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Abstract

The influenza neuraminidase (NA) inhibitors zanamivir, oseltamivir and peramivir were all designed based on the knowledge
that the transition state analogue of the cleaved sialic acid, 2-deoxy,2,3-dehydro N-acetyl neuraminic acid (DANA) was a
weak inhibitor of NA. While DANA bound rapidly to the NA, modifications leading to the improved potency of these new
inhibitors also conferred a time dependent or slow binding phenotype. Many mutations in the NA leading to decreased
susceptibility result in loss of slow binding, hence this is a phenotypic marker of many but not all resistant NAs. We present
here a simplified approach to determine whether an inhibitor is fast or slow binding by extending the endpoint fluorescent
enzyme inhibition assay to a real time assay and monitoring the changes in IC50s with time. We carried out two reactions,
one with a 30 min preincubation with inhibitor and the second without. The enzymatic reaction was started via addition of
substrate and IC50s were calculated after each 10 min interval up to 60 min. Results showed that without preincubation
IC50s for the wild type viruses started high and although they decreased continuously over the 60 min reaction time the
final IC50s remained higher than for pre-incubated samples. These results indicate a slow equilibrium of association and
dissociation and are consistent with slow binding of the inhibitors. In contrast, for viruses with decreased susceptibility,
preincubation had minimal effect on the IC50s, consistent with fast binding. Therefore this modified assay provides
additional phenotypic information about the rate of inhibitor binding in addition to the IC50, and critically demonstrates the
differential effect of incubation times on the IC50 and Ki values of wild type and mutant viruses for each of the inhibitors.
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Introduction

Two licensed neuraminidase (NA) inhibitors (NAIs) are

currently approved globally for the treatment and prevention of

influenza, zanamivir (RelenzaTM) and oseltamivir (TamifluTM). A

third compound peramivir has recently received approval in Japan

and had emergency authorisation for limited use during the

pandemic outbreak [1]. All compounds were designed based on

the knowledge of the structure of sialic acid bound in the NA

active site [2]. The transition state analogue of sialic acid, 2-

deoxy,2,3-dehydro N-acetyl neuraminic acid (DANA) was known

to be a weak inhibitor of the NA. Addition of an amino group at

the 4-position of DANA led to around 100-fold enhancement of

the inhibitory activity whereas the addition of a guanidinium

group (zanamivir) led to around a 10,000-fold enhancement [3].

Addition of the guanidinium group led to zanamivir being a time

dependent, or slow binding inhibitor [3,4]. The hypothesis for the

slow binding of zanamivir is that a water molecule has to be

displaced before the guanidinium group can bind tightly in the

active site [4]. While oseltamivir is also a slow binding inhibitor,

this is thought to be due to the need for the rotation of the E276 in

the enzyme active site [5] to accommodate binding of its

hydrophobic side chain [6–8]. Peramivir contains both the

guanidinium group as in zanamivir, and a hydrophobic side chain

as in oseltamivir. Hence it is also a slow binding inhibitor possibly

impacted by both mechanisms [6]. Some NAs with mutations

conferring resistance to the NAIs appear to have lost this slow

binding phenotype [6,8–11]. Thus in addition to an increase in

IC50, loss of slow binding can also be a phenotypic marker of

reduced susceptibility.

Sensitivity to influenza NAIs is determined by two types of

enzyme inhibition assays, a fluorescent based assay which uses 4-

Methylumbelliferyl N-acetyl-a-D-neuraminic acid (MUNANA)

[12] and a chemiluminescent assay based on the NA-Star substrate

[13,14]. The inhibition assay includes preincubation of NA with its

inhibitor, initiation of the enzymatic reaction by addition of

substrate, and finally addition of a high pH solution which stops

the reaction, and enhances the fluorescent or chemiluminescent

signal. Protocols for the fluorescent assay vary between different

laboratories for the preincubation times and temperatures, assay

incubation time and buffers used, all of which can impact on the

IC50 [14]. Hence there is a need for a standardized assay to enable

comparisons of results between different laboratories. There has

been no study of how incubation times affect IC50s, although Pegg

et al. [4] reported that for binding of zanamivir to an N2 NA the

apparent Ki varied by 10,000-fold depending on the incubation
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conditions. The availability of more sensitive fluorimeters with

kinetics functions means we can continuously monitor changes in

enzyme activity and therefore changes in IC50 with time. We have

now modified the basic MUNANA assay, to a real time assay, and

have developed what we term IC50 kinetics assays. This expands

the information obtained from inhibition assays to also provide

information about the slow or fast binding phenotype of an NA

[11]. Thus this approach provides additional information about

potential NAI resistance and the impacts of mutations on inhibitor

binding. The chemiluminescent assay, commercialised as NA-

StarH (Applied Biosystems), is a rapid reaction, with a substrate

half life of around 15 min, and a very low signal strength

necessitating the addition of an enhancer. Hence this assay

currently does not lend itself to real time analysis. Our aim was to

investigate whether our IC50 kinetics assay could distinguish

differences in binding of the NAIs to a panel of wild type and

known mutants with decreased susceptibility. Our results demon-

strate that this assay can readily distinguish fast and slow binding

of the NAIs, and among the viruses tested the mutant viruses all

demonstrated loss of slow binding compared to the parent wild

type virus.

Methods

Viruses and inhibitors
The wild type and mutant viruses used were: A/Mississippi/03/

01 H1N1 wild type and H274Y mutant with decreased sus-

ceptibility to oseltamivir [15], A/Fukui/45/04 H3N2 wild type

and E119V mutant with decreased susceptibility to oseltamivir

[16], B/Perth/211/01 influenza B wild type and D197E mutant

with decreased susceptibility to all NAIs [17], NWS/G70C H1N9,

a reassortant with the HA of NWS and NA from A/tern/

Australia/G70C/75, wild type and E119G mutant with decreased

susceptibility to zanamivir and peramivir [9,18] and NWS/G70C

R292K mutant with decreased susceptibility to all the NAIs [10].

As an additional comparison for how different N1 NAs behaved in

the assays, we also used an egg cultured and gamma-irradiated

H1N1 pandemic influenza virus (A/Swine/Shepparton/2009).

The original sample for this virus was submitted by the Depart-

ment of Primary Industries, Victoria, Australia to the CSIRO,

Australian Animal Health Laboratory, Diagnostic, Surveillance

and Response group where the virus was cultured. The N1 NAs of

two gamma-irradiated H5N1 viruses were also assayed from a

clade 1 H5N1 virus from Vietnam, and a clade 2 H5N1 virus from

Indonesia [19]. Both clades were included since we have pre-

viously shown that the clade 2 Indonesian viruses had a higher

IC50 for oseltamivir compared to the clade 1 viruses, so we wanted

to see if this was reflected by any differences in the binding

kinetics. DANA was purchased from Sigma (Australia), zanamivir

and peramivir were synthesised by GlaxoSmithKline (Stevenage,

UK) and oseltamivir carboxylate was produced from oseltamivir

phosphate by Dr Keith Watson (Walter and Eliza Hall Institute,

Australia). Dilutions of inhibitors were prepared in water, ranging

from 0.001 nM to 100,000 nM and 7-serial log10 dilutions were

used, the concentrations depended on the wild type or mutant

virus assayed.

Enzyme assays
NA inhibition assays. Viruses were solubilised and

inactivated by the addition of CHAPS (3-[(3-Cholamidopropyl)

dimethylammonio]-1-propanesulfonate) to a final concentration of

1%. We used the fluorescent MUNANA-based assay for all

experiments [12]. Enzyme activity was titrated for all viruses to

ensure linearity of the enzymatic reaction over time. Assays

contained 50 ml of virus or 25 ml of virus+25 ml of inhibitor and

50 ml of 200 mM MUNANA (Carbosynth Berkshire, UK) diluted in

100 mM sodium acetate pH 5.5 and 10 mM CaCl2. We used a

BMG FLUOstar Optima reader and the kinetics function for real

time monitoring of the fluorescent signal. Inhibition assays were

performed in two ways. The first method used a 30 min

preincubation of viruses with serial dilutions of inhibitors followed

by the addition of MUNANA substrate [9]. The second method

added serial dilutions of inhibitors and MUNANA simultaneously

to the NA omitting the pre-incubation step. Fluorescence for both

assays was monitored at 1 min intervals for 60 min after addition of

substrate, to ensure there were no significant fluctuations between

the 10 min data points. Graphs of concentration of inhibitor versus

percent enzyme inhibition compared to the control were plotted

after 10, 20, 30, 40, 50 and 60 min. The IC50 was calculated as the

concentration of inhibitor resulting in a 50% reduction in

fluorescent units (FU) compared to the control. IC50s were then

plotted as bar graphs for each of the time points for both assays.

Alternatively IC50s were also calculated based on the difference in

FU between consecutive 10 min time points, i.e. 10–20, 20–30, 30–

40, 40–50 and 50–60 min and the relative rates were plotted against

the drug concentrations. The IC50 was the drug concentration

leading to 50% inhibition of the rate of reaction compared to the

control rate.

Km and Ki

To calculate the Michaelis Menten constant Km, hydrolysis of

MUNANA was measured at substrate concentrations ranging

from 6.25 to 200 mM, with readings taken every minute in the

BMG FLUOstar Optima reader. Experiments were carried out in

duplicate and repeated twice. The maximum slope for each

reaction was determined by comparing the slopes over different

overlapping time intervals. Initial velocities of the reactions were

then calculated by measuring the maximum slopes plotted as a

function of substrate concentrations. The Km was calculated using

a nonlinear regression function in GraphPad Prism. Setting the

constraints of the Km and the substrate concentration at 100 mM,

the Ki was calculated using nonlinear regression and one-site

competitive binding in GraphPad Prism [20].

Results

Kinetics of inhibitor binding
If an inhibitor is time dependent/slow binding, then preincu-

bation of NA in the absence of substrate should increase the

percentage of occupied substrate binding sites, leading to lower

initial IC50 values. Conversely a fast binding inhibitor should

quickly reach equilibrium reducing the impact of preincubation to

a minimum. Wild type and mutant viruses were either

preincubated with 10-fold dilutions of inhibitors for 30 min prior

to the addition of substrate or inhibitors and substrate were added

simultaneously to the virus. Both reactions were continuously

monitored for 60 min. We used DANA as our model for a fast

binding NAI to validate our hypothesis that there should be no

difference with or without preincubation for fast binding NA

inhibitors. Results confirmed that preincubation with DANA did

not affect the relative reaction rates for any of the wild type or

mutant viruses. Figures 1A and B show graphs of NA activity for

the 60 min reactions for A/Fukui/45/04 H3N2 wild type and

DANA.

In contrast to DANA, NA activity curves of viruses incubated

with oseltamivir, zanamivir and peramivir varied between no

preincubation and preincubation reactions, depending on whether

the virus was sensitive or had reduced susceptibility to each

Binding Kinetics of Neuraminidase Inhibitors
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Figure 1. Comparison of the effects of preincubation or no preincubation with inhibitor on the enzyme activity. A/Fukui/45/04 H3N2
wild type virus and E119V mutant virus with reduced oseltamivir susceptibility were incubated in serial dilutions of inhibitors, either with or without
preincubation, to compare the effects on the reaction rates. Left panels no preincubation, right panels 30 min preincubation. (A, B) wild type with
DANA, (C, D) wild type with oseltamivir, (E, F) E119V with oseltamivir, (G, H) E119V with zanamivir. The curves for both reactions for DANA (A, B), and
for E119V with oseltamivir (E, F) show a fairly constant reaction rate, and correlate with fast binding. The differences in the curves with and without
preincubation for oseltamivir binding to wild type virus (C, D) and for zanamivir binding to the E119V mutant (G, H) and the decrease in rates during
the reactions without preincubation, (C, G), are all consistent with a slow binding phenotype.
doi:10.1371/journal.pone.0023627.g001

Binding Kinetics of Neuraminidase Inhibitors

PLoS ONE | www.plosone.org 3 August 2011 | Volume 6 | Issue 8 | e23627



inhibitor. To demonstrate the differences in the types of curves we

observed results for A/Fukui/45/04 H3N2 wild type and E119V

mutant, with reduced oseltamivir susceptibility, are shown in

Figure 1C-H for oseltamivir and zanamivir.

With increasing drug concentrations differences in the shapes

of the curves were noted. Where the target virus was sensitive to

the respective inhibitor, (wild type virus and oseltamivir C, D;

E119V and zanamivir, G, H) the curves showed a decrease in

rate with no preincubation, consistent with the inhibitors binding

slowly, leading to increased inhibition with time. These results are

similar to those originally reported by Pegg et al. in 1994 [21]. In

contrast, after preincubation with inhibitor and addition of

substrate, there was a gradual increase in rate, suggesting some

dissociation of inhibitor. Reaction curves for the E119V mutant

virus incubated with oseltamivir were similar either with or

without preincubation, similar to what we observed with DANA

(Figure 1E, F). This is consistent with rapid binding of oseltamivir

to the E119V mutant.

To examine how these changes in catalysis are reflected in the

respective IC50s over the reaction period, the IC50s were

calculated for consecutive 10 min intervals for DANA, zanamivir,

oseltamivir and peramivir against our panel of wild type and

mutant viruses. Results are shown for each drug and virus

combination in Figures 2 and 3 over the 60 min reaction period.

IC50 kinetics of DANA
For DANA, preincubation with inhibitor did not increase

binding efficacy compared to no preincubation, indicated by the

similar IC50 values in Figure 2 for both reactions with each of the

viruses. Both methods indicated maximum binding occurred

rapidly, surprisingly with an increase in the IC50s over the 60 min

incubation period in both assays. Some reduced susceptibility to

DANA was seen with the B/Perth/211/01 D197E virus

compared to the wild type virus. This mutation affects the

interaction of R152 with the N-acetyl group on the sugar ring [11]

conferring reduced susceptibility to all inhibitors. DANA also

showed reduced binding to the E119G mutant NA, presumably

due to loss of hydrogen bonding between the 49-OH and the

COOH on the E119. Binding to the R292K mutant NA was not

tested for DANA since this mutation also affects binding of all

inhibitors through altered interactions with the C2 COOH group

[5], and would have required concentrations of around 1 mM

DANA. Although blank, this has been left in the graphs to enable

alignment of all the graphs in Figures 2 and 3.

IC50 kinetics of zanamivir
For the viruses known to be sensitive to zanamivir, a 30 min

preincubation step clearly resulted in lower IC50s compared to no

preincubation (Figure 3A). Furthermore, there was a gradual

decrease in IC50 over 60 min without the preincubation step. Both

results are consistent with slow binding. In contrast, for viruses

with reduced susceptibility to zanamivir preincubation did not

enhance binding, since there was very little difference in the final

zanamivir IC50s between the two reactions (Table 1). Without

preincubation the IC50s for B/Perth/211/01 D197E plateaued

rapidly, or for the NWS/G70C E119G and R292K they

increased. This is consistent with the loss of slow binding.

There was an increase in IC50 for all viruses as soon as substrate

was added after preincubation with zanamivir, indicating some

dissociation of inhibitor. The amount of dissociation varied among

the different wild type viruses. IC50s increased over the 60 min by

more than four-fold for the wild type B/Perth/211/01 and Clade

1 H5N1 viruses compared to two-fold or less for many of the other

viruses (Table S1).

Figure 2. Effect of incubation time on IC50s for DANA. Wild type and mutant viruses were preincubated for 30 min with DANA, or virus, DANA
and substrate were co-incubated without a preincubation step. IC50s were calculated after each 10 min up to 60 min, after the addition of the
MUNANA substrate. The IC50s were similar with (+) or without (2) preincubation, correlating with fast binding. Results are the mean of duplicate
assays. Virus abbreviations, wt = wild type, mutants have specific mutation defined. B = B/Perth/211/01, H1N1 = A/Mississippi/03/01, H3N2 = A/Fukui/
45/04, H1N9 = A/NWS/tern/Australia/G70C/75, pH1N1 = pandemic H1N1 A/Swine/Shepparton/2009, H5N1 cl1 = Vietnam clade 1 H5N1, H5N1
cl2 = Indonesian clade 2 H5N1.
doi:10.1371/journal.pone.0023627.g002
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IC50 kinetics of oseltamivir
Most viruses sensitive to oseltamivir demonstrated a decrease in

IC50 without preincubation during the 60 min reaction

(Figure 3B). The IC50s were lower after preincubation, although

interestingly the differences in the final IC50s with and without

preincubation were mostly less than seen for the binding of

zanamivir and peramivir, (Table 1). For those viruses with known

reduced susceptibility to oseltamivir, the B/Perth/211/01 D197E,

A/Mississippi/03/01 H274Y, A/Fukui/45/04 E119V, and

NWS/G70C R292K, there was clearly loss of slow binding since

preincubation had minimal effect on decreasing the IC50s

(Figure 3B). Interestingly the reactions discriminated differences

in the apparent dissociation rates for the different inhibitors.

Comparisons of the increases in IC50 between 10 and 60 min after

preincubation showed that in general there was a greater fold

increase for oseltamivir for wild type viruses, compared to

increases seen with zanamivir. Increases with zanamivir were

greater than those seen for peramivir (Table S1). Three wild type

viruses (B/Perth/211/01, Indonesian Clade 2 H5N1 and A/

Swine/Shepparton/ 2009 H1N1) had an intermediate phenotype

for dissociation of oseltamivir. The final IC50s with or without

preincubation were similar (Table 1), indicating they were not slow

binding compared to other wild type viruses. However, the

changes in IC50s over the 60 min time course were different to the

pattern seen with the more resistant mutant viruses (.20-fold

reduced susceptibility). After preincubation the IC50s of these

mutant viruses were already high and there were only small

increases in the IC50s over 60 min. In contrast, these three wild

type viruses had an initial lower IC50 after preincubation, but

there was more than a 10-fold increase in IC50 over the 60 min

reaction time (Table S1). Therefore by following the changes over

time we have identified differences in the apparent dissociation

which would not have been obvious from the standard single end

point IC50s.

IC50 kinetics of peramivir
For all the wild type viruses preincubation with peramivir

enhanced inhibition (Figure 3C). IC50s for most wild type viruses

were more than 8-fold lower than without preincubation

(Table 1). Decreases in IC50s were seen without preincubation

during the 60 min reaction. For most wild type viruses without

preincubation there was a greater change in IC50 during the

60 min reaction for peramivir than zanamivir, with the least

change seen in the oseltamivir reactions (Table S1). This is the

reverse seen for the preincubation reaction, and would relate to

the very slow binding of peramivir compared to the other two

inhibitors [22–24]. We also saw loss of slow binding with those

viruses with reduced susceptibility to peramivir, which include

the B/Perth/211/01 D197E, the A/Mississippi/03/01 H274Y,

the NWS/G70C E119G, and R292K. As seen for the B/Perth/

211/01 D197E with the other inhibitors, without preincuba-

tion there was a rapid plateau in IC50s. For the other mutant

viruses some dissociation was seen in the reactions without

preincubation.

Table 1. Comparison of final IC50 (nM) values of reactions with and without preincubation after 60 mina.

bB/Perth
wt

B/Perth
D197E

Miss’pi
H1N1
wt

Miss’pi
H1N1
H274Y

Fukui
H3N2
wt

Fukui
H3N2
E119V

5H1N9
wt

G70C
H1N9
E119G

G70C
H1N9
R292K

Swine
pH1N1

Avian
H5N1
Clade1

Avian
H5N1
Clade2

Zanamivir No pre 167 434 7.8 6.0 32.4 51.9 5.7 816 110 5.8 12.0 11.2

309 pre 8.9 258 1.9 2.2 3.8 3.4 2.7 678 94.8 1.4 2.5 1.3

No pre/pre 18.8 1.7 4.1 2.7 8.5 15.3 2.1 1.2 1.2 4.2 4.7 8.6

Oseltamivir No pre 144 660 7.3 2353 5.3 208 4.0 5.4 30139 6.8 4.1 21.4

309 pre 104 708 3.1 2440 1.7 260 2.8 2.9 24692 5.1 0.6 19.6

No pre/pre 1.4 0.9 2.4 1.0 3.2 0.8 1.5 1.9 1.2 1.3 7.4 1.1

Peramivir No pre 27.8 75.2 3.1 196 11.9 21.4 1.2 14.6 261 2.0 6.2 5.4

309 pre 2.8 41.5 0.4 153 1.3 2.1 0.4 13.3 260 0.3 0.3 0.6

No pre/pre 9.8 1.8 8.2 1.3 9.0 10.2 3.2 1.1 1.0 7.1 21.0 9.3

aIC50 values are the average of duplicate assays.
Viruses, wt = wild type, mutants have specific mutation defined. B/Perth/211/01, A/Mississippi/03/01, A/Fukui/45/04, A/NWS/tern/Australia/G70C/75, pandemic H1N1 A/
Swine/Shepparton/2009, Vietnam clade 1 avian H5N1, Indonesian clade 2 avian H5N1.
doi:10.1371/journal.pone.0023627.t001

Figure 3. Effect of incubation time on IC50s for zanamivir, oseltamivir and peramivir. Wild type and mutant viruses were preincubated for
30 min with inhibitor (+) before addition of substrate, or virus, inhibitor and substrate were all co-incubated without a preincubation step (2). IC50s
were calculated after addition of substrate for each 10 min up to 60 min. (A) Final higher IC50 values for binding of zanamivir without preincubation
compared to preincubation and the decreases in IC50s without preincubation over the 60 min correlate with slow binding. For D197E, E119G and
R292K final 60 min values are similar for both reactions, which indicate loss of slow binding and correlates with reduced susceptibility to zanamivir.
(B) For oseltamivir final higher IC50 values for reactions without preincubation compared to preincubation and decreases in IC50s without
preincubation indicate slow binding to wild type viruses. For D197E, H274Y, E119V, R292K final 60 min values are similar which indicates loss of slow
binding and correlates with reduced susceptibility to oseltamivir. (C) For peramivir final higher IC50 values for reactions without preincubation
compared to preincubation, and decreases in IC50s without preincubation indicate slow binding. For D197E, H274Y, E119G and R292K final 60 min
values are similar for both reactions, which indicate the loss of slow binding and correlates with reduced susceptibility to peramivir. Results are means
of duplicate assays. R = reduced susceptibility. Virus abbreviations, wt = wild type, mutants have specific mutation defined. B = B/Perth/211/01,
H1N1 = A/Mississippi/03/01, H3N2 = A/Fukui/45/04, H1N9 = A/ /NWS/ Tern Australia/ /70, pH1N1 = pandemic H1N1 A/Swine/Shepparton/2009, H5N1
cl1 = Vietnam clade 1 H5N1, H5N1 cl2 = Indonesian clade 2 H5N1.
doi:10.1371/journal.pone.0023627.g003
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Calculation of IC50 based on the rate of reaction
Traditionally the IC50 is calculated based on the relative FU for

the control and drug treated samples at the end of a 45–60 min

reaction period. As the IC50 is calculated based on the total FU, it

actually represents the average enzyme inhibition up to that time

point. This approach assumes the percent inhibition, and thus

IC50 is constant for the entire period.

However, our results have shown when inhibitors are slow

binding the reaction rates change more during the early parts of

the reaction, but may stabilize and become more constant later in

the reaction. Therefore, the analysis of IC50s based on reaction

rates in separate time intervals, where each IC50 is independent of

the preceding interval, might represent a more appropriate way to

investigate the potency of an NAI. Rates were calculated based on

the difference in FU between each 10 min. IC50s were calculated

as the drug concentration causing 50% inhibition of the rate of the

control reaction. In Table 2 we show how the IC50s compare

based on the FU method or the rate method for the A/

Mississippi/03/01 and A/Fukui/45/04 wild type viruses. With

both methods the IC50s changes during the reaction, and there is

up to a two-fold difference between the two methods after 60 min.

The IC50s based on cumulative FU are all higher than the IC50s

based on rates without preincubation and lower in the preincu-

bation assays. As our data indicates that the reaction becomes

more stable in the final intervals, the IC50s calculated for the last

interval may be more accurate than the IC50 based on total FU,

since it is not using the data from the preceding intervals.

However, this means kinetics assays would have to be used in

order to calculate the rates between time intervals. Hence while

potentially more accurate for slow binding inhibitors, this

approach is more time consuming for routine testing of large

numbers of isolates, when compared to calculating IC50s based on

the final FU value.

Effect of reaction time on Ki

Other groups also use the Ki as it is thought not to vary as much

as the IC50 with different reaction conditions, namely the substrate

concentration. We used two approaches to calculate the Ki; the

first calculated Kis for cumulative times (10–209, 10–309 etc.),

which is similar to single time points used by others, (e.g. a 45 or

60 min reaction) and the second calculated Kis for each

consecutive 10 min time interval (10–209, 20–309 etc.). The Km

values were calculated for the A/Mississippi/03/01 wild type

(15 mM) and H274Y mutant (27.6 mM), and these were used to

calculate the Ki values in GraphPad Prism. Results are shown in

Figure 4A and B. For the mutant virus the Ki values for oseltamivir

changed little over the course of the reaction with or without

preincubation. For wild type viruses these Ki values changed with

time in both methods with or without preincubation. This is not

surprising since the reaction rates were constantly changing

(exemplified by A/Fukui/45/04 in Figure 1), and the Ki depends

on the reaction rate for each time interval. For oseltamivir and the

wild type virus there was little change in the Ki after 40 min. For

zanamivir the Kis continued to change through the 60 min period,

indicating that the steady state had not yet been reached. The

changes in Ki were less for the cumulative method since this

averages the rates up to that time, whereas the Kis for consecutive

time intervals are independent of the rates for preceding times.

This data shows that although Ki is considered more invariant with

regard to assay conditions it is affected in the same way as IC50s by

the changing reaction rate over time.

Discussion

We have shown here that a simple extension of the standard NA

enzyme inhibition assay, to a real time IC50 kinetics assay provides

an insight into whether mutations affect the kinetics of drug

binding, without the need for complicated equations. The assay

can be carried out in any laboratory with a filter based fluorimeter,

and kinetics programs, hence requires no additional equipment or

software. By comparing the assay with and without preincubation

with inhibitor we demonstrated that preincubation enhances

inhibitor binding to wild type viruses, but has minimal effect on

inhibitor binding to many viruses with reduced susceptibility to the

NAIs, known to have lost the slow binding phenotype.

Importantly, loss of slow binding is only seen for the drug to

which the virus has reduced susceptibility. For example while we

see loss of slow binding of both oseltamivir and peramivir to the

H274Y virus, this has no impact on the binding kinetics of

zanamivir to which the virus remains sensitive. Conversely we see

loss of slow binding only of zanamivir and peramivir to the E119G

Table 2. Differences in IC50 (nM) calculated on relative slope between time intervalsa versus total fluorescent unitsb for A/
Mississippi/03/01 and A/Fukui/45/04 wild type viruses.

A/Mississippi/03/01 A/Fukui/45/04

FU time point 0–20 0–30 0–40 0–50 0–60 0–20 0–30 0–40 0–50 0–60

Zanamivir no pre 16.4 12.8 10.1 8.6 7.8 106.0 58.6 44.4 36.7 32.4

Zanamivir pre 1.0 1.3 1.5 1.7 1.9 3.1 3.5 3.6 3.7 3.8

Oseltamivir no pre 9.1 7.6 7.4 7.2 7.3 14.5 8.8 6.6 5.8 5.3

Oseltamivir pre 1.0 1.8 2.4 2.8 3.1 0.6 0.8 1.1 1.4 1.7

Rates time interval 10–20 20–30 30–40 40–50 50–60 10–20 20–30 30–40 40–50 50–60

Zanamivir no pre 16.0 8.3 6.0 5.5 5.0 47.5 54.3 25.3 19.7 17.3

Zanamivir pre 1.1 1.8 2.3 2.6 3.4 3.2 4.4 3.8 4.2 4.5

Oseltamivir no pre 7.5 6.2 6.7 6.8 7.9 7.2 4.7 3.8 3.8 3.4

Oseltamivir pre 2.3 3.9 4.6 5.0 5.6 0.9 1.7 2.5 3.3 3.4

aIC50s for FU are based on the drug concentration resulting in 50% inhibition of the uninhibited control FU.
bRates in FU/min are calculated for each drug concentration for each time interval and the IC50 is the drug concentration which inhibits the rate of the uninhibited

control by 50%. This approach separates each reaction time so it is independent of the rates of preceding time intervals.
doi:10.1371/journal.pone.0023627.t002
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virus, which has reduced susceptibility to both zanamivir and

peramivir, but is sensitive to oseltamivir.

We also identified three wild type viruses with an intermediate

phenotype, with similar final IC50s with or without preincubation,

contrary to what is expected if they are slow binding (B/Perth/

211/01, Indonesian Clade 2 H5N1 and A/Swine/Shepparton/

2009 pandemic H1N1). Unlike the mutant viruses where the IC50s

did not change much during the reactions, these viruses showed

more than a 10-fold increase in IC50 in the preincubation reaction.

This was much greater than for other wild type viruses.

Interestingly similar phenotypes with greater than 10-fold

increases in IC50s after preincubation were also seen with

zanamivir and peramivir binding to the B/Perth/211/01 D197E

mutant, thus suggesting these three wild type viruses have a low

level of resistance. Dissociation studies of inhibitors are tradition-

ally carried out by incubating virus or NA with excess inhibitor,

removing unbound inhibitor by the use of a column, then

following the enzyme activity [6,22–24]. Our IC50 kinetics assays

with the preincubation step indicate that despite the continued

presence of inhibitor in the assay mixture, some dissociation occurs

upon addition of substrate. Interestingly different relative dissoci-

ation rates can be distinguished between different inhibitors and

different viruses. Also surprising was that without preincubation

we saw rapid dissociation for DANA for all viruses and for most of

the mutants with the drug to which they had reduced sus-

ceptibility. A possible explanation for this might be that while the

inhibitor and substrate both bind rapidly, due to the higher affinity

of the inhibitors they initially bind faster than the substrate. Then

due to the higher substrate concentration this gradually displaces

the inhibitor, leading to an increase in IC50.

While ‘‘slow’’ or ‘‘fast’’ binding are phenotypic markers of NA

behaviour it is obvious that the final 60 min IC50s for the mutant

viruses either with or without preincubation are similar. We have

therefore done a semi-quantitative comparison. In general for all

mutant viruses (except the NWS/G70C) the differences in the

60 min IC50s between no preincubation and preincubation were

less than 2-fold for zanamivir, less than 1.5-fold for oseltamivir,

and less than 2-fold for peramivir. Although the differences for the

60 min IC50s between the no preincubation and preincubation for

NWS/G70C N9 were less than for other viruses, indicating that

inhibitor binding is more rapid, there was still a larger difference

for the wild type compared to the mutant virus.

It is well established that influenza B viruses are less sensitive to

oseltamivir in enzyme assays [25]. There are also reports of lower

clinical efficacy of oseltamivir in children infected with influenza B,

compared to influenza A [26]. We have recently shown that the

structural rearrangements of the E276, necessary for high affinity

binding for oseltamivir do not appear to occur in influenza B. This is

consistent with lack of slow binding and higher IC50s seen for

influenza B viruses [11]. Similarly the faster binding of oseltamivir

to the clade 2 H5N1 virus correlates with the higher IC50 [19].

Structurally this correlates with an H252Y difference between clade

1 and clade 2 NAs, which also prevents full rotation of the E276 [27]

in the clade 2 virus. Hence the difference in binding kinetics is

consistent with the known reduced susceptibility of both of the

influenza B and clade 2 H5N1 wild type viruses to oseltamivir.

While the apo structure of the pandemic N1 NA is known [28] the

structure of the complex with oseltamivir has not yet been

published. Since structural changes occur upon binding oseltamivir

we cannot predict if there is any structural correlation to its apparent

faster binding/dissociation to the pandemic H1N1 NA.

These results also demonstrate that there are factors other than

the displacement of a water molecule by the guanidino group of

zanamivir, or the rotation of the E276 for oseltamivir and

peramivir that lead to slow binding of the NA inhibitors. The

D197E mutation in the B/Perth/211/01 virus leads to altered

interactions of the R152 with the N-acetyl group on the inhibitors,

having no impact in the region of the guanidinium group or the

rotation of the E276 [11] yet it leads to loss of slow binding.

Characterisation of different mutants will help provide more

understanding of factors involved in the slow binding of the NA

inhibitors and what are the key interactions needed for high

affinity binding other than those already identified. This

information may be useful for design of new inhibitors.

Figure 4. Effect of incubation times on Ki values for A/
Mississippi/03/01 H1N1 wild type and H274Y mutant viruses.
Ki values were calculated either (A) for the cumulative reaction time or
(B) for each successive 10 min interval using the relative reaction rates
in GraphPad Prism. For viruses sensitive to an inhibitor the Ki values
changed over the course of the reaction. In contrast, for the H274Y virus
binding to oseltamivir to which it has reduced susceptibility, the Ki

stabilized more rapidly. Since the Kis in (A) are calculated based on the
average rates there is less change than in (B) where each interval Ki is
independent of the preceding rates. Hence in addition to the
incubation time having a differential effect on the Ki values for wild
type and mutant viruses, the time range used for the Ki calculations also
affects the value. Results are means of duplicate assays. Z-zanamivir,
O –oseltamivir (+) preincubation with inhibitor, (2) no preincubation.
doi:10.1371/journal.pone.0023627.g004
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There are other factors which are known to affect the IC50 and

fold resistance of a mutant, such as use of the fluorescent or

chemiluminescent assay and concentration of substrate [14,25].

All inhibitors appeared to dissociate after preincubation with

inhibitor on the addition of substrate, however there were different

rates of dissociation for different viruses and inhibitors. Oseltami-

vir dissociated faster in many wild type viruses compared to the

other two drugs, whereas dissociation of peramivir was very slow,

consistent with observations by the classical methods demonstrat-

ing slow dissociation [22–24]. Hence longer reaction times will

result in greater increases in the oseltamivir IC50s compared to

increases in the IC50s of the other inhibitors. Because there is less

change in the reaction rates with the mutant viruses their IC50 and

Ki values were not as affected by the incubation or reaction times.

However, our results here and previously published [11] clearly

demonstrate that incubation time is an important factor which can

affect both the IC50 and Ki differently for wild type and mutant

viruses. Furthermore different incubation times in different

laboratories would affect comparisons of the fold difference of

wild type and mutant viruses. Understanding which variables

affect the IC50s and Kis could ultimately lead to a better

understanding of what is needed for a standardized assay to

facilitate direct comparisons of isolates between different labora-

tories.
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