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Abstract

Background: Salmonella enterica serotype Typhi is the cause of typhoid fever. It is a human-restricted pathogen, and few
data exist on S. Typhi gene expression in humans.

Methodology/Principal Findings: We applied an RNA capture and amplification technique, Selective Capture of
Transcribed Sequences (SCOTS), and microarray hybridization to identify S. Typhi transcripts expressed in the blood of five
humans infected with S. Typhi in Bangladesh. In total, we detected the expression of mRNAs for 2,046 S. Typhi genes (44%
of the S. Typhi genome) in human blood; expression of 912 genes was detected in all 5 patients, and expression of 1,100
genes was detected in 4 or more patients. Identified transcripts were associated with the virulence-associated PhoP regulon,
Salmonella pathogenicity islands, the use of alternative carbon and energy sources, synthesis and transport of iron,
thiamine, and biotin, and resistance to antimicrobial peptides and oxidative stress. The most highly represented group were
genes currently annotated as encoding proteins designated as hypothetical, unknown, or unclassified. Of the 2,046
detected transcripts, 1,320 (29% of the S. Typhi genome) had significantly different levels of detection in human blood
compared to in vitro cultures; detection of 141 transcripts was significantly different in all 5 patients, and detection of 331
transcripts varied in at least 4 patients. These mRNAs encode proteins of unknown function, those involved in energy
metabolism, transport and binding, cell envelope, cellular processes, and pathogenesis. We confirmed increased expression
of a subset of identified mRNAs by quantitative-PCR.

Conclusions/Significance: We report the first characterization of bacterial transcriptional profiles in the blood of patients
with typhoid fever. S. Typhi is an important global pathogen whose restricted host range has greatly inhibited laboratory
studies. Our results suggest that S. Typhi uses a largely uncharacterized genetic repertoire to survive within cells and utilize
alternate energy sources during infection.
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Introduction

Salmonella enterica serotype Typhi is a Gram-negative bacterium

and the cause of typhoid fever. Typhoid fever affects over 21

million people each year, killing 200,000 [1]. S. Typhi is a human-

restricted pathogen and this has greatly limited studies of S. Typhi

pathogenesis. Our current understanding of S. Typhi responses

during infection is largely based on the study of murine models

with the related bacterium S. Typhimurium (i.e., a bacteria that

causes a typhoid-like illness in mice) [2], a separate mouse model

of S. Typhi infection [3], and ex vivo macrophage and epithelial cell

models of S. Typhi and S. Typhimurium [4] However, these

studies have limitations, and do not fully replicate human disease.

For instance, despite high sequence similarity, 13% of the genes in

the S. Typhi genome are absent from S. Typhimurium, and the S.

Typhi chromosome contains over 200 pseudogenes that S.

Typhimurium does not [5,6].

Here we report the application of an mRNA/cDNA capture

and amplification technology, Selective Capture of Transcribed

Sequences (SCOTS), combined with cDNA hybridization tech-

nology [7–12], to directly assess the gene expression profile of S.

Typhi in the blood of humans with typhoid fever in Bangladesh.

We previously applied this technology to S. Paratyphi A, the 2nd

leading cause of enteric fever, and detected expression of over

1700 bacterial genes during human infection [12]. Here we report

the extension of this analysis to S. Typhi.

Methods

Ethics statement
This study was approved by the Ethical and Research Review

Committees of the International Centre for Diarrhoeal Disease

Research, Dhaka, Bangladesh (ICDDR,B) and the Human

Research Committee of Massachusetts General Hospital; the

study was conducted according to the principles expressed in the

Declaration of Helsinki/Belmont Report. Written informed

consent was obtained from all individuals or their guardians prior

to study participation.

Study subject selection and sample collection
Individuals presenting to the International Centre for Diar-

rhoeal Disease Research, Bangladesh (ICDDR,B) Hospital or the

Kamalapur field site of ICDDR,B were eligible for enrollment if

they met the following criteria at presentation: age of 1–59 years,

fever duration of 3–7 days ($39uC), no obvious focus of infection,

and no alternate diagnosis. We collected 2 ml of venous blood

from participants, immediately placed these specimens in TRIzol

(Invitrogen Life Technologies, Carlsbad, CA) at a 1 (blood):2

(TRIzol) volume ratio, and stored the samples at 270uC for later

analysis. We simultaneously obtained 3–5 ml of blood for

microbiologic analysis using a BacT/Alert automated system.

We sub-cultured positive bottles on MacConkey agar, and

identified S. Typhi isolates using standard biochemical tests and

reaction with Salmonella-specific antisera [13]. After we collected

blood, we treated patients with parenteral ceftriaxone, oral

ciprofloxacin, or oral cefixime for up to 14 days at the discretion

of the attending physician.

cDNA synthesis
To generate S. Typhi cDNA from blood samples, we used

TRIzol-preserved blood of patients whose initial cultures were

subsequently confirmed to grow S. Typhi. To create a corre-

sponding in vitro S. Typhi cDNA sample for comparison, we grew

each patient’s bacterial isolate to mid-log growth phase (OD600

0.45–0.6) in Luria Bertani (LB) broth, and preserved the samples

in TRIzol at a 1 (mid-log culture):2 (TRIzol) volume ratio. We

extracted total RNA from TRIzol preserved samples per the

manufacturer’s instructions (Invitrogen) and treated recovered

RNA with DNase I on RNeasy columns (Qiagen Inc., Valencia,

CA). We then converted 5 mg of total RNA into cDNA for each

sample, as previously described with a few modifications [12].

Briefly, we used random priming (T-PCR) to obtain a represen-

tative amplifiable double-stranded cDNA population by using

Superscript III (Invitrogen) with a conserved primer with a defined

59 end terminal sequence and a random nonamer at the 39 end

[14]. We then synthesized second strands using the same primers

and Klenow fragment (Invitrogen) according to the manufactur-

er’s instructions, and then equilibrated samples based on 16S S.

Typhi rRNA.

Selective Capture of Transcribed Sequences (SCOTS)
We separated bacterial cDNA from host DNA using SCOTS,

as previously described [12]. Briefly, we mixed denatured

biotinylated S. Typhi gDNA with blocking ribosomal S. Typhi

DNA, and added this denatured mixture to both in vivo and in vitro

cDNA samples. After hybridizing samples overnight at 67uC, we

captured biotinylated S. Typhi gDNA-cDNA hybrids using

streptavidin-coated magnetic beads (Dynabeads M-280 streptavi-

din, Invitrogen), eluted captured cDNA with NaOH, PCR-

amplified cDNA samples with conserved primers, and purified

products using Qiagen PCR column purification kits. We

performed three rounds of capture and amplification to separate

S. Typhi cDNA from host DNA and to generate the cDNA

mixture used for microarray hybridization.

Salmonella microarray analysis
We labelled in vivo and in vitro cDNA recovered from SCOTS

with Cy3 and Cy5, respectively, and hybridized these preparations

to Salmonella ORF microarrays (version STv7S; McClelland

Laboratory, Vaccine Research Institute of San Diego, CA,

http://www.sdibr.org/Faculty/mcclelland/mcclelland-lab) in du-

plicate and with two dye reversals as previously described [12].

These microarrays contained gene-specific PCR-products of 4,600

ORFs from Salmonella enterica serotype Typhi CT18 (98.6%

genome coverage) and 4,318 ORFs of strain Ty2 (98.0% genome

coverage. The arrays also contained 1049 S. enterica ORFs absent

from the S. Typhi genome. We used an equal amount of in vivo and

Author Summary

Salmonella enterica serotype Typhi is the cause of typhoid
fever and infects over 21 million cases and causes 200,000
deaths each year. S. Typhi only infects humans and this has
greatly limited studies of S. Typhi pathogenesis. To study
bacterial gene expression in human hosts, we used
Selective Capture of Transcribed Sequences (SCOTS) and
array hybridization to identify S. Typhi mRNAs expressed in
the blood of 5 patients with S. Typhi infection. In total, we
detected the expression of 2,046 S. Typhi genes (44% of
the S. Typhi genome) in human blood; of these, 1,320 (29%
of the S. Typhi genome) had significantly different levels of
detection in human blood compared to in vitro cultures.
Our results provide insight into S. Typhi pathogenesis,
identifying both previously described and novel interac-
tions occurring between host and microbe during the
natural course of human infection. Further study of these
genes, especially those of unknown function, may further
our understanding of S. Typhi pathogenesis and aid in
vaccine, diagnostic, and/or drug target development.

S. Typhi SCOTS
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in vitro Cy dye-labeled product on all slides for a given patient. We

used ScanArray software (ScanArray express, version 3.0.1) to

quantify signal intensities.

For each individual patient, we considered a gene to be detected

in vivo if at least 2 of the 3 replicate gene spots on each of the four

slides for that infected human was at least ten median absolute

deviations greater than the median of spots on the microarray

corresponding to genes absent from the S. Typhi CT18 or Ty2

genomes. For those genes we detected in vivo, we evaluated

whether there was a difference in expression when compared to

detection levels for in vitro grown organisms. For this latter

statistical analysis, we included genes with a coefficient of variation

in signal intensity less than 50% within an array, and employed

repeated measures ANOVA (to within slide replicate spots) with

type (in vivo versus in vitro) and dye effects to LOESS-normalized,

log-transformed data. Those genes with a False Discovery Rate of

less than 0.05 computed using Benjamini-Hochberg multiple

testing adjustment and a 2-fold variation in signal intensity were

considered differentially expressed in vivo versus in vitro. We

deposited data in the NCBI Gene Expression Omnibus (GEO,

www.ncbi.nlm.nih.gov/geo), accessible through GEO accession

number GSE30565. We based functional classification of genes on

J. Craig Venter Institute annotations (http://cmr.jcvi.org/tigr-

scripts/CMR/CmrHomePage.cgi).

Quantitative PCR analysis
We used quantitative real time PCR (RT-qPCR) to confirm

microarray results for a subset of genes. We compared mRNA

levels in the peripheral blood (in vivo sample) of infected patients

(i.e. the 5 patients included in our SCOTS array analysis and 5

additional patients) to three in vitro culture replicates of a S. Typhi

isolate (from Patient 1) grown to mid-logarithmic phase in LB (in

vitro sample), as previously described [12]. To maximize the

likelihood of detecting differences in gene expression in compar-

ative samples, we selected eight representative genes from operons

involved in intra-cellular invasion or survival (STY4609, sopE,

invasion-associated secreted protein; STY3639, trxA, thioredoxin);

alternate energy usage (STY2244, pduB, putative propranediol

utilization protein; STY0417, psiF, phosphate starvation-inducible

protein; STY2701, eutN, a putative ethanolamine utilization

protein; STY0634, fepC, a ferric enterobactin transport ATP-

binding protein); and bacterial adhesion (STY0207, staA, putative

fimbrial protein and STY4543, pilO, putative pilus assembly

protein), focusing on genes with high baseline signals and fold-

increases by SCOTS-cDNA hybridization analysis comparing in

vivo (high signal) to in vitro (low signal) samples. We also quantified

by RT-qPCR the expression levels of two house-keeping genes

that were predicted by SCOTS-cDNA hybridization to be equally

expressed in in vivo and in vitro samples (STY0724, encoding a

glutaminyl-tRNA synthetase, glnS; and STY3081, encoding an

enolase, eno). We were unable to reproducibly assess expression

levels of genes predicted by SCOTS-cDNA hybridization to be

down-regulated in blood samples compared to in vitro grown

organisms. To generate cDNA for quantitative RT-PCR from

TRIzol-preserved samples, we used SuperScript II (Invitrogen)

with random hexamers (Sigma, St. Louis, MO) according to the

manufacturer’s instructions, and performed RT-qPCR analysis

using iQ SYBR Green Supermix reagent (Bio-Rad; Hercules, CA)

and a CFX96 Real-time PCR detection system (Bio-Rad;

Hercules, CA) as previously described [12]. Primers are listed in

the Supplemental Table S1. We used no-template controls and

samples lacking reverse transcriptase as baseline reactions for each

sample. After calculating the threshold cycle (CT) in the low/linear

portion of product curves, we quantified gene copy numbers using

pGEM-T Easy-based plasmids (Promega, Madison, WI) contain-

ing the gene of interest. To calculate the control gene copy

number, we used plasmid size and A260 readings, and normalized

gene copy numbers based on cDNA copies of 16S rRNA. We

assessed singularity of product species and size by melting curve

analysis, as previously described [15].

Results

Patient samples
Of the 89 patients enrolled for blood sample collection, we

identified 10 patients with confirmed S. Typhi bacteremia at the

time of TRIzol-preserved blood collection. We performed

SCOTS-cDNA hybridization screening analysis using samples

Figure 1. S. Typhi mRNA detected in vivo by SCOTS-microarray analysis. (A) Venn diagram of the 2046 S. Typhi transcripts detected in vivo
by patient, and (B) functional classification of proteins encoded by the 1100 S. Typhi transcripts detected in 4 or more patients.
doi:10.1371/journal.pntd.0001419.g001

S. Typhi SCOTS
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from patients 1–5, and performed RT-qPCR on samples from

patients 1–10, as sample quantity permitted.

S. Typhi transcripts detected in the blood of infected
humans

Using SCOTS-cDNA hybridization technology, we detected

expression of 2046 S. Typhi genes in the blood of bacteremic patients.

This represents approximately 44% of the S. Typhi ORFeome

(Figure 1A, Supplemental Table S2). Of these, we detected expression

of 912 genes in all 5 patients (45% of detected transcripts), and 1100 in

at least 4 of the 5 patients (54% of detected transcripts).

The products encoded by the 1100 genes identified in 4 or more

patients fell into a number of functional categories (Figure 1B). The

most highly represented group were genes currently annotated to

encode hypothetical proteins or proteins designated as unknown or

unclassified. The next most highly represented groups were genes

that encode products involved with energy metabolism, transport

and binding, followed by genes encoding products of the cell

envelope or associated with cellular processes and pathogenesis.

Ninety-five of the 1100 genes were located within known Salmonella

pathogenicity islands (SPI 1–7, 9, 10, 13, and 16), and 29 are known

components of the PhoP regulon, a major virulence regulon in

Salmonella, involved in intra-macrophage survival.

S. Typhi transcripts with a different level of detection in
in vivo versus in vitro bacterial samples

A total of 31 genes were detected in 4 or more patients in vivo,

but not detected in any in vitro sample (Table 1). The majority of

Table 1. S. Typhi transcripts detected only in in vivo samples.

CT18 Locus Ty2 Locus Gene Function

Biosynthesis of cofactors, prosthetic groups, and carriers

STY0828 t2092 bioF 8-amino-7-oxononanoate synthase

STY3725 t3471 thiG thiamine biosynthesis protein

Cell envelope

STY1609 t1379 hypothetical protein

STY4620 t4314 nucD2 putative lysozyme

Central intermediary metabolism

STY0417 t2480 psiF phosphate starvation-inducible protein PsiF

STY2702 t0393 eutD putative phosphate acyltransferase

STY4773 t4468 ppa inorganic pyrophosphatase

Energy metabolism

STY1917 t1086 hyaE hydrogenase-1 operon protein HyaE

STY2316 t0768 manB Phosphomannomutase

Fatty acid and phospholipid metabolism

STY2700 t0395 eutE putative aldehyde dehydrogenase

Protein synthesis

STY4360 t4067 rplW 50S ribosomal subunit protein L23

Regulatory functions

STY3707 t3448 yifE conserved hypothetical protein

Transport and binding proteins

STY0065 t0058 oadG oxaloacetate decarboxylase gamma chain

STY0123 t0110 yabJ hypothetical ABC transporter

STY0636 t2276 fepD ferric enterobactin transport protein FepD

STY2341 t0744 mdtC putative RND-family transporter protein

Hypothetical, Unclassified and Unknown proteins

t3166 hypothetical protein

STY0321 t2569 Rhs-family protein

STY1058-60,1063-64,1069 putative prophage proteins

STY1323 t1640 conserved hypothetical protein

STY1548 t1434 conserved hypothetical protein

STY1732 t1256 ydhZ conserved hypothetical protein

STY1916 t1087 hyaD hydrogenase-1 operon protein HyaD

STY2244 t0835 pduB putative propanediol utilization protein PduB

STY2608 t0487 conserved hypothetical protein

STY3448 t3185 yraN conserved hypothetical protein

S. Typhi transcripts detected in the blood of 4 or more of 5 patients, but not in bacterial samples grown in vitro.
doi:10.1371/journal.pntd.0001419.t001

S. Typhi SCOTS
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these genes are involved with survival in nutrient-limited

conditions including psiF, a phosphate starvation-inducible

protein; bioF and thiG involved in vitamin biosynthesis; eutD, oadG,

and pduB involved in use of alternative carbon sources; and fepD

involved in iron acquisition.

Of the 2046 transcripts detected in human blood samples, 1320

(representing 29% of S. Typhi ORFeome) had significantly

different levels of detection in in vivo samples compared to

bacterial samples grown in vitro (Figure 2A, Table S2). Detection

levels for 141 transcripts were significantly different between in vivo

and in vitro samples in all 5 patients, and 331 in at least 4 patients.

These 331 encode products that fall into a number of functional

categories (Figure 2B). The most highly represented group

included proteins annotated as hypothetical, unknown, or

unclassified. Other highly represented groups included energy

metabolism, transport and binding, the cell envelope, and cellular

processes and pathogenesis.

Quantitative Real Time-PCR analysis
To confirm S. Typhi mRNA expression levels in human blood

compared to in vitro grown bacteria, we used RT-qPCR to assess

the copy number of the following eight genes that had high in vivo

baseline reactivity as well as fold-change between in vivo and in vitro

samples by SCOTS array analysis: thioredoxin, trxA (STY3639); a

putative fimbrial protein, staA (STY0207); an invasion-associated

secreted protein, sopE (STY4609); a putative propranediol

utilization protein, pduB (STY2244); a putative pilus assembly

protein, pilO (STY4543); an phosphate-inducible starvation

protein, psiF (STY0417); a putative ethanolamine utilization

protein, eutN (STY2701); and a ferric enterobactin transport

ATP-binding protein, fepC (STY0634). Compared to expression

levels in in vitro grown bacteria, we found increased expression of

all 8 genes in the blood of infected humans, including in humans

not analyzed by the SCOTS-cDNA hybridization screening

protocol (Figure 3, A–H). As predicted by our SCOTS screening,

we found no differences by RT-qPCR in the expression of

housekeeping genes glnS (STY0724) and eno (STY3081) in blood

versus in vitro bacterial samples (Figure 3, I-J).

Discussion

S. Typhi is a human-restricted pathogen, the cause of typhoid

fever, and a significant cause of global morbidity and mortality.

Despite this, there are limited data on bacterial events within

humans infected with S. Typhi. Here we describe the application

of a cDNA capture-amplification approach combined with

microarray hybridization technology to assess S. Typhi gene

expression directly in the blood of infected humans. In total, we

detected 2046 S. Typhi transcripts in human blood (45% of S.

Typhi transcriptome); we detected 1100 in at least 4 of 5 patients.

Two major virulence determinants of Salmonella are the ability to

invade host cells and the ability to survive and replicate within host

cells. The PhoPQ-two component regulatory system is involved in

intra-macrophage survival and antimicrobial resistance [16], and

Salmonella pathogenicity island-1 (SPI-1) and SPI-2 encode type

three secretion systems (T3SSs) involved in invasion of host cells

and intracellular survival and replication, respectively [17,18]. In

our analysis, we identified 29 genes involved in the PhoP regulon

as more highly expressed in human samples, including the two

component regulator itself, phoPQ; virk, a virulence protein; mgtBC,

involved in magnesium transport; pmrF, a antimicrobial resistance

protein; and slyB, an outer membrane lipoprotein [19,20]. We also

identified 95 genes located within previously described SPIs,

including SPI-1 and 2, as well as genes within SPI-3–7, 9, 10, 13,

and 16.

The role of SPI-1 in invasion of epithelial cells has been well

established [21]. We detected a number of transcripts associated

with SPI-1 genes, including a number that encode effector proteins

injected into eukaryotic cells via the SPI-1 T3SS, such as SipB. We

also detected a number of transcripts encoding SPI-1 T3SS

effector proteins expressed from other SPIs, including sopE

(expressed from SPI-7) and sopB/sigD (expressed from SPI-5);

SopB/sigD is involved in creation and maintenance of the

Salmonella Containing Vacuole (SCV), crucial to intra-cellular

survival of Salmonella in eukaryotic cells [22]. Of note, we similarly

identified SPI-1 transcripts in our recent analysis of S. Paratyphi A

cDNA in the blood of infected humans in Bangladesh [12]. Our

Figure 2. S. Typhi mRNA with different levels of detection in vivo versus in vitro bacterial samples by SCOTS-microarray analysis. (A)
Venn diagram of the 1320 S. Typhi transcripts with significantly different levels of detection between in vivo and in vitro bacterial samples by patient,
and (B) functional classification of proteins encoded by the 331 S. Typhi transcripts with significantly different levels of detection in 4 or more
patients.
doi:10.1371/journal.pntd.0001419.g002

S. Typhi SCOTS
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Figure 3. Quantitative RT-PCR S. Typhi mRNA expression profiles in human blood compared to in vitro bacterial samples.
Quantitative real time-PCR analysis of S. Typhi genes (A–H) comparing RNA recovered from blood of bacteremic patients to an in vitro culture of the
corresponding clinical isolate. Genes represented in A–H were identified by SCOTS-cDNA as being more highly expressed in human blood samples

S. Typhi SCOTS
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detection of these transcripts in the blood of infected humans

builds upon recent suggestions that the SPI-1 T3SS is involved in

pathogenic events beyond intestinal epithelial cell invasion during

enteric fever [23–25]. In addition to sopE, we also detected

transcripts from the Type IV pilus operon encoded within SPI-7,

including pilL, pilO, pilQ, pilR, pilU, and pilV, which facilitates

invasion of Salmonella into epithelial cells and monocytes [26,27].

Identification of SPI-7 genes in our analysis is of particular interest

since SPI-7 is absent from S. Typhimurium and S. Paratyphi A,

but present in S. Typhi, S. Paratyphi C, and S. Dublin [28].

In addition to those associated with SPIs and the PhoPQ

regulon, we detected transcripts from a number of virulence-

associated Salmonella genes in human blood. These include

aromatic amino acid biosynthesis pathway genes (aroG, aroD, aroH,

aroE, aroB); mutations in this pathway have been the basis of live

attenuated S. Typhi vaccines [29]. We also detected transcripts

from genes involved in purine biosynthesis (guaB, purG, purA) [30]

and divalent cation transport including Mg2+ (corA, mgtBC) [31–

33], and Fe 2+ and Mn2+ uptake systems (sitBC and mntH) [34] that

have all been associated with virulence in Salmonella.

In order to adapt to the intracellular environment, Salmonella

must alter its metabolism to available nutrient and energy sources.

We detected transcripts of genes involved in the use of alternative

carbon sources, the coenzyme B12-dependent 1,2-propranediol

utilization pathway (encoded by the pdu operon), and the

ethanolamine utilization pathway (encoded by the eut operon).

We also found these operons to be up-regulated in our analysis of

S. Paratyphi A genes detected in the blood of humans [12], and

mutations in these operons result in attenuation of virulence in S.

Typhimurium infection models [35–37]. We also identified

transcripts expressed from genes encoding three NiFe-uptake

hydrogenases that have been associated with virulence in S.

Typhimurium, including hydrogenase A, B and D [38]. Prior

studies have shown that the hya and hyd operons are upregulated in

murine and human phagocytes; hya genes are required for survival

within macrophages, and both hya and hyd genes were detected in

mice using the RIVET (Resolvase In-Vivo Expression Technol-

ogy) reporter system that identifies genes expressed in vivo [39].

Our analysis shows that these genes are also expressed by S. Typhi

during human infection. Other potential virulence-associated

genes that we identified included genes involved in thiamine

biosynthesis (e.g. thiG, thiJ, abpA), biotin biosynthesis (e.g. bioB, bioF,

kbl), iron acquisition via siderophore biosynthesis (e.g. iroA gene

cluster, fes, fepECDB), and phosphate transport (ugpBAEC operon),

many of which were also detected in our transcriptional analysis of

S. Paratyphi A in infected humans [12].

In addition to survival in nutrient-limited conditions, Salmonella

must also be able to survive the action of antimicrobial peptides,

oxidative killing, and nitric oxide in various ecologic niches within

the human body. We detected genes that may be involved in

survival of stressful environments, including a number involved in

antimicrobial resistance (e.g. pqaB, virK, pmrF, smvA, bacA, emrA,

mdtC) [40–45], oxidative stress (e.g. trxA) [46], resistance to acid

tolerance (e.g. narZYWV operon) [47], and genes involved in DNA

recombination and repair (e.g. recA, recBD, recN, recG, xthA) [48]. Of

note, the most highly represented group were genes currently

annotated to encode hypothetical proteins or proteins designated

as unknown or unclassified.

When comparing expression levels of S. Typhi genes detected in

our analysis in humans to expression levels of S. Typhi genes in in

vitro grown cultures, equilibrating for S. Typhi 16S rRNA, we

noted differing levels of S. Typhi mRNA for 65% of the genes

detected in humans. In total, 331 S. Typhi transcripts had

significantly different levels of detection in at least 4 patients

compared to in vitro cultures, and 141 had significant differences in

all 5 patients compared to mRNA detected in in vitro cultures.

Identified genes were involved in iron (fepB, fepC, fepD), thiamine

(thiG), and biotin (bioF) metabolism; use of alternative carbon

sources including ethanolamine (eutB, eutC, eutD, eutA, and eutN),

oxacelatate (oadAB and oadG), and propranediol (pduB and pduK);

and antimicrobial resistance (bacA, mdtC). We also identified these

operons in our analysis of S. Paratyphi A, further supporting a

potential role of these operons in the pathogenesis of enteric fever

[12]. In addition, we identified 24 genes with significantly different

levels of expression in in vivo compared to in vitro samples that are

not present in the S. Typhimurium genome and may play an

important role in S. Typhi pathogenesis, including genes encoded

within the Type IV pilus cluster of SPI-7 (i.e. pilO and pilL), and

fimbrial proteins staA and steD. Of note, the largest grouping of S.

Typhi genes identified in our comparison encoded proteins of

unknown or unclassified function.

Our findings are similar to prior Salmonella transcriptional

analyses. We previously applied SCOTS-microarray analysis to S.

Paratyphi A in the blood of infected humans, and the homologs of

75% of the bacterial transcripts identified in S. Paratyphi A

infected patients were also identified in S. Typhi infected patients

[12]. SCOTS analysis has also been previously applied to S. Typhi

using an ex vivo macrophage model system by Faucher et al. [9].

Similar to our current analysis using blood of infected patients, the

ex vivo analysis also detected transcripts of genes involved in

intracellular survival including a number of genes encoded within

SPI-2, mgtBC in SPI-3, the SPI-1 effector, sopE, and genes involved

in antimicrobial peptide resistance. Both analyses suggested a role

of SPI-1 beyond invasion of the intestinal epithelium and the

potential role of alternative carbon sources in S. Typhi

pathogenesis. In contrast to Faucher’s analysis, we found higher

levels of transcripts of genes involved in iron acquisition and

transport in vivo including fes, fhu, feo, iro, and ent. Our detection of

these genes may reflect a greater complexity or degree of iron-

limitation in the blood of infected humans versus in a cultured

macrophage model system.

To our knowledge there has not been a prior analysis of S.

Typhi gene expression across the transcriptome in humans. Our

results highlight potential survival adaptations of S. Typhi within

the human host, including expression of genes required for

utilization of alternative carbon and energy sources, divalent

cation transport, antimicrobial resistance, and oxidative stress

resistance, as well as many genes whose function is currently

unknown. Further study of these genes, especially those of

unknown function, may further our understanding of S. Typhi

pathogenesis and aid in vaccine, diagnostic, and/or drug target

development.

Supporting Information

Table S1 qPCR Primer sequences.

(DOC)

than in in vitro grown organisms; genes I–J had equivalent levels of detection in in vivo versus in vitro samples by SCOTS. Mean copies of mRNA per
copy of 16S rRNA and standard error of the mean are presented. * p,0.05; {p,0.01. RT-qPCR was performed on a minimum of 5 patients as sample
quantity permitted.
doi:10.1371/journal.pntd.0001419.g003
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Table S2 S. Typhi genes whose transcripts were detected in the

blood of humans with typhoid fever.

(XLS)
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