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Abstract: Single-phase two-dimensional (2D) indium monoselenide (γ-InSe) film is successfully
grown via solid phase epitaxy in the molecular beam epitaxy (MBE) system. Having high electron
mobility and high photoresponsivity, ultrathin 2D γ-InSe semiconductors are attractive for future
field-effect transistor and optoelectronic devices. However, growing single-phase γ-InSe film is a
challenge due to the polymorphic nature of indium selenide (γ-InSe, α-In2Se3, β-In2Se3, γ-In2Se3,
etc.). In this work, the 2D α-In2Se3 film was first grown on a sapphire substrate by MBE. Then, the
high In/Se ratio sources were deposited on the α-In2Se3 surface, and an γ-InSe crystal emerged via
solid-phase epitaxy. After 50 min of deposition, the initially 2D α-In2Se3 phase was also transformed
into a 2D γ-InSe crystal. The phase transition from 2D α-In2Se3 to γ-InSe was confirmed by Raman,
XRD, and TEM analysis. The structural ordering of 2D γ-InSe film was characterized by synchrotron-
based grazing-incidence wide-angle X-ray scattering (GIWAXS).

Keywords: InSe; solid-phase epitaxy; MBE; In2Se3

1. Introduction

Recently, two-dimensional (2D) transition metal dichalcogenides (TMDs) have at-
tracted strong interest from the scientific community because of their unique electrical
and optical properties, making them promising candidates for future electronic and op-
toelectronic applications [1,2]. In addition to 2D TMDs, 2D III-VI metal chalcogenides
such as In2Se3 and InSe were also shown potential applications in electronic devices [3–5]
and optoelectronic devices [6–8]. Particularly, InSe with a six monolayer device exhibiting
ultra-high mobility of 1000 cm2V−1s−1 at room temperature reported by Denis A. Bandurin
et al. [9] shows a promising candidate to surpass silicon technology in the future. Although
the exfoliation methods have been widely used to investigate 2D III-VI semiconductors’
exceptional electrical properties, synthesizing large-area high-quality layered materials
still requires bottom-up strategies, which are more suitable to be realized for industrial
applications. To date, epitaxial growth by chemical vapor deposition (CVD), pulsed laser
deposition (PLD), or molecular beam epitaxy (MBE) has been used for the synthesis of
2D III-VI metal chalcogenides [10–15]. However, the synthesis of single-phase indium
selenide is still a challenge by chemical vapor deposition (CVD). Because indium selenide
has multiple structures (γ-InSe, α-In2Se3, β-In2Se3, γ-In2Se3, etc.) that co-exist at room
temperature [16–18]. To be implemented for industrial applications, the growth of indium
selenide film with a single-phase conducted by precise control of In and Se sources is
required. Among the techniques used to fabricate 2D semiconductors, MBE is widely
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considered one of the most competitive, precisely controlling the ultra-low growth rate and
making the grown film clean for device fabrication [19–21].

In this study, the MBE system successfully demonstrated the epitaxial 2D γ-InSe thin
film via solid-phase epitaxy. The Raman, X-ray diffraction (XRD), and high-resolution trans-
mission electron microscopy (HR-TEM) image show that the 2D α-In2Se3 fully converted
to 2D γ-InSe. We believe that the 2D γ-InSe growth mechanism is solid-phase epitaxy due
to similar in-plane lattice and space groups between 2D α-In2Se3 and 2D γ-InSe.

2. Materials and Methods

Indium selenide films were deposited on c-plane sapphire substrates using a home-
made MBE system in an ultra-high vacuum chamber with a base pressure of 2 × 10−8

Torr. In and Se sources were evaporated using Knudsen cells (K-cells), and the growth
processes were monitored using in-situ RHEED(R-DEC Co., Ltd., Ibaraki, Japan). Before
the deposition, the sapphire substrates were degreased in acetone by ultrasonic cleaning
for 2 min, and then a mixture of phosphoric acid and sulfuric acid of 1:3 for 15 min. Finally,
the substrates were immersed in deionized water for 2 min. After the chemical cleaning
process, the substrates were introduced to the growth chamber, and the sapphire substrate
was thermal cleaned at 650 ◦C for 30 min. To identify the growth conditions for α-In2Se3
growth, the K-cells temperature of In (TIn) was varied at 720 ◦C, 730 ◦C, 740 ◦C, and 750 ◦C,
and Se (TSe) was fixed at 198 ◦C, denoted In/Se ratio 0.05, 0.06, 0.07, and 0.11, respectively.
Detailed calculation of In/Se ratio has been shown in Appendix A. The growth time of all
samples was 2 h and the growth process schematic was shown in Figure 1a. The optimal α-
In2Se3 film was achieved with In (TIn) at 740 ◦C and substrate temperature (Tsub) of 560 ◦C,
resulting in growth rates of 0.58 nm/min. After having single-phase α-In2Se3 film, the In
and Se sources were deposited on the α-In2Se3 surface by closing the Se shutter as a high
In/Se ratio at TIn of 740 ◦C, TSe of 198 ◦C, Tsub of 560 ◦C The crystallographic properties of
the α-In2Se3 and γ-InSe were examined using XRD (D8, Bruker corp. Billerica, MA, USA)
system and synchrotron-based grazing-incidence wide-angle X-ray scattering (GIWAXS)
at Taiwan Photon Source (TPS) TPS25A (National Synchrotron Radiation Research Center,
Hsinchu, Taiwan). The GIWAXS data were collected with an area detector. High-resolution
transmission electron microscopy (HR-TEM) (ARM200F, JEOL Ltd., Tokyo, Japan) was
used to probe the α-In2Se3 and γ-InSe microstructure and obtain atomic-scale images. The
Raman spectra were obtained using a 532 nm wavelength of solid-state laser (70 mW) as
the excitation source and a triple grating spectrometer (iHR-550, HORIBA, Ltd., Kyoto,
Japan) system as a signal detector.
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co-existence of both α-In2Se3 and γ-In2Se3 structures, which confirmed our Raman analysis 
that the film grown by TIn set at 750 °C had both α-In2Se3 and γ-In2Se3 vibration modes. 

To gain more insight into the α-In2Se3 crystal configurations and microstructure, one 
may examine the streaky line spacing in the RHEED pattern. Figure 2a,b shows the 
RHEED pattern and intensity profile of optimal α-In2Se3 films, and �⃑� and 𝑚ሬሬ⃑  are (101ത0) 
and (112ത0). The calculated �⃑�/𝑚ሬሬ⃑  is close to √3, where the �⃑� െ �⃑� spacing is 678 pixels and 𝑚 ሬሬሬሬ⃑ − 𝑚ሬሬሬሬ⃑  spacing is 1200 pixels, revealing that the α-In2Se3 crystalline layer is six-fold sym-
metry on the sapphire substrate. Figure 2c,d shows the SEM image and cross-sectional 
HR-TEM image of the α-In2Se3 microstructure. The shape of the α-In2Se3 grains exhibited 
a hexagonal pattern, and the microstructure of α-In2Se3 exhibited a layered structure on 
the sapphire, where the α-In2Se3 monolayer thickness is 1.2 nm. The growth mechanism 
of the α-In2Se3 on the sapphire substrate may be similar to quasi-van der Waals (vdW) 
epitaxy [28–30]. 

Figure 1. (a) The process flow of In2Se3 growth. (b) The RHE ED patterns of In2Se3 along 
with [101ത0] (on the left) and [112ത0] (on the right) arimuth of TIn varied at 720 °C, 730 °C, 
740 °C, and 750 °C, respectively. (c) Raman spectra and (d) XRD θ-2θ scans of In2Se3 
films with various TIn temperatures. 
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3. Results and Discussion

Figure 1b presents the in-situ RHEED patterns of In2Se3 with TIn varied from 720 ◦C
to 750 ◦C, and TSe fixed at 198 ◦C. As seen in the RHEED pattern, the stripe patterns were
obtained along with [1010] and [1120] azimuth, indicating that In2Se3 was in layer-by-layer
growth mode. When the TIn was lower than 740 ◦C, both the ring and streaky lines were
exhibited in the RHEED pattern, indicating the layered and polycrystalline structures of
In2Se3 were formed. Raman spectroscopy and XRD were used to identify the various
indium selenide structures [22–27]. Figure 1c shows the Raman spectra of In2Se3 thin
film on the sapphire substrate grown by TIn varied from 720 ◦C to 750 ◦C. The vibration
modes of In2Se3 at TIn at 740 ◦C exhibit three peak features at 112, 176, and 207 cm−1,
which were characteristic of α-In2Se3 [11,12,22–25]. When the TIn was up to 750 ◦C, the
vibrational mode appeared with two additional peaks at 146 cm−1 and 244 cm−1, which
were characteristic of γ-In2Se3 [11,12,22,23]. Figure 1d shows the XRD θ-2θ scans of In2Se3
grown by TIn varied from 720 ◦C to 750 ◦C. The (002) and (004) α-In2Se3 diffraction peaks
are at 9.43◦ and 18.89◦, and the peak of (006) γ-In2Se3 is at 27.03◦. As TIn at 740 ◦C, the
optimal α-In2Se3 films were achieved because of the relatively high diffraction intensity
and narrower full width at half maximum (FWHM)of 0.16◦ of the α-In2Se3 peaks. The
crystal grain size is estimated as 52.6 nm from the Scherrer equation. However, the TIn at
750 ◦C leads to the co-existence of both α-In2Se3 and γ-In2Se3 structures, which confirmed
our Raman analysis that the film grown by TIn set at 750 ◦C had both α-In2Se3 and γ-In2Se3
vibration modes.

To gain more insight into the α-In2Se3 crystal configurations and microstructure,
one may examine the streaky line spacing in the RHEED pattern. Figure 2a,b shows the
RHEED pattern and intensity profile of optimal α-In2Se3 films, and

⇀
a and

⇀
m are (1010)

and (1120). The calculated
⇀
a /

⇀
m is close to

√
3, where the

⇀
a − ⇀

a spacing is 678 pixels
and

⇀
m −⇀

m spacing is 1200 pixels, revealing that the α-In2Se3 crystalline layer is six-fold
symmetry on the sapphire substrate. Figure 2c,d shows the SEM image and cross-sectional
HR-TEM image of the α-In2Se3 microstructure. The shape of the α-In2Se3 grains exhibited
a hexagonal pattern, and the microstructure of α-In2Se3 exhibited a layered structure on
the sapphire, where the α-In2Se3 monolayer thickness is 1.2 nm. The growth mechanism
of the α-In2Se3 on the sapphire substrate may be similar to quasi-van der Waals (vdW)
epitaxy [28–30].
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⇀
m are indexed

as diffraction from [1010] and [1120]. (b) intensity profile of (a). (c) A top-view SEM image of the
α-In2Se3 film. (d) A cross-sectional HR-TEM image of the α-In2Se3 film.

From the above observations, we found that the single-phase α-In2Se3 could rely on
simply controlling In/Se ratio, and we noted that the in-plane lattice of γ-InSe (4.01 Å) is
close to that of α-In2Se3 (4.03 Å) and has the same space groups. Therefore, we proposed
the solid-phase epitaxy method to grow single-phase γ-InSe films, which uses a single
crystalline α-In2Se3 film as a template, followed by depositing In and Se sources for γ-InSe
crystal growth on the α-In2Se3 and then heating the film to crystallize it. Figure 3a shows
the process flow of InSe growth via solid-phase epitaxy. The optimal α-In2Se3 films were
achieved with TIn set at 740 ◦C and a growth temperature of 560 ◦C. Then, the TIn and TSe
were kept, and the K-cell of the Se shutter was closed to become a high In/Se ratio with
deposition times of 10 min to 50 min. Figure 3b presents the Raman spectra of InSe growth
with high In/Se ratios for various deposition times. The vibration modes of γ-InSe appeared
on the α-In2Se3 surface after the high In/Se ratio was deposited for 10 min, but when the
deposition time reached 50 min, only the γ-InSe vibration signal remained. Figure 3c shows
the XRD θ-2θ scans of InSe growth with high In/Se ratios for 10 min to 50 min deposition
times. The (002) and (004) γ-InSe diffraction peaks emerged while the deposition time
exceeded 10 min, and the peak intensity of γ-InSe gradually increased with the deposition
time. In contrast, the peak intensity of α-In2Se3 gradually decreased with the deposition
time. When the deposition time reached 50 min, the sample had only γ-InSe peaks. The
FWHM of (004) γ-InSe peaks is around 0.36◦, and the grain size is estimated as 23.5 nm. The
Raman and XRD results show that solid-phase epitaxy on the α-In2Se3 surface effectively
grows single-phase γ-InSe. Interestingly, α-In2Se3 also phase transitions to γ-InSe, probably
because of the high diffusivity of Indium. Figure 3d presents the RHEED pattern of γ-
InSe with high In/Se ratios for 50 min deposition time. The inset of Figure 3d shows the
intensity profile of γ-InSe. In addition to showing the stripe pattern of γ-InSe in the RHEED
pattern, the

⇀
a− ⇀

a and
⇀
m−⇀

m spacing of γ-InSe are 672 pixels and 1150 pixels, which is
similar to that of α-In2Se3 in Figure 2b. This confirmed the similar lattice spacing of γ-InSe
and α-In2Se3. Figure 4a shows the cross-sectional HR-TEM image of γ-InSe with high
In/Se ratios for 50 min deposition time. The microstructure of γ-InSe exhibited a layered
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structure and well-defined crystal lattice, in which the monolayer thickness of 0.8 nm is
only two-thirds of α-In2Se3. Even the α-In2Se3, initially on the sapphire substrate, was
transformed into the γ-InSe phase. To verify these local microstructure observations, we
utilized GIWAXS measurement to investigate the structure of low-dimension materials and
provide information on the structural morphology of an entire sample [31,32]. Figure 4b
presents the 2D reciprocal space map of the γ-InSe films via the solid-phase epitaxy. The
lateral face of (1010) γ-InSe is at qr = 1.88 Å−1. Since the γ-InSe is layered in nature and
the crystal dimension is confined along the out-of-plane direction, the γ-InSe shows a
vertical stripe pattern along the crystal truncation rod (CTR) in reciprocal space. Figure 5
illustrates the growth of γ-InSe via solid-phase epitaxy as a model. The single-phase α-
In2Se3 film grown via MBE system at 560 ◦C, followed by the high In/Se ratio deposition
on the α-In2Se3 film, the films underwent a thermodynamic transformation into γ-InSe
crystal growth on the α-In2Se3 surface. The formation energy for InSe and In2Se3 are
−0.527 and −0.322 eV/atom [33,34]. The practical indium selenide growth requires kinetic
considerations such as growth temperature and concentration of sources [22]. During the
γ-InSe crystal growth as a function of deposition times, the transformation mechanism
involved the α-In2Se3 to the γ-InSe transition, and the whole structure finally became a
single-phase γ-InSe structure.
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shows the intensity profile of the RHEED.
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Figure 4. (a) Cross-sectional HR-TEM image and (b) 2D GIWAXS profile of γ-InSe films with high
In/Se ratio at 50 min deposition time.
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Appendix A

The In/Se ratio is estimated from the vapor pressure and cell temperature. The vapor
pressure of In and Se are referenced from Eberl MBE-Komponenten GmbH [35,36], as
shown in Figures A1 and A2. The evaporation rate calculation of material is referenced
from Andrew Sarangan [37]. The evaporation rate of the material can be written as:

ZA = 3.5× 1022 P√
M× T

where
ZA is the rate in atoms/cm2/s
P is the vapor pressure in Torr
T is the vapor temperature in Kelvin
M is the molar mass
The calculated evaporation rate (ZSe(In)) and In/Se ratio are shown in the table below.

The TIn was varied at 720 ◦C, 730 ◦C, 740 ◦C, and 750 ◦C, and TSe was fixed at 198 ◦C; that
In/Se growth ratio was varied from 0.05, 0.06, 0.07, and 0.011.

Table A1. The In/Se ratio calculation referenced from the formula of evaporation rate of the materi-
als [37].

Material Mole Mass M Temperature
(◦C)

Vapor Pressure
(mbar)

Temperature
(K)

Za =
p/(M*T(K))0.5

Ratio =
Za(In)/Za(Se)

Se 79 198 1.00 × 10−3 471 5.18413 × 10−6

In 115 720 9.00 × 10−5 993 2.66329 × 10−7 0.051373951

In 115 730 1.00 × 10−4 1003 2.94443 × 10−7 0.056796897

In 115 740 1.30 × 10−4 1013 3.80881 × 10−7 0.073470621

In 115 750 2.00 × 10−4 1023 5.831 × 10−7 0.112477915
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