (score 17–25).

Effects of Vascular Risk Factors and
White Matter Hyperintensities
In our cohort, 13 of 30 subjects had at least one vascular risk
factor. Five subjects had two vascular risk factors, and three
subjects had three vascular risk factors. Values of kW were lower
among individuals with at least one vascular risk factor compared
with those without in both the cerebral cortex (p = 0.002)
and cerebral white matter (p = 0.007). CBF values were also
significantly lower in the cerebral cortex (p = 0.006) and cerebral
white matter (p = 0.025) (Figure 4).

White Matter Hyperintensities, kW, and
Cerebral Blood Flow
For the 20 subjects who underwent T2-FLAIR imaging, 100%
(20/20) of subjects had WMH volume above the 100 mm3

threshold (mean: 2,414 mm3, range: 127–13,293 mm3). There
was a moderate negative correlation between WMH kW and
WMH volume (r = −0.51, p = 0.02) (Figure 5A). kW within
NAWM also demonstrated moderate negative correlation with
WMH volume (r = −0.44, p = 0.05) (Figure 5B). There
was a moderate negative correlation between WMH CBF and
WMH volume (r = −0.49, p = 0.03) (Figure 5C); correlation
between NAWM CBF and WMH volume did not reach statistical
significance (Figure 5D). Representative images illustrating the

TABLE 1 | Clinical and demographic characteristics of the study population.

Age range (Years) Number of subjects Number (%) female Mean MoCA (SD) Mean MIS (SD) Number (%) with 1+ vascular risk factor

25–44 9 2 (22.2%) 29.3 (1.1) 14.1 (1.5) 0 (0.0%)

45–64 8 3 (35.7%) 27.0 (1.6) 10.5 (3.2) 3 (37.5%)

65+ 13 6 (46.2%) 26.7 (3.0) 11.3 (4.4) 10 (76.9%)

All 30 11 (36.7%) 27.6 (2.5) 11.9 (3.6) 13 (43.3%)

All subjects had at least 4 years of education after high school. MoCA scores (0–30; 27+ = normal, 17–25 = mild cognitive impairment, < 17 = dementia) tended to
decrease with age. Four subjects, all 65 years or older, had scores compatible with mild cognitive impairment, the youngest being 51 years old. No subjects had a MoCA
score compatible with dementia. Risk factors queried with hypertension, hyperlipidemia, diabetes, and smoking (current or former). Older subjects tended to accumulate
more vascular risk factors.
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FIGURE 1 | Regional kW and CBF. Tukey box plots of kW (A,C) and CBF (B,D) values obtained in the cerebral cortex (CTX), cerebral white matter (CWM),
hippocampi (HIP), orbitofrontal cortices (OFC), and precunei cortices (PCN) (n = 30). CTX exhibited higher kW and CBF than CWM (**** indicates p < 0.0001,
non-parametric Wilcoxon signed-rank test), whereas there were no significant differences between HIP, OFC, and PCN (Kruskal-Wallis test with a Dunn’s test for
multiple comparisons). ns, not significant.

relationship of kW and CBF with WMH volume are shown in
Figure 6.

DISCUSSION

In this study, we applied QPM, an improved DW-ASL sequence,
to directly probe the relationship between aging and BBB water
exchange in healthy adult volunteers. We found that BBB water
exchange is lower among older adults, and in our pilot study
sample of 30 subjects, age was significantly associated with kW in
all five selected brain regions. All evaluated regions demonstrated
a negative correlation between age and kW, holding sex and
number of vascular risk factors constant.

One ostensible mechanism for the negative association
between age and kW is via aquaporin-4AQP4. AQP4 is a water-
selective cell membrane channel concentrated at perivascular
astrocytic end-feet and is the prime mediator of diffusive and
advective water transport in the brain (Simard et al., 2003;
Nagelhus and Ottersen, 2013; Thomas, 2019). AQP4 serves
an important function in the brain’s glymphatic system (Iliff
and Simon, 2019), a mechanism for the elimination of soluble
material from the CNS (Jessen et al., 2015). Accumulating
evidence illustrates the role of alterations in AQP4 localization
and expression in aging and aging-related disease; specifically, the
loss of AQP4 polarization at the astrocytic end-feet (Abbott et al.,
2006; Yang et al., 2011; Kress et al., 2014; Zeppenfeld et al., 2017).
One possible mechanism highlighting the role of AQP4 in the
aging brain begins with chronic perfusion stress and hypoxia (Bell
et al., 2010; Sengillo et al., 2013), leading to loss of endothelial
pericytes and astrocytic AQP4 polarization (Gundersen et al.,
2014; Duncombe et al., 2017). The reduced localization of AQP4
at astrocytic end-feet could impair glymphatic function, with
resultant misaggregation of proteins that drive aging-related CNS
diseases. Our findings are concordant with emerging evidence
that loss of AQP4 localization at astrocytic end-feet is a central
feature of the aging BBB (Abbott et al., 2006; Yang et al., 2011;
Kress et al., 2014; Zeppenfeld et al., 2017) and suggests that the
effect of AQP4 localization on BBB water exchange predominates
over BBB leakage in healthy adults.

Using GBCA DCE-MRI, multiple groups have observed
increased BBB leakage with both normal aging (Wang et al.,
2006; Xu et al., 2017; Verheggen et al., 2020) and aging-
related neurodegenerative disorders (Sengillo et al., 2013;
Montagne et al., 2015; Halliday et al., 2016; Van De Haar et al.,
2016; Sweeney et al., 2018; Nation et al., 2019; Moon et al.,
2021). Using a modified DCE-based approach with delayed
acquisition, voxel-wise analysis and linear fitting to the late
component of the concentration curve, Veksler et al. (2020)
demonstrated the ability of DCE-MRI to visualize slow signal
change following GBCA injection in traumatic brain injury
and a variety of other pathologies. While kW derived from
GBCA-free DW-ASL has been described as an alternative to
DCE-MRI to query BBB leakage (Shao et al., 2019), recent
findings from a comparison study suggest that these two MRI
techniques measure different aspects of BBB integrity (Shao
et al., 2020). In this study, kW was found to decrease with
age, which shows an opposite trend compared to DCE-derived
KTRANS. The mechanisms of BBB exchange of GBCA and water
are likely to be independent given that AQP4 is not available
to GBCAs as a pathway into the CNS. Animal models of
ischemic cerebral infarction and mannitol-induced BBB opening
a showed a direct relationship between DCE-MRI BBB leakage
(expressed as KTRANS) and kW (Tiwari et al., 2015, 2017).
However, given the significant difference in body size and
hemodynamics between rodents and humans, these results may
not be directly translatable to the clinical setting. Furthermore,
these scenarios represent acute BBB damage rather than chronic,
adaptive changes in water exchange that may occur over time.
This could partially explain the finding of Shao et al. (2020),
given that only three brain regions demonstrated significant
correlation between kW and KTRANS in an elderly cohort, the
authors positing diverging BBB mechanisms mediating kW and
KTRANS. The relationship between and kW and KTRANS in
normal aging as well as in neurodegenerative diseases in humans
remains to be explored.

The physiologic basis of decreased kW and decreased
perivascular AQP4 localization with aging is not fully
understood. In animal models of water intoxication and
cerebral ischemic infarction, AQP4-deficient mice were found to
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FIGURE 2 | Relationship between kW and CBF with Age. Added variable plots obtained by multiple linear regression analysis showing the relationship between kW

and CBF with age (n = 30), adjusting for sex and the number of vascular risk factors. There was a statistically significant association between age and kW in all five
evaluated regions: cerebral cortex (CTX), cerebral white matter (CWM), orbitofrontal cortices (OFC), and precunei cortices (PCN). With respect to CBF, age was
found to be statistically significant only in CTX and PCN.
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FIGURE 3 | Representative T2-FLAIR images (A,D), kW maps (B,E), and CBF (C,F) maps obtained from a 32-year-old subject with no vascular risk factors (A–C)
and a 77-year-old subject with one vascular risk factor (former smoker, 40 pack-year) (D–F). The younger subject demonstrated mean cortical kW of 108.1 min−1,
mean white matter kW of 97.4 min−1, mean cortical CBF of 60.1 mL/100 g/min, and mean white matter CBF of 48.6 mL/100 g/min. The older subject demonstrated
lower mean cortical kW of 74.8 min−1, mean white matter kW of 70.6 min−1, mean cortical CBF of 44.7 mL/100 g/min, and mean white matter CBF of 37.9 mL/100
g/min.

FIGURE 4 | Regional kW and CBF in the Context of Vascular Risk Factors. Tukey box plots showing (A,B) kW values and (C,D) CBF values were significantly higher
in both the cerebral cortex (CTX) and cerebral white matter (CWM) in subjects without vascular risk factors (smoking, diabetes mellitus, or hypertension) (n = 17) than
those with at least one vascular risk factor (n = 13). (** indicates p < 0.01, * indicates p < 0.05, non-parametric Mann-Whitney U-test).

have diminished resultant cerebral edema relative to wild-type
mice, which led to improved survival and neurological outcomes
(Manley et al., 2000). This role of AQP4 in mediating cerebral
edema has been further validated by other groups in both animal
models and humans (Taniguchi et al., 2000; Kleffner et al., 2008;
Nakano et al., 2018). BBB disruption, either from acute (e.g.,

infarction, hemorrhage) or chronic, age-associated endothelial
injury leads to a loss of tight-junctions and other components of
the vascular BBB (Mooradian et al., 2003; Rosenberg and Yang,
2007; Kazmierski et al., 2012; Elahy et al., 2015; Keep et al., 2018;
Stamatovic et al., 2019). In both the acute and chronic setting,
this BBB leakage could lead to increased hydrostatic pressure in

Frontiers in Aging Neuroscience | www.frontiersin.org 7 April 2022 | Volume 14 | Article 867452

https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/aging-neuroscience#articles


fnagi-14-867452 April 4, 2022 Time: 12:9 # 8

Ford et al. QPM BBB Dysfunction in Aging

FIGURE 5 | Scatterplot and linear regression line characterizing the relationship between kW and WMH volume in (A) WMH and (B) NAWM, as well as the
relationship between CBF and WMH volume in (C) WMH and (D) NAWM.

the perivascular space, rendering the brain vulnerable to cerebral
edema. However, in the chronic setting, protective changes at the
perivascular astrocytic end-feet may manifest through decreased
perivascular AQP4 localization, leading to the observation of
decreased kW in our study. This adaptive response, however,
may come with the cost of diminished glymphatic clearance,
giving rise to protein misagreggation that promotes aging-related
neurodegeneration (Iliff et al., 2012; Braun and Iliff, 2020;
Nedergaard and Goldman, 2020). Conjecturally, it is conceivable
that the enlarged perivascular spaces associated with dementia
(Ding et al., 2017; Paradise et al., 2021) are a result of decreased
BBB water exchange, consequently expanding the perivascular
water reservoir.

Several previously published studies appear discordant with
our findings; for example, some groups have demonstrated age-
related increases in brain AQP4 expression with age (Gupta and
Kanungo, 2013; Owasil et al., 2020). However, these studies do
not specify whether measured AQP4 is localized to perivascular
astrocytic end-feet, the site critical for BBB water exchange. In
fact, Zeppenfeld et al. (2017) also found an increase in global
AQP4 immunoreactivity in the frontal cortex with increasing
amyloid burden, but observed decreasing perivascular AQP4

immunoreactivity with both amyloid burden and Braak stage.
It is conceivable that increased non-perivascular AQP4 within
the parenchyma represents an additional adaptive response to
preserve a vestige of glymphatic flow.

While AQP4 plays a central role in water transport across
the BBB, other important mechanisms have to be considered
that may contribute to age-related changes in water permeability
shown in our study. Co-transporter proteins have been shown
to transport water along with ions such as potassium, sodium,
and chloride, independently of an osmotic gradient. While
such co-transporters, for example NKCC1, have been localized
primarily in the choroid plexus, the exact regional distribution
and the degree to which co-transporters contribute to water
transport across the BBB, remains to be elucidated (Steffensen
et al., 2018). Co-transporters have been demonstrated on the
surface of endothelial cells and may thus contribute to water
transport across the BBB (Hladky and Barrand, 2016).

It should be noted that recent studies in animal models of
aging an AD suggest an increase in BBB water using alternative
ASL-based techniques (Dickie et al., 2021; Ohene et al., 2021).
However, multiple groups have pointed to significant interspecies
differences in the content, structure, and function of the BBB
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FIGURE 6 | Representative T2-FLAIR images (A,D), kW maps (B,E) and CBF maps (C,F) obtained from a 76-year-old subject with no vascular risk factors and no
significant WMH (A–C), and a 74-year-old subject with two vascular risk factors (HTN, HLD) and moderate burden of WMH (D–F). The subject without appreciable
WMH demonstrated mean cortical kW of 98.4 min−1, mean white matter kW of 93.8 min−1, mean cortical CBF of 56.6 mL/100 g/min, and mean white matter CBF
of 47.6 mL/100 g/min. The subject with moderate WMH burden (total WMH volume of 5,456 mm3) demonstrated lower mean cortical kW of 72.6 min−1, mean
white matter kW of 64.0 min−1, mean cortical CBF of 28.1 mL/100 g/min, and mean white matter CBF of 23.6 mL/100 g/min.

(Syvänen et al., 2009; Warren et al., 2009; Deo et al., 2013;
Hoshi et al., 2013), with greater concordance between humans
and non-human primates. Moreover, owing largely to the two to
fourfold relative decrease in CBF in rodents, the water extraction
fraction is lower in rodents (Takagi et al., 1987) relative to humans
(Paulson et al., 1977; Herscovitch et al., 1987) and monkeys
(Eichling et al., 1974). These differences may have implications
for adaptations that occur at the BBB with aging. Nonetheless,
more work is needed to explain these divergent results between
rodents and humans.

In addition to age-associated decreases in kW, we also found
that kW tends to decrease with volume of WMH burden, a
relationship also observed with CBF in our cohort. We also noted
that within WMH, kW and CBF tended to be lower compared to
NAWM, suggesting that BBB dysfunction and reduced perfusion
may play a key role in the development of WMH. Zhang et al.
(2019) using DCE-MRI demonstrated that BBB leakage volume
within WML tended to increase with overall WML volume. The
same authors also previously identified general BBB leakage in
cerebral gray matter, NAWM, and WML that increased with in
those with CSVD (Zhang et al., 2017). This association between
BBB breakdown and CSVD is further validated in animal models
(Schreiber et al., 2013; Kaiser et al., 2014), with one study
showing that reversal of BBB dysfunction decreases white matter
vulnerability to injury (Rajani et al., 2018).

In addition to genetic factors, vascular risk factors are
primary drivers of CSVD (Staals et al., 2014; Power et al., 2015;
Gyanwali et al., 2019), concordant with our observation that
subjects with at least one vascular risk factor had lower kW values
in cerebral cortex and white matter, a finding likely preceded
by endothelial injury. We found that our cohort, with 76.9%
of subjects over 65 years of age reporting at least one vascular
risk factor as outlined in Table 1, is generally concordant with
national epidemiological data, which reports in US adults over
65 a prevalence of approximately 30% for type 2 Centers for
Disease Control and Prevention (2020), 63% for hypertension
(Fryar et al., 2017), and 47% for current or former smoking
(Kramarow, 2020). Hyperlipidemia, an additional vascular risk
factor we assessed in our cohort, has a prevalence of 11% in
adults aged 60 and older, and notably, 15% in adults aged 40–59
(Carroll and Hales, 2020).

In our cohort, the mean kW for the cerebral cortex was
81.5 ± 15.5 min−1 and white matter was 75.2 ± 13.9 min−1,
which are lower than the kW values reported by Gold
et al. (2021) (98.27 ± 19.8 min−1 for whole brain), Fujima
et al. (2020) (109.6 ± 28.2 min−1), and Shao et al. (2019)
(105.0± 20.6 min−1) (Fujima et al., 2020; Shao et al., 2020; Gold
et al., 2021). Differences between these reported values could be
attributable to cohort heterogeneity or systemic differences in
pulse sequence implementation, acquisition parameters, image
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reconstruction, and data fitting algorithm. Direct comparison
between these DW-ASL techniques in the same subjects is needed
to explain this discrepancy.

Many of the findings in our present study showed convergence
between kW and CBF values, with notable exceptions. While it
is well-documented in larger studies that CBF tends to decrease
with age (Buijs et al., 1998; Chen et al., 2011; Zhang et al.,
2018), we did not observe a statistically significant correlation.
While our relatively small sample size may play a role, our
findings also suggest the possibility that kW may be more
tightly correlated to age than CBF. We found that CBF in
cerebral white matter decreases with WMH burden, replicating
other studies (Crane et al., 2015; Stewart et al., 2021). We also
reproduced the finding that CBF is decreased within WMH
compared to NAWM (Marstrand et al., 2002; Brickman et al.,
2009). This convergence of findings between CBF and kW
highlights the complex interplay between these two related
phenomena. It is possible that decreases in CBF precede changes
in kW, with chronic hypoxia causing endothelial damage at the
BBB. However, the directionality of this relationship cannot be
ascertained from this cross-sectional study, and a bidirectional
relationship cannot currently be ruled out.

Our pilot study has several limitations. First, our sample
size is relatively small and heterogeneous, and may not be
reflective of the general population in terms of racial and ethnic
diversity. Our findings will need to be confirmed in larger
studies incorporating participants from different demographic
groups. Second, a small number in our 65+ group indeed
may have a degree of undiagnosed mild cognitive impairment,
and up to 40% “cognitively normal” elderly adults may have
amyloid burden detectable by PET (Mielke et al., 2012), while the
amyloid status of our subjects cannot be ascertained, especially
since APOE genotyping and cerebrospinal fluid sampling was
not performed. Nonetheless, no subject had a MoCA score
under 20, and no subject had a diagnosed neurodegenerative
disorder. Future work will employ more restrictive exclusion
criteria to define “cognitively normal,” incorporating more robust
neuropsychological testing, amyloid PET, APOE ε4 status, and
CSF biomarkers. Third, the brain-blood partition coefficient
λ may not be uniform across brain regions. While mapping
this tissue parameter is possible (Roberts et al., 1996) and
may improve the accuracy of our method, here we follow
the recommendation for blood-brain partition coefficient as
provided in the most recent consensus paper published by the
ISMRM Perfusion Study Group and the European Consortium
for ASL in Dementia (Alsop et al., 2015).

While the principal finding that kW is lower in elderly
adults needs to be confirmed with longitudinal studies and
in a larger cohort, this study represents an important step
in understanding the role that the aging BBB plays in
neurodegenerative disorders. Our study also calls for the need
for more animal and human pathology studies to directly probe
the interaction and causal relationships between hypoperfusion,
BBB leakage, AQP4 localization, kW, glymphatic flow, protein
misaggregation, and cognitive dysfunction. With emerging
evidence calling into question whether amyloid deposition is
the primary driver of AD (Kametani and Hasegawa, 2018;

Makin, 2018), studies that aim to illuminate disease pathogenesis
will be critical for the development of novel therapies for
neurodegenerative disorders.
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