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Abstract: European Polistine wasps inhabit mainly temperate and warm climate regions. However,
the paper wasp Polistes biglumis represents an exception; it resides in mountainous areas, e.g., in the
Alps and in the Apennines. In these habitats, the wasps are exposed to a broad temperature range
during their lifetime. We investigated whether they developed adaptations in their metabolism to
their special climate conditions by measuring their CO2 production. The standard or resting metabolic
rate and the metabolism of active wasps was measured in the temperature range which they are
exposed to in their habitat in summer. The standard metabolic rate increased in a typical exponential
progression with ambient temperature, like in other wasps. The active metabolism also increased
with temperature, but not in a simple exponential course. Some exceptionally high values were
presumed to originate from endothermy. The simultaneous measurement of body temperature and
metabolic rate revealed a strong correlation between these two parameters. The comparison of the
standard metabolic rate of Polistes biglumis with that of Polistes dominula revealed a significantly lower
metabolism of the alpine wasps. This energy saving metabolic strategy could be an adaptation to the
harsh climate conditions, which restricts foraging flights and energy recruitment.
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1. Introduction

The paper wasp Polistes biglumis resides mainly in mountainous areas, e.g., in the Alps and
in the Apennines [1]. It is the only paper wasp that inhabits an alpine climate in Europe, and it is
found at the boreal limit of Polistine wasps’ distribution in Japan [2]. The wasps live in typical rocky
habitats with highly variable microclimate conditions [3]. The weather in spring is often rainy with
low temperatures, but in summer it can be also quite warm. Therefore, the wasps are exposed to a
broad temperature range during their lifetime, which is a challenge for the survival of the colonies.
Due to the harsh climate conditions, the colony cycle is fairly short, beginning in April or May and
ending, at the latest, in September, and the nests inhabited by the colonies are small and consist of a
maximum of 30 wasps [1].

In (ectothermic) insects, the metabolism strongly depends on ambient temperature, see e.g., [4],
and in Polistine and Vespine wasps it increases in an exponential course [5,6]. For modelling the
energetic demand of a wasp colony, it is indispensable to know the wasps’ metabolism in relation to its
dependence on ambient temperature. Especially, to assess the energetic demand and their chance of
survival under future climate conditions, such investigations are of great importance.

We investigated the wasps’ standard metabolic rate (SMR) and the metabolism of active wasps
in nearly the entire temperature range to which they are likely exposed to in their habitat during
the breeding season. The standard metabolic rate, usually equated with resting metabolism, is a
very important parameter in an insect’s life, representing the energetic costs of simple subsistence.
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It determines an individual’s minimum energy requirement under a standardized set of conditions,
and is a fundamental parameter for comparing the relative energy expenditures of particular activities.
As Polistine wasps spend a lot of time (more than 50%, personal observations) resting at their nest,
the SMR is an important parameter in their energy balance. Additionally, the metabolism during
activity (walking, grooming) was also determined, in order to assess the energetic demand of activity in
comparison to the SMR. As Polistine wasps are capable of endothermic heat production, see e.g., [7,8],
which requires additional energy, we conducted special experiments to measure the metabolism in the
endothermic state and to evaluate the relation between endothermic heat production and metabolic
rate. Furthermore, we determined the critical thermal maximum (CTmax), the point where coordinated
activity ceases.

The metabolic cold adaptation theory predicts that populations or species from cooler environments
should have either a higher metabolic rate at a certain temperature or a steeper relationship of respiratory
metabolism on temperature (a greater sensitivity to temperature), see e.g., [9–12]. However, the general
validity of this hypothesis is still contentious [10]. Special metabolic adaptations may be necessary to
survive in habitats with harsh conditions. These adaptations may, for example, be an increase of the
energy metabolism to support activity at low temperatures [9–12]. However, there is a considerable
amount of reports of animals, which do not react in this way, or did not evolve in this direction [12].
An alternative strategy to be successful in a cold environment is to reduce the overall energy demand,
either by simple behavioral means like prolonged resting phases or movement to cooler microhabitats,
or by reduction of the energy metabolism. In social insects like Polistine wasps, which must stay
on the nest to protect their brood, metabolic adaptations have to be considered. In order to reveal
environmental adaptations, we included data of Polistes dominula from a study by Käfer et al. [5],
a species from a different habitat and microclimate. In contrast to Polistes biglumis, Polistes dominula
is a species with a very large distribution range in different climate regions. The aim of this study,
therefore, was to investigate, whether P. biglumis has developed a special mode of adaptation of their
metabolism in response to the extreme environmental conditions in their habitat.

2. Materials and Methods

2.1. Animals

A first series of experiments on resting and active metabolism was conducted in August 2018.
Workers of Polistes biglumis were collected from seven nests at a natural site at Krakauhintermühlen
(47◦11′20.29” N, 13◦57′22.03” E; 1320 m ASL) in Styria, Austria. During the time of experiments, which
lasted about two weeks, the wasps were kept in small cages at room temperature (~21–25 ◦C) and
were provided with honey. A second series of experiments on the wasps’ active metabolism and
endothermic heat production was conducted in August 2019, where workers of Polistes biglumis from
three nests at Teichalm (47◦21′19.24” N, 15◦26′38.11” E; 1170 m ASL) in Styria, Austria, were collected
and kept similar like in 2018.

2.2. Experimental Set-Up and Measurement Procedures

Prior to the experiments, the wasps were weighed with an accuracy of 0.1 mg (Schimadzu
AUW-120DV, Nishinokyo Kuwabara-cho, Nakagyo-ku, Kyoto, Japan). Then, the wasps were put in
small plastic tubes (length 35 mm, diameter 9 mm, volume 2.23 mL), which served as measurement
chambers (Figure 1a). Eight of these tubes were connected with an eight-channel multiplexer (RM
Gas Flow Multiplexer, Sable Systems, Las Vegas, Nevada, USA), which controlled the flushing and
closing of the chambers and enabled the serial measurement. The chambers were submerged in a
water bath (Julabo F33, JULABO Labortechnik GmbH, Seelbach, Germany) for temperature control
with an accuracy of 0.1 ◦C. Eight wasps were tested per day at only one experimental temperature.
The experiments were conducted in a temperature range of 5 to 45 ◦C, in steps of 5 ◦C. Trials with
an experimental temperature of 15, 25, and 35 ◦C were conducted two times, the others at 5, 10, 20,
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30, and 40 ◦C, only at one time. After a habituation time of 15 min, the light was turned off and the
wasps were left in the dark in order to get resting phases. One experiment lasted four hours with
the exception of the 5 ◦C trial, which lasted 13 h to accumulate enough CO2 in the chambers for an
accurate measurement.Insects 2020, 11, x 4 of 12 
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Figure 1. (a) Eight measurement chambers to measure the CO2 production rate of active and resting
wasps (Polistes biglumis). (b) Seven measurement chambers in the water bath to measure the endothermic
activity and CO2 production rate of active and resting wasps (Polistes biglumis). The arrow indicates the
stocked measurement chamber.

A video camera was installed to monitor the wasps’ activity and to assess the behavior during
later evaluation (Sony GDR-CX730E, Sony Europe Limited, Vienna, Austria). For further data analysis,
we distinguished between resting and active behavior (mainly walking and grooming).

In these experiments the carbon dioxide emission from the wasps’ respiratory metabolism (CO2

production) was measured. It is commonly used as an indirect measure of an organism’s metabolic
rate. The respirometry measurements were conducted in “stop-and-go” mode. For this purpose,
the multiplexer with the measurement chambers was connected to a differential infrared gas analyser
(DIRGA; URAS 14, ABB, Zürich, Switzerland). The insects’ CO2 release was measured with an
accuracy of ~2 ppm. To maximize the system sensitivity (<0.2 ppm), the air was taken from outside
the laboratory. Before it entered the reference tube of the DIRGA, the air was pumped through a
10 l container to dampen fluctuations in CO2 content, passed the pump and mass flow controllers
(0–1000 mL min−1, Brooks 5850 S), and then passed through another container (5 l) for additional CO2

and pressure fluctuation damping. To maintain the relative humidity in the measurement chambers at
about 50%, the air was humidified by passing it through two bottles filled with distilled water. The
air entering these water bottles had to passage a “bubbler” to produce air bubbles. Before the air
entered the URAS reference and measurement tubes (where it was heated to 60 ◦C), it was dried by
passing it through two Peltier-driven cool traps (10 ◦C). The airflow in the system was 144 mL min−1.
The volumes (nl) of CO2 production reported in this paper refer to standard (STPS) conditions (0 ◦C,
101.32 kPa = 760 Torr). The CO2 release was recorded at one-second intervals. At the beginning and at
the end of each experimental run the gas analyser was calibrated automatically in zero and end point
by the use of internal calibration cuvettes, and the data were corrected for any remaining drift or offset.
For further methodical details see [13].

In a second series of experiments in 2019, we investigated the relation between metabolism
and endothermic heat production by measuring the CO2 production and the body temperature
simultaneously. Single wasps were placed in a self-constructed plastic measurement chamber
(Figure 1b). The inner dimension of the measurement chamber was 74 × 13 × 23 mm, which results
in a volume of 26 mL. The upper part of the chamber was closed by a thin cellophane film, which
allowed the measurement of the wasps’ body surface temperature by infrared thermography. The
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lower part of the chamber was submerged in a water bath (Julabo F33, JULABO Labortechnik GmbH,
Seelbach, Germany) for temperature control. For the measurement of the wasps’ CO2 production,
the chamber was connected to the differential infrared gas analyser as described above. The ambient
temperature in the chamber was controlled by an inserted thermocouple (NiCr/Ni) connected to a
data logger (ALMEMO 2890-9, Ahlborn GmbH, Holzkirchen, Germany). To evoke high activity and
an endothermic reaction in the wasps, we shook the chamber when the wasps were calm. After ten
minutes, where we had tried to provoke high activity, we turned off the light and left the wasps alone
to get data for low activity or resting phases. One trial lasted 20 to 30 min, and then another wasp was
tested. The experiments were conducted with sixteen wasps at a temperature range of 23–31 ◦C.

The surface temperature of the wasps’ body (head, thorax, abdomen) was measured by infrared
thermography at a frame rate of 30 Hz (T650sc, FLIR Systems Inc., Danderyd, Sweden). The measured
body temperature was calibrated to ~0.5 ◦C accuracy, assuming a wasp cuticle infrared emissivity
of 0.97 [14,15] and using a proprietary Peltier-driven reference source of known temperature and
emissivity for camera calibration. For details see [13–16]. Infrared data collection was done in real-time
and stored digitally on an internal memory card or externally at a personal computer’s hard drive,
and evaluated later in the laboratory. Evaluation of the surface temperatures of head (Thead), thorax
(Tthorax), and abdomen (Tabdomen) (Figure 2) was done with AGEMA Research software (FLIR Systems
Inc., Wilsonville, USA) controlled by a proprietary Excel (Microsoft Corporation, Redmond, USA) VBA
macro. Activity and behavior were also evaluated from the infrared video recordings.
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Figure 2. Thermogram of a wasp (Polistes biglumis) in a measurement chamber to measure the
endothermic activity and CO2 production rate.

To relate the respiration measurements to the thermographic measurements, the evaluated CO2

production rate (VCO2, nL s−1) and the thorax temperature excess (Tthorax–Tabdomen) were plotted in
dependence on time, compensated for the delay of VCO2 recordings relative to the thermographic
measurements (Figure 5). Then we averaged the CO2 production rate and the thorax temperature
excess at phases of high activity (mainly walking) and low activity (grooming or resting), which
lasted one to four minutes, and correlated these two parameters (Figure 5). This data evaluation was
conducted separately for experiments at mean experimental temperatures (±SD) of 25.7 ± 0.7 ◦C and
29.9 ± 0.5 ◦C.

2.3. Critical Thermal Maximum (CTmax)

To determine the upper limit of activity, we conducted a so-called “critical thermal maximum”
experiment (activity CTmax) [17]. In two trials, seven wasps were individually placed in the plastic tubes
as described above (in the first series of experiments) and put in the water bath. The temperature of the
water bath was increased from 25 ◦C to 55 ◦C at a dT = 0.25 ◦C min−1. The point of time when controlled
motoric activity ceased and muscle spasms started was determined via behavioral observation, and the
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temperature at that time (CTmax) was extracted from the logger file of a thermocouple, which was
recording the temperature inside the measurement chamber. For further information see [13,18].

2.4. Microclimate Measurements

To measure the microclimate during a breeding season, from May to October 2018 data loggers
were installed at a nest of Polistes biglumis, and, for comparison at a nest of Polistes dominula. The
temperature at the nest of Polistes biglumis was measured in an open forest area at Teichalm (47◦21′19.24”
N, 15◦26′38.11” E) in Styria, Austria with an MSR data logger (MSR Electronics GmbH, Seuzach,
Switzerland). The temperature at the nest of Polistes dominula was measured at a loft in Gschwendt
(47◦10′41.62” N, 15◦34′22.52” E) in Styria, Austria with an Ahlborn data logger (ALMEMO 2290-8,
Ahlborn GmbH, Holzkirchen, Germany). To characterize the climate in the region, we present the
ambient temperature recordings from May to October 2018 of a public weather station at the Schöckl
mountain (ZAMG—Zentralanstalt für Meteorologie und Geodynamik, Vienna, Austria; 47◦11′53.25”
N, 15◦27′56.18” E; 1445 m ASL; 15 km from the nests of Polistes biglumis), which is the nearest one to
Teichalm, and of an own weather station of the University, in Gschwendt (47◦10′41.62” N, 15◦34′22.52”
E; 522 m ASL) (Figure 3). This weather station was in the close vicinity (50 m) to the nests of
Polistes dominula.
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Figure 3. Temperature recordings of the microclimate at a nest of (a) Polistes biglumis and (b) Polistes
dominula, and standard recordings of the ambient temperature at the nearest weather station to the
Polistes biglumis nest at (c) Schöckl (47◦11′53.25” N, 15◦27′56.18” E; 1445 m ASL) and to the Polistes
dominula nest at (d) Gschwendt (47◦10′41.62” N, 15◦34′22.52” E; 522 m ASL). The blue line (dashed)
indicates the mean of the recorded period from May to October 2018, and the red line (solid) marks the
threshold of onset of foraging activity.



Insects 2020, 11, 165 6 of 12

2.5. Data Analysis

All calculations were done with MS Excel (Microsoft Corporation, Redmond, WA, USA) and with
Origin 2017 software (OriginLab, OriginLab Corporation, Northampton, MA, USA). Curve fitting was
done with Origin. The average values for the evaluated parameters mentioned in the results derive
from the curve fitting. Statistics were done with Statgraphics software (Statgraphics Centurion XVI,
StatPoint Technology Inc., The Plains, VA, USA). First, “general linear model (GLM)” statistics was
performed to test the influence of ambient temperature and species on the measured and calculated
parameters. Furthermore, simple linear regressions in combination with an ANOVA were performed
to test the dependence of the metabolic rate on ambient temperature and to compare between activity
or resting metabolic rate or species specific metabolic rate.

3. Results

3.1. Standard Metabolic Rate (SMR) and Activity Metabolic Rate (AMR)

The mean weight of all investigated wasps in these experiments was 65.4 ± 15.1 mg (n = 87). The
SMR of these wasps increased with ambient temperature in a typical exponential course (Figure 4).
The lowest mean value of VCO2 (derived from the curve fitting in Figure 4) at an ambient temperature
of 5 ◦C was 0.14 µL g−1 min−1. The VCO2 increased to 3.29 µL g−1 min−1 at 15 ◦C, to 9.65 µL g−1 min−1

at 25 ◦C, to 21.61 µL g−1 min−1 at 35 ◦C, and reached 44.01 µL g−1 min−1 at 45 ◦C.
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Figure 4. (a) Means ± SD and (b) single values of CO2 production rate in dependence on ambient
temperature (Ta) of active (red) and resting (black) wasps (Polistes biglumis). The dotted line (blue)
represents the CO2 production rate of Polistes dominula from Käfer et al. [5].

The AMR of wasps, which were mainly walking or grooming, could not be described by a simple
exponential function (Figure 4), so we used a B-spline to connect the data points. It was always higher
than the SMR (p < 0.001, ANOVA). Below 15 ◦C, we could not observe any activity, the wasps remained
calm after insertion into the measurement chamber. At 15 ◦C, the VCO2 of the active wasps was 6.08 µL
g−1 min−1. It increased to 24.63 µL g−1 min−1 at 25 ◦C and remained approximately at this level at 30
and 35 ◦C. At higher temperatures, the VCO2 increased further and reached 52.03 µL g−1 min−1 at
45 ◦C.

3.2. Endothermic Performance and Metabolic Rate

In these experiments, the mean weight of the wasps was 66.2 ± 16.9 mg (n = 16). The endothermic
heat production of the wasps’ thoracic muscles is clearly visible in Figure 2. As a measure for the wasps’
degree of endothermy, we chose the difference between the temperature of the thorax and the abdomen,
the so-called thorax temperature excess (Tthorax − Tabdomen). Despite heavy stimulation the degree
of endothermy remained small. The maximum thorax temperature excess at a mean experimental



Insects 2020, 11, 165 7 of 12

temperature of 25.7 ◦C was 2.7 ◦C (n = 691 evaluated thermograms). At a mean experimental
temperature of 29.9 ◦C, it was 2.9 ◦C (n = 1148).

A strong positive correlation between the wasps’ thorax temperature excess and the CO2 production
rate could be detected (Figures 5 and 6). Figure 5 represents one example of an experiment. The
simultaneously measured thorax temperature excess and the CO2 production rate are plotted in
dependence on time, and the insert shows the correlation between the two parameters. The thorax
temperature excess increased strongly with an increasing CO2 production rate. In Figure 6, the results
of all investigated wasps for the two experimental temperatures are presented and reveal the strong
correlation of the two parameters at both conditions (p < 0.0001). From the curve fitting of the SMR
(Figure 4), we extracted the threshold limit values for the resting metabolism at 25 ◦C (11.2 nL s−1) and
30 ◦C (16.0 nL s−1). As resting wasps should exhibit no (or only weak) endothermic activity, we therefore
assumed the temperature excess to be zero (or close to zero) at these values. With this assumption,
we calculated the curve fitting for the two temperature conditions with an allometric function. Both
curves show a very similar course, with an almost linear increase of the thorax temperature excess at
higher CO2 emission rates (Figure 6).
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3.3. The Critical Thermal Maximum (CTmax)

The upper limit of coordinated movement or activity CTmax determined in 14 wasps (mean weight
70.6 ± 13.0 mg) was observed at 47.2 ± 0.5 ◦C.

4. Discussion

Temperature is one of the most important abiotic factors determining an insect’s energy balance.
In this study, the standard metabolic rate (SMR) of Polistes biglumis was found to increase strongly in
an exponential course with ambient temperature as expected (Figure 4). A similar correlation between
SMR and temperature was also detected in other Polistine and Vespine wasps, e.g., Polistes dominula [5]
and Vespula vulgaris [6]. It is the underlying basic biochemical and physiological processes, which
determine an insect’s minimum energy demand. These processes are considered similar in related
species [19]. However, regarding the thermal sensitivity of insect metabolism (Q10), i.e., the influence
of ambient temperature on it, there nevertheless may occur differences in the energy demand of
closely related species or even subspecies, living in different habitats, see e.g., [9,10,20–22]. Indeed,
we could detect such differences, when we compared the SMR of Polistes biglumis with that of Polistes
dominula from the study by Käfer et al. [5]. With the exception at low temperatures (5 ◦C), the SMR
of Polistes biglumis was always considerably below that of Polistes dominula and differed significantly
(Figure 4; p << 0.0001, ANOVA). The covariate ‘weight’ had no significant effect (p = 0.11). The
metabolic rate of Polistes dominula is about 73%, 87%, and 100% higher than that of Polistes biglumis
(at Ta = 40 ◦C, 30 ◦C, and 20 ◦C, respectively). The smaller size of P. biglumis cannot account for its
lower metabolism, because smaller insects tend to have a higher mass-specific metabolic rate [6,23,24].
This means a great difference in the energy expenditure during the resting phases of the wasps.
As Polistine wasps spend a lot of time motionless at their nests (more than 50% in P. dominula and
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P. biglumis, personal observations), these phases make up a not negligible amount of their energy
demand. The question arises: Why there are such differences in the SMR of these quite similar paper
wasps? An explanation could be found in the different habitats and climates the two species inhabit.
Polistes dominula is an originally Mediterranean species, which settles now mainly in the lowlands
of the Mediterranean and the temperate climate regions. European Polistes biglumis, on the other
hand, inhabits mainly mountainous regions in the Apennines and the Alps, with a harsher alpine
climate. Foraging in Polistine wasps depends strongly on ambient temperatures [25]. Polistes biglumis
start foraging activity only at temperatures above 20 ◦C (authors’ unpublished observations). In the
mountainous climate, the foraging activity is more restricted due to more frequent clouds or rainy
weather conditions and generally lower temperatures. We could demonstrate this with temperature
recordings of the microclimate at nests of both wasp species (Figure 3). The recordings showed that
the mean temperature during the breeding season in 2018 was clearly lower at a Polistes biglumis nest
(16.9 ◦C versus 21.0 ◦C), and also the mean temperature at the nearest weather station was clearly
lower in the mountainous region (12.6 ◦C versus 18.0 ◦C). In addition, from the temperature curves we
can conclude that the frequency of temperatures higher than 20 ◦C was lower in the Polistes biglumis
habitat. This means that Polistes biglumis has less time with suitable temperatures for foraging flights
available. Therefore, the wasps have to be more economical with their energy resources, and have
developed towards a lower SMR as an adaptation to a harsher environment than comparable related
species from warmer habitats. How this is achieved is still unknown. Beside other pathways of energy
metabolism, both a decrease in mitochondrial density or mitochondrial aerobic capacity have to be
taken into account [12].

What does this finding mean in the context of an increasing temperature due to climate change?
On the first hand, an increasing temperature means an increasing energy demand for the SMR. On
the other hand, it could also mean more favourable temperature conditions for foraging. However,
we cannot foresee whether there will be more prey available or that the wasps will be able to catch
more prey. Therefore, forecasting whether the wasps will benefit or suffer from higher temperatures is
not simple and requires further research. Regardless, wasps are looking at an uncertain future and
should be adapted to unpredictable weather.

The metabolic cold adaptation theory predicts that populations or species from cooler environments
should have either a higher metabolic rate at a certain temperature, or a steeper relationship of
respiratory metabolism with temperature (a greater sensitivity to temperature), see e.g., [9,10,21,22].
However, as already stated by Terblanche et al. [10], the generality of this hypothesis is contentious.
While there is evidence that this may occur in aquatic [12] and terrestrial poikilothermic animals [9–11],
May et al. [22] could not find support in a comparison of northern and southern populations of gypsy
moths (Lymantria dispar) introduced to America. Our comparison, between P. biglumis from colder
mountainous habitats showing a considerably lower metabolic rate and sensitivity to temperature
than P. dominula from the warmer lowlands (Figure 4), seems to call the generality of the metabolic
cold adaptation theory in question. These two related species [26] may have had ample time to adapt
to their specific environments. As was already mentioned, P. biglumis may have been forced to develop
an even more energy-extensive living style than P. dominula, i.e., to save energy whenever possible. In
conclusion, we think that one should consider the metabolic cold adaptation theory as a possibility of
reaction or adaptation, and not so much as a general necessity.

Terblanche et al. [10] pointed out the necessity to use only true resting (standard) metabolic curves
in such comparisons. Otherwise, the metabolic rate to temperature relationship may be considerably
different and variable. Therefore, we followed a strict protocol to separate measurements of resting
from those of active individuals. As we had expected, the metabolism of active wasps was always
higher than their resting metabolism, especially at 25 ◦C and 30 ◦C (Figure 4). Locomotion is always
accompanied by additional energy demand, see e.g., [27–32]. In Polistes dominula, the energy demand
of all non-resting behaviors (walking, buzz-walking, and interaction behavior) were at least twice as
high as the resting rate, with buzz-walking having the highest rate [32]. The rate of energy use in
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buzz-walking (a combination of rapid walking and very brief airborne intervals) averaged 7.1 times
that of rest. In our investigation, the highest mean of active metabolism (of walking wasps) was on
average 2.7 times that of the resting metabolic rate (at Ta = 25 ◦C, Figure 4). However, the variability
(standard deviation) was enormous. Therefore, we presumed that there could be a difference in the
wasps’ endothermic state, and we conducted additional experiments. The simultaneous measurement
of the body temperature and the metabolic rate of the active wasps confirmed this and revealed a
strong positive correlation between the two parameters (Figures 5 and 6). However, endothermy by
activation of thoracic flight muscles, and thus the increase of metabolism, remained moderate despite
heavy stimulation of the wasps (Figures 2, 5 and 6). This underpins the energy-saving nature of these
paper wasps. In foraging Vespine wasps [33,34] and honeybees [35,36], this relationship between
the endothermic performance and metabolism not only extends to much higher values, but they can
(and do) also maintain endothermy for much longer periods. In these strongly endothermic insects,
however, the relationship is much more complex [34,36–38].

In contrast to the SMR, the upper thermal limit or CTmax of activity we determined for Polistes
biglumis (CTmax = 47.2 ◦C) was virtually identical to that of Polistes dominula (CTmax = 47.1 ◦C) [18]. This
is a surprising result, as one would expect that the species living in a warmer habitat has been endowed
with a higher thermal tolerance (upper thermal limit), as was determined in seed bug species [39].
Therefore, we suggest that the lower metabolism and thermal sensitivity in P. biglumis is not a result of
a simple shift of the range of thermal tolerance (CTmax − CTmin) to higher temperatures, as would
be expected by a shift of the whole metabolic curve to higher temperatures (as might be expected by
generally higher thermal optima of the involved enzymes).

5. Conclusions

The SMR of Polistes biglumis is significantly lower than that of Polistes dominula. We suggest its
economizing lifestyle to be an adaptation to the harsher climate conditions in its mountainous habitat.

Author Contributions: H.K. (Helmut Kovac), H.K. (Helmut Käfer) and A.S. designed the experiments. H.K.
(Helmut Kovac) and H.K. (Helmut Käfer) conducted the experiments. H.K. (Helmut Kovac) and A.S. led the
study. H.K. (Helmut Kovac) and A.S. analysed the data. H.K. (Helmut Kovac) and A.S. wrote the manuscript. All
authors participated in discussing the results and checking the paper. All authors have read and agreed to the
published version of the manuscript.

Funding: The research was funded by the Austrian Science Fund (FWF): P30350-B25.

Acknowledgments: We greatly appreciate the help with data evaluation by C. Malej, L. Stacherl and C. Tafrali. We
thank Wolfgang Schuehly for improving the English language. We are grateful to the referees for their constructive
input that improved the manuscript.

Conflicts of Interest: The authors declare no conflicts of interest. The funders had no role in the design of the
study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, and in the decision to
publish the results.

References

1. Fucini, S.; Di Bona, V.; Mola, F.; Piccaluga, C.; Lorenzi, M. Social wasps without workers: Geographic
variation of caste expression in the paper wasp Polistes biglumis. Insect. Soc. 2009, 56, 347–358. [CrossRef]

2. Yamane, S.; Kawamichi, T. Bionomic Comparison of Polistes biglumis. Kontyû Tokyo 1975, 43, 214–232.
3. Lorenzi, M.C.; Turillazzi, S. Behavioral and ecological adaptations to the high mountain environment of

Polistes biglumus bimaculatus. Ecol. Entomol. 1986, 11, 199–204. [CrossRef]
4. Chown, S.L.; Nicolson, S.W. Insect Physiological Ecology: Mechanisms and Patterns; Oxford University Press:

Oxford, UK, 2004.
5. Käfer, H.; Kovac, H.; Oswald, B.; Stabentheiner, A. Respiration and metabolism of the resting European

paper wasp (Polistes dominulus). J. Comp. Physiol. B 2015, 185, 647–658. [CrossRef] [PubMed]
6. Käfer, H.; Kovac, H.; Stabentheiner, A. Resting metabolism and critical thermal maxima of vespine wasps

(Vespula sp.). J. Insect. Physiol. 2012, 58, 679–689. [CrossRef]

http://dx.doi.org/10.1007/s00040-009-0030-4
http://dx.doi.org/10.1111/j.1365-2311.1986.tb00295.x
http://dx.doi.org/10.1007/s00360-015-0915-7
http://www.ncbi.nlm.nih.gov/pubmed/26135799
http://dx.doi.org/10.1016/j.jinsphys.2012.01.015


Insects 2020, 11, 165 11 of 12

7. Kovac, H.; Stabentheiner, A.; Schmaranzer, S. Thermoregulation of water foraging wasps (Vespula vulgaris
and Polistes dominulus). J. Insect. Physiol. 2009, 55, 959–966. [CrossRef]

8. Weiner, S.A.; Upton, C.T.; Noble, K.; Woods, W.A.; Starks, P.T. Thermoregulation in the primitively eusocial
paper wasp, Polistes dominulus. Insect. Soc. 2010, 57, 157162. [CrossRef]

9. Addo-Bediako, A.; Chown, S.L.; Gaston, K.J. Metabolic cold adaptation in insects: A large-scale perspective.
Funct. Ecol. 2002, 16, 332–338. [CrossRef]

10. Terblanche, J.S.; Clusella-Trullas, S.; Deere, J.A.; Van Vuuren, B.J.; Chown, S.L. Directional evolution of the
slope of the metabolic rate-temperature relationship is correlated with climate. Physiol. Biochem. Zool. 2009,
82, 495–503. [CrossRef]

11. Chown, S.L.; Haupt, T.M.; Sinclair, B.J. Similar metabolic rate-temperature relationships after acclimation at
constant and fluctuating temperatures in caterpillars of a sub-Antarctic moth. J. Insect. Physiol. 2016, 85,
10–16. [CrossRef]

12. Pörtner, H.O. Climate variations and the physiological basis of temperature dependent biogeography
systemic to molecular hierarchy of thermal tolerance in animals. Comp. Biochem. Physiol. A 2002, 132,
739–761. [CrossRef]

13. Stabentheiner, A.; Kovac, H.; Hetz, S.K.; Käfer, H.; Stabentheiner, G. Assessing honeybee and wasp
thermoregulation and energetics—New insights by combination of flow-through respirometry with infrared
thermography. Thermochim. Acta 2012, 534, 77–86. [CrossRef] [PubMed]

14. Kovac, H.; Stabentheiner, A. Efect of food quality on the body temperature of wasps (Paravespula vulgaris).
J. Insect. Physiol. 1999, 45, 183–190. [CrossRef]

15. Stabentheiner, A.; Schmaranzer, S. Thermographic determination of body temperatures in honey bees and
hornets: Calibration and applications. Thermology 1987, 2, 563–572.

16. Schmaranzer, S.; Stabentheiner, A. Variability of the thermal behavior of honeybees on a feeding place.
J. Comp. Physiol. B 1988, 158, 135–141. [CrossRef]

17. Lighton, J.R.B.; Turner, R.J. Thermolimit respirometry: An objective assessment of critical thermal maxima
in two sympatric desert harvester ants. Pogonomyrmex rugosus and P. californicus. J. Exp. Biol. 2004, 207,
1903–1913. [CrossRef]

18. Kovac, H.; Käfer, H.; Petrocelli, I.; Stabentheiner, A. Comparison of thermal traits of Polistes dominula and
Polistes gallicus, two European paper wasps with strongly differing distribution ranges. J. Comp. Physiol. B
2017, 187, 277–290. [CrossRef]

19. Lake, S.L.; MacMillan, H.A.; Williams, C.M.; Sinclair, J.B. Static and dynamic approaches yield similar
estimates of the thermal sensitivity of insect metabolism. J. Insect. Physiol. 2013, 59, 761–766. [CrossRef]

20. Fangue, N.A.; Richards, J.G.; Schulte, P.M. Do mitochondrial properties explain intraspecific variation in
thermal tolerance. J. Exp. Biol. 2009, 212, 514–522. [CrossRef]

21. Vorhees, A.S.; Gray, E.M.J.; Bradley, J.T. Thermal resistance and performance correlate with climate in
populations of a widespread mosquito. Physiol. Biochem. Zool. 2013, 86, 73–81. [CrossRef]

22. May, C.; Hillerbrand, N.; Thompson, L.M.; Faske, T.M.; Martinez, E.; Parry, D.; Agosta, S.J.; Grayson, K.L.
Geographic Variation in Larval Metabolic Rate Between Northern and Southern Populations of the Invasive
Gypsy Moth. J. Ins. Sci. 2018, 18, 1–7. [CrossRef]

23. Vogt, J.T.; Appel, A.G. Standard metabolic rate of the fire ant, Solenopsis invicta Buren: Effects of temperature,
mass, and caste. J. Insect. Physiol. 1999, 45, 655–666. [CrossRef]

24. Niven, J.E.; Scharlemann, J.P.W. Do insect metabolic rates at rest and during flight scale with body mass?
Biol. Let. 2005, 1, 346–349. [CrossRef]

25. Nannoni, A.; Cervo, R.; Turillazzi, S. Foraging activity in European Polistes wasps (Hymenoptera, Vespidae).
Boll. Soc. Entomol. Italiana 2001, 133, 67–78.

26. Schmid-Egger, C.; van Achterberg, K.; Neumeyer, R.; Morinière, J.; Schmidt, S. Revision of the West Palaearctic
Polistes Latreille, with the description of two species–an integrative approach using morphology and DNA
barcodes (Hymenoptera, Vespidae). ZooKeys 2017, 713, 53–112. [CrossRef]

27. Bartholomew, G.A.; Lighton, J.R.B.; Louw, G.N. Energetics of locomotion and patterns of respiration in
tenebrionid beetles from the Namib Desert. J. Comp. Physiol. B 1985, 155, 155–162. [CrossRef]

28. Lighton, J.R.B.; Feener, D.H., Jr. A comparison of energetics and ventilation of desert ants during voluntary
and forced locomotion. Nature 1989, 342, 174–175. [CrossRef]

http://dx.doi.org/10.1016/j.jinsphys.2009.06.012
http://dx.doi.org/10.1007/s00040-009-0062-9
http://dx.doi.org/10.1046/j.1365-2435.2002.00634.x
http://dx.doi.org/10.1086/605361
http://dx.doi.org/10.1016/j.jinsphys.2015.11.010
http://dx.doi.org/10.1016/S1095-6433(02)00045-4
http://dx.doi.org/10.1016/j.tca.2012.02.006
http://www.ncbi.nlm.nih.gov/pubmed/22723718
http://dx.doi.org/10.1016/S0022-1910(98)00115-2
http://dx.doi.org/10.1007/BF01075826
http://dx.doi.org/10.1242/jeb.00970
http://dx.doi.org/10.1007/s00360-016-1041-x
http://dx.doi.org/10.1016/j.jinsphys.2013.04.010
http://dx.doi.org/10.1242/jeb.024034
http://dx.doi.org/10.1086/668851
http://dx.doi.org/10.1093/jisesa/iey068
http://dx.doi.org/10.1016/S0022-1910(99)00036-0
http://dx.doi.org/10.1098/rsbl.2005.0311
http://dx.doi.org/10.3897/zookeys.713.11335
http://dx.doi.org/10.1007/BF00685208
http://dx.doi.org/10.1038/342174a0


Insects 2020, 11, 165 12 of 12

29. Berrigan, D.; Lighton, J.R.B. Energetics of pedestrian locomotion in adult male blowflies, Protophormia
terraenovae (Diptera: Calliphoridae). Physiol. Zool. 1994, 67, 1140–1153. [CrossRef]

30. Duncan, F.D.; Lighton, J.R.B. Discontinuous ventilation and energetics of locomotion in the desert-dwelling
female mutillid wasp, Dasymutilla gloriosa. Physiol. Entomol. 1997, 22, 310–315. [CrossRef]

31. Lipp, A.; Wolf, H.; Lehmann, F.O. Walking on inclines: Energetics of locomotion in the ant Camponotus.
J. Exp. Biol. 2005, 208, 707–719. [CrossRef]

32. Weiner, S.A.; Woods, W.A., Jr.; Starks, P.T. The energetic costs of stereotyped behavior in the paper wasp,
Polistes dominulus. Naturwissenschaften 2009, 96, 297–302. [CrossRef]

33. Kovac, H.; Stabentheiner, A.; Brodschneider, R. What do foraging wasps optimize in a variable environment,
energy investment or body temperature? J. Comp. Physiol. A 2015, 201, 1043–1052. [CrossRef]

34. Kovac, H.; Stabentheiner, A.; Brodschneider, R. Foraging strategy of wasps—Optimisation of intake rate or
energetic efficiency. J. Exp. Biol. 2018, 221, jeb174169. [CrossRef]

35. Stabentheiner, A.; Kovac, H. Energetic optimisation of foraging honeybees: Flexible change of strategies in
response to environmental challenges. PLoS ONE 2014, 9, e105432. [CrossRef]

36. Stabentheiner, A.; Kovac, H. Honeybee economics: Optimisation of foraging in a variable world. Sci. Rep.
2016, 6, 28339. [CrossRef]

37. Kovac, H.; Stabentheiner, A. Does size matter–Thermoregulation of ‘heavyweight’ and ‘lightweight’ wasps
(Vespa crabro and Vespula sp.). BIO 2012, 1, 848–856. [CrossRef]

38. Kovac, H.; Stabentheiner, A.; Schmaranzer, S. Thermoregulation of water foraging honeybees–Balancing
of endothermic activity with radiative heat gain and functional requirements. J. Insect. Physiol. 2010, 56,
1834–1845. [CrossRef]

39. Käfer, H.; Kovac, H.; Simov, N.; Battisti, A.; Erregger, B.; Schmidt, A.K.D.; Stabentheiner, A. Temperature
tolerance and thermal environment of European seed bugs. Insects 2020, 11, in press.

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1086/physzool.67.5.30163886
http://dx.doi.org/10.1111/j.1365-3032.1997.tb01174.x
http://dx.doi.org/10.1242/jeb.01434
http://dx.doi.org/10.1007/s00114-008-0464-y
http://dx.doi.org/10.1007/s00359-015-1033-4
http://dx.doi.org/10.1242/jeb.174169
http://dx.doi.org/10.1371/journal.pone.0105432
http://dx.doi.org/10.1038/srep28339
http://dx.doi.org/10.1242/bio.20121156
http://dx.doi.org/10.1016/j.jinsphys.2010.08.002
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Materials and Methods 
	Animals 
	Experimental Set-Up and Measurement Procedures 
	Critical Thermal Maximum (CTmax) 
	Microclimate Measurements 
	Data Analysis 

	Results 
	Standard Metabolic Rate (SMR) and Activity Metabolic Rate (AMR) 
	Endothermic Performance and Metabolic Rate 
	The Critical Thermal Maximum (CTmax) 

	Discussion 
	Conclusions 
	References

