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ABSTRACT Sarcocystis neurona is a member of the coccidia, a clade of single-celled parasites of medical and veterinary impor-
tance including Eimeria, Sarcocystis, Neospora, and Toxoplasma. Unlike Eimeria, a single-host enteric pathogen, Sarcocystis,
Neospora, and Toxoplasma are two-host parasites that infect and produce infectious tissue cysts in a wide range of intermediate
hosts. As a genus, Sarcocystis is one of the most successful protozoan parasites; all vertebrates, including birds, reptiles, fish, and
mammals are hosts to at least one Sarcocystis species. Here we sequenced Sarcocystis neurona, the causal agent of fatal equine
protozoal myeloencephalitis. The S. neurona genome is 127 Mbp, more than twice the size of other sequenced coccidian ge-
nomes. Comparative analyses identified conservation of the invasion machinery among the coccidia. However, many dense-
granule and rhoptry kinase genes, responsible for altering host effector pathways in Toxoplasma and Neospora, are absent from
S. neurona. Further, S. neurona has a divergent repertoire of SRS proteins, previously implicated in tissue cyst formation in
Toxoplasma. Systems-based analyses identified a series of metabolic innovations, including the ability to exploit alternative
sources of energy. Finally, we present an S. neurona model detailing conserved molecular innovations that promote the transi-
tion from a purely enteric lifestyle (Eimeria) to a heteroxenous parasite capable of infecting a wide range of intermediate hosts.

IMPORTANCE Sarcocystis neurona is a member of the coccidia, a clade of single-celled apicomplexan parasites responsible for
major economic and health care burdens worldwide. A cousin of Plasmodium, Cryptosporidium, Theileria, and Eimeria, Sarco-
cystis is one of the most successful parasite genera; it is capable of infecting all vertebrates (fish, reptiles, birds, and mammals—
including humans). The past decade has witnessed an increasing number of human outbreaks of clinical significance associated
with acute sarcocystosis. Among Sarcocystis species, S. neurona has a wide host range and causes fatal encephalitis in horses,
marine mammals, and several other mammals. To provide insights into the transition from a purely enteric parasite (e.g., Eime-
ria) to one that forms tissue cysts (Toxoplasma), we present the first genome sequence of S. neurona. Comparisons with other
coccidian genomes highlight the molecular innovations that drive its distinct life cycle strategies.
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The coccidia are a large clade of protozoan parasites within the
phylum Apicomplexa. In addition to a single definitive host

species in which the parasite undergoes its sexual cycle, a subgroup
of coccidia, the members of the family Sarcocystidae (Sarcocystis,
Toxoplasma, and Neospora) have evolved the ability to infect a
broad range of intermediate hosts (1, 2). To drive this transition,
the members of the family Sarcocystidae produce infectious tissue

cysts surrounded by glycosylated cyst walls. Different species and
even strains exhibit distinct patterns of organ tropism, with
Toxoplasma forming cysts in any organ, whereas Sarcocystis cysts
are largely restricted to muscle. Ingestion of tissue cysts through
predation or scavenging by the definitive host propagates the life
cycle (e.g., felids for Toxoplasma, canids for Neospora, and hu-
mans for two Sarcocystis species) (3).
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To survive and persist in their respective hosts, apicomplexan
parasites have evolved a variety of molecular strategies. These in-
clude a group of specialized proteins that facilitate parasite entry,
egress, and colonization, as well as molecular decoys that modu-
late host immune signaling (4, 5). The majority of these proteins
localize to exocytic organelles (micronemes, rhoptries, and dense
granules) that discharge in a highly coordinated program of inva-
sion (5). For Toxoplasma gondii, initial host recognition and at-
tachment are performed by members of the SAG1-related se-
quence (SRS) family. This is followed by secretion of the
microneme (MIC) proteins that strengthen host cell attachment
and result in the formation of a “moving junction” that provides
the motive force required to penetrate the host cell. The moving
junction is further controlled by a set of proteins known as rhoptry
neck (RON) proteins that facilitate invasion (for a review, see
reference 6). Subsequently, rhoptry (ROP) proteins and dense-
granule (GRA) proteins are secreted into the host cytosol to inter-
act with cellular targets to protect the (now) intracellular parasite
from clearance. The parasite is further protected through encase-
ment within a parasitophorous vacuole (PV) that is, interestingly,
absent from the schizont form of Sarcocystis.

Recent genomic comparisons of Toxoplasma, Neospora, and
Hammondia (the closest extant relative of T. gondii) have identi-
fied a series of ROP proteins whose expression targets host-
specific immune signaling pathways. ROP5, ROP16, and ROP18
have all been shown to affect parasite virulence and contribute to
host specialization in the mouse model (4, 5). Recently, an ex-
panded repertoire of SRS proteins, previously implicated in host
range expansion of T. gondii, were also identified in Neospora (7).
Modeling of T. gondii metabolism also identified strain-specific
differences in growth potential, establishing metabolism as an
evolutionary factor capable of influencing host adaptation (8). To
complement the recently generated Eimeria genome sequences
and understand the transition from a purely enteric, monoxenous
life cycle (e.g., Eimeria) to a heteroxenous one that includes the
formation of tissue cysts, we sequenced the genome of Sarcocystis
neurona.

Sarcocystosis, caused by parasites within the genus Sarcocystis,
is typically asymptomatic but can be associated with myositis, di-
arrhea, or infection of the central nervous system (CNS). The
genus is ancient (relative age, 246 to 500 million years based on
small-subunit RNA sequences), diverse (more than 150 cata-
logued species), highly successful (all vertebrates are susceptible
hosts, including fish, birds, reptiles, and mammals), and prevalent
(cattle exhibit a 90% infection rate worldwide) (9). Interestingly,
Sarcocystis species are not structurally similar; for example, S. neu-
rona sporozoites, like T. gondii, lack the crystalloid body present in
other coccidia, including S. cruzi of cattle (10). Sarcocystis species
typically have a two-host predator-prey life cycle, with one host
supporting asexual multiplication while the other acts as the de-
finitive host, supporting a sexual cycle that results in sporocyst
shedding in feces. Humans are definitive hosts of S. suihominis and
S. hominis and can be infected by S. nesbitti, with associated se-
quelae, including muscular sarcocystosis. Opossums are the de-
finitive hosts of S. neurona (11), a species that has a broad
intermediate-host range, including raccoons, cats, skunks, and
more recently a variety of mustelids, pinnipeds, and cetaceans
(12–15). S. neurona produces tissue cysts, typically in muscle and
occasionally in the CNS (16, 17). Horses are considered aberrant
hosts, in which the parasite typically multiplies as schizonts in the

CNS but fails to encyst. Unabated destruction of neural tissue can
be fatal to horses and many other hosts, and the disease was called
equine protozoal myeloencephalitis before the etiologic proto-
zoan S. neurona was identified and named in 1991 (2). With mi-
gration of opossums to the west coast of North America during the
last century (14) the S. neurona host range expanded to cause
epizootics in sea otters, harbor seals, and harbor porpoises (18). S.
neurona is now being monitored for its potential as an emerging
disease threat. Here, we sequenced and performed a systems-
based analysis of the genome of type II S. neurona strain SO SN1,
isolated from a southern sea otter that died of protozoal enceph-
alitis (19), which represents the most common genotype infecting
animals throughout the United States.

RESULTS
The S. neurona SO SN1 genome is more than twice the size of the
T. gondii genome. Combining 7,020,033 reads from the 454 Life
Sciences sequencing platform with 529,830,690 reads from the
Illumina Hi-Seq sequencing platform, we generated 47,722 Mbp
of sequence data from S. neurona SO SN1 DNA. By integrating a
variety of assembly algorithms (see Materials and Methods), these
data were assembled into 116 genomic scaffolds with a combined
size of 127 Mbp, over twice the size of the Neospora caninum and
T. gondii genomes (Table 1 is a summary of the genome statistics
obtained). An additional 3.1 Mbp of sequence is encoded in 2,950
unscaffolded contigs (each greater than 500 bp in length). The
assembly N50 value was 3,117,290 bp, with a maximum scaffold
length of 9,217,112 bp. To help annotation efforts, we generated
an additional 59,622,019 reads from S. neurona RNA. From these
data, we predict a complement of 7,093 genes, 5,853 of which are
supported by RNA-Seq evidence (see Table S1 in the supplemen-
tal material). The number of genes predicted is comparable to that
of the related coccidia T. gondii and Eimeria tenella. Comparisons
of gene orderings reveal blocks of syntenic relationships between
homologous genes in S. neurona and T. gondii, with the longest
such block aligning 43 genes on scaffold 1 of S. neurona and chro-
mosome IX of T. gondii (Fig. 1A). Chromosome-wide synteny was
not observed, suggesting a significant level of genome rearrange-
ment between S. neurona and T. gondii. A more detailed view of
the largest syntenic region reveals the extent of gene order preser-
vation but also reveals differences in the structures of individual
genes (Fig. 1B).

Given similarities in gene numbers and exon lengths, we next
determined the source of the additional sequence associated with

TABLE 1 Genome statistics

Parameter Statistic

Genome size (bp) 130,222,184
Genome GC% 51.5

No. of scaffolds 116
Total scaffolded length (bp) 127,077,592
No. of contigs in scaffolds 11,452
Scaffold N50 (bp) 3,117,920

No. of unscaffolded contigs 2,950
Contig N50 (bp) 20,915

Total no. of bp in gaps 12,350,913
No. of genes 7,093

Mean gene length (bp) 9,121
Mean no. of exons 5.5
Mean coding size (no. of amino acid residues) 856
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FIG 1 Architecture and syntenic relationships of the S. neurona genome. (A) Circos representations (50) of syntenic relationships between the genomes of S.
neurona and T. gondii ME49. The inner circle shows syntenic relationships among the 10 largest S. neurona genomic scaffolds (maximum size, 9.2 Mb; minimum
size, 3.5 Mb) and the 14 chromosomes of T. gondii. Bandwidths indicate alignment length, and colors represent the S. neurona scaffold of origin for the gene
clusters. Grey circles indicate the largest regions of genomic synteny between S. neurona scaffold SO SN1 and T. gondii chromosome 9. The outer circles show a

(Continued)
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the S. neurona genome. Comparisons of intron numbers and
lengths show that S. neurona possesses a similar number of exons
per gene (5.50 in T. gondii, 5.93 in N. caninum, and 5.44 in S.
neurona) but that the average length of the introns in S. neurona
(1,437.5 bp) is roughly triple that of T. gondii and N. caninum
(497.5 and 465.2 bp, respectively). Further, comparisons of inter-
genic regions reveal these to be larger in S. neurona (8,495 �
222 bp) than in T. gondii and E. tenella (2,381 � 72 and 2,934 �
268 bp, respectively). To identify factors responsible for the in-
creased intra- and intergenic region sizes, we performed a system-
atic analysis of repetitive regions across representative apicompl-
exans with the software tool RepeatModeler (20). This analysis
revealed that the S. neurona genome is rich in repeats largely asso-
ciated with long interspersed nucleotide element (LINE) and
DNA element sequences (class I and II transposons, respectively).
Mapping of the repeats to scaffolds revealed that many of the
repeats are associated with genes (Fig. 1B). Further comparisons
of introns, exons, and intergenic regions showed clear differences
in the repeat type based on the genomic context (Fig. 1C). DNA
element-type repeats were enriched in intronic regions and virtu-
ally absent from exons, suggesting evolutionary pressure against
the integration of DNA elements within coding regions. Con-
versely, LINE-like repeats were equally distributed across exons,
introns, and intergenic regions. In total, 31 Mbp of the S. neurona
genome had repetitive sequences, compared to 17.9 Mbp of the
E. tenella genome and 2.5 Mbp of the T. gondii genome (Fig. 2A).

S. neurona displays a diverse set of repetitive elements. The
repetitive sequences present in S. neurona are extraordinarily di-
verse, with 203 families of repeats discovered with RepeatModeler,
compared to 101 families in E. tenella and 5 in Plasmodium falci-
parum. The majority of simple repeats within the S. neurona ge-
nome belong to more diverse families, unlike other apicomplexan
parasites, where simple repeats are largely composed of short re-
peats (e.g., CAGn in E. tenella [21]). For example, 33 simple repeat
families in S. neurona were composed of consensus sequences with
an average length of 287 bp. The average length of the simple
repeats was 105 bp in S. neurona, compared to 48 and 68 bp in
P. falciparum and E. tenella, respectively.

Type II transposons, or DNA elements with 64,732 members,
represent the largest family of repeats present in S. neurona, total-
ing 14.6 Mbp (11.5%) of the genome, considerably more than in
E. tenella (Fig. 2A). All of the DNA elements identified belong to
the “cut-and-paste” families of transposons, which propagate
through genomes through excision and insertion of DNA inter-
mediates. The most abundant family of DNA elements belonged
to the CACTA-Mirage-Chapaev family of transposons, although a
minority of Mutator-like elements was also identified. Active
DNA transposons contain transposase genes; however, we were
unable to detect any such gene within the S. neurona genome,
suggesting that these DNA elements are ancient and degraded.
Supporting this view, we found that the ratio of transversions to
transitions in alignments of repetitive sequences to DNA repeat
families was almost exactly 2:1, the statistically expected rate of
mutation in the absence of evolutionary pressure.

Given the relative lack of repeats in the T. gondii genome, we
explored whether the repeats identified in S. neurona are less active
than those identified in E. tenella. When repeats are active, it is
possible to identify clades of repeats with significant sequence sim-
ilarity. Pairwise sequence alignments of members of five families
of repeats (Fig. 2B) were highly divergent, indicating that the
LINEs and DNA elements are no longer active in S. neurona. Fur-
ther, the LINEs in S. neurona are more diverse and therefore likely
to be more ancient than those in E. tenella. Interestingly, E. tenella,
T. gondii, and P. falciparum all feature a bimodal distribution of
simple repeats that is lacking in S. neurona. Finally, all three of the
coccidian genomes analyzed here displayed similar distributions
of sequence divergence of DNA elements, albeit with slightly dif-
ferent means (22.5, 28.1, and 27.8% for E. tenella, S. neurona, and
S. neurona-like DNA repeats in T. gondii, respectively). This sug-
gests that while DNA elements are no longer active in these ge-
nomes, they did remain active for slightly longer within E. tenella.
From these analyses, we conclude that the maintenance of large
numbers of LINEs and DNA elements in S. neurona (and
E. tenella), even though they are inactive, likely plays a functional
role, since T. gondii has removed most of these elements from its
genome.

The S. neurona apicoplast genome is well conserved with
other Apicomplexa. In addition to its nuclear genome, the apico-
plast genome of S. neurona SO SN1 was studied by reference map-
ping to the assembled S. neurona SN3 apicoplast sequence (see
Fig. S1 in the supplemental material). Both organellar genome
architectures are highly similar to those of Toxoplasma (GenBank
accession no. U87145.2) and P. falciparum (22). There are, how-
ever, a few key differences. As in Toxoplasma, both Sarcocystis
apicoplast sequences are missing open reading frame A (ORFA).
However, unlike Toxoplasma, both S. neurona sequences show a
loss of rpl36 and a loss of one copy of tRNA-Met (from the tRNA
cluster between rps4 and rpl4). S. neurona also has a feature first
observed in the Piroplasmida that is not seen in Toxoplasma,
namely, a division of the RNA polymerase C2 gene into two dis-
tinct genes (23). Both S. neurona apicoplast genome sequences
uniquely have the insertion of a fragment of rps4 between ORFG
and one copy of the large-subunit rRNA in common (see Fig. S1 in
the supplemental material). The insert was verified in S. neurona
SN3 via PCR and sequencing across this region (see Fig. S2, S3,
and S4 in the supplemental material). The rps4 fragment insertion
appears to be very recent because the S. neurona SN3 fragment
insert is identical in sequence to the corresponding region in the
full-length rps4 gene. Comparison of the S. neurona SO SN1 and
SN3 nucleotide sequences to each other reveals a few indels but no
single-nucleotide polymorphisms (see Text S1 in the supplemen-
tal material). Indels, when present, occur in up to one-third of the
reads for the locus. The dominant sequence is identical to that
determined for SN3. Each S. neurona apicoplast genome was se-
quenced to greater than 200� coverage.

The S. neurona genome encodes many novel genes and iden-
tifies many coccidian-specific innovations. InParanoid predic-
tions suggest that S. neurona has more orthologs in common with

Figure Legend Continued

detailed view of synteny indicated by the grey circles. Red and green bars indicate exons of S. neurona and T. gondii, respectively, and yellow and blue bars indicate
intronic and repeat regions, respectively. (B) Detailed view of the synteny map shown in panel A revealing larger introns in S. neurona relative to those in T. gondii
and the relative positioning of repetitive elements. (C) Incidence of repeats in different genomic regions as defined by RepeatModeler (20).
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FIG 2 Repeat incidence and diversity in selected alveolate genomes. (A) Incidence of repeats, as defined by RepeatModeler (20), in a selected group of alveolate
genomes. While E. tenella is rich in LTR elements, S. neurona is rich in DNA elements. Neither type of element is abundant in other alveolates. (B) Diversity of
different repeat families within coccidian genomes. Bar graphs indicate the relative abundance of each repeat class as a function of Kimura divergence from the
consensus repeat sequence. Note that DNA elements were not initially detected in the T. gondii genome; however, subsequent searches revealed the presence of
DNA elements predicted from the S. neurona genome (indicated in the inset bar chart of S. neurona repeats).
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T. gondii than with E. tenella, supporting a closer evolutionary
relationship (3,169 versus 1,759 groups of orthologs, respectively)
(Fig. 3A). Consistent with previous gene studies, we identified
1,285 (18%) S. neurona genes with no detectable homology
(BLAST score, �50) to any known gene, suggesting either a high
degree of gene innovation or significant sequence divergence from
remote homologs. Among the conserved genes, 715 (10%) were
conserved (possessing orthologs) in both Cryptosporidium par-
vum and either P. falciparum or Theileria annulata, identifying a
large collection of proteins that could be amenable to broad-
spectrum drug development. These include members of a variety
of ATPase genes, heat shock proteins, DEAD/DEAH helicases,
proteins with EF-hand domains, and protein kinases. In addition,
we identified 1,285 (18%) genes with homology only within the
family Sarcocystidae, representing potential drug targets against
tissue cyst-forming coccidia. A majority (55%) of these are anno-
tated as “hypothetical proteins” in the ToxoDB resource (24). Of
the proteins that are annotated, AP2 domain transcription factors,
rhoptry kinase (ROPK) and neck proteins, and zinc fingers, as well
as proteins with RNA recognition motifs, are prevalent.

The S. neurona attachment and invasion machinery is
broadly conserved with T. gondii. The process of host cell inva-

sion by apicomplexan parasites is a rapid and complex process
that relies on a coordinated cascade of interactions between the
invading parasite and the host cell. To orchestrate these processes,
apicomplexans have evolved families of invasion proteins that are
broadly conserved but nevertheless exhibit unique lineage-
specific innovations (25). To identify S. neurona gene models in-
volved in invasion relative to T. gondii, we constructed an invasion
protein coexpression network (Fig. 3B) in which pairs of T. gondii
proteins are linked if they exhibit significant coexpression with S.
neurona (Pearson correlation coefficient, �0.8), as has been done
for other organisms (26–28). This network provides a scaffold
onto which conservation and expression data from S. neurona are
mapped to yield insights into evolutionary and functional rela-
tionships. Consistent with previous studies, we found that con-
served proteins (those that have an ortholog in common with S.
neurona) tend to have more correlated expression (high Pearson
correlation coefficients) and more connections (high node de-
gree) and are better connected within the network (shorter aver-
age path lengths and higher betweenness) than their noncon-
served counterparts (Fig. 3C). These findings highlight the
potential importance of conserved proteins to the function of the
invasion machinery. Within our T. gondii invasion network, we

FIG 3 Coexpression network for T. gondii invasion-associated genes. (A) Ortholog distribution of S. neurona genes. Orthologs were predicted by using the
InParanoid pipeline (51). (B) Network of T. gondii proteins involved in the invasion process. Nodes indicate genes, colored by family or location, with size
indicating the relative expression of the S. neurona ortholog as determined through RNA-Seq expression. Square nodes indicate the absence of an ortholog in S.
neurona. Links between nodes indicate significant coexpression (Pearson correlation coefficient [PCC], �0.8). Two main clusters of proteins are observed, one
involving batteries of rhoptry proteins (ROPs and RONs) and one involving microneme proteins (MICs). (C) Network statistics associated with the invasion
network.
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identified two main clusters of highly correlated genes associated
with key invasion events. The first involves proteins associated
with the micronemes (MIC proteins) which strengthen host cell
attachment and play a major role in the formation of the moving
junction that forms a specific interface, facilitating invasion. The
second involves proteins associated with the rhoptries (RON and
ROP proteins), an organelle that is absent from the merozoite
stage of all Sarcocystis species, including S. neurona (29).

The genome analyses identified nine previously reported S.
neurona orthologs of T. gondii MICs (MIC7, MIC8, MIC10,
MIC12, MIC13, MIC14, MIC15, MIC16, and M2AP) (30). We
also identified potential homologs of MIC2, MIC4, and MIC9 that
had not been annotated through the gene model prediction pipe-
line. MIC4 has previously been shown to form part of a hetero-
complex with MIC1 and MIC6 (31). The absence of the latter two
homologs from S. neurona suggests that MIC4 likely mediates the
more important functional role. MIC7, MIC8, MIC9, and MIC12
are relatively unique in T. gondii with the possession of epidermal
growth factor-like domains, suggesting a potential role in ligand
binding. MIC10, together with MIC11 (absent from S. neurona) is
thought to be involved in the organization of organellar contents.
Also secreted by the microneme is apical membrane antigen 1
(AMA1), which functions to link the inner membrane complex
(IMC) to the host cell via interactions with RON proteins that
together make up the moving junction (6, 32). Our searches re-
vealed two loci, separated by approximately 80 kb on the S. neu-
rona assembly’s largest scaffold, homologous to T. gondii AMA1
protein TGME49_315730. Interestingly, the reading frames of the
two S. neurona paralogs (SnAMA1a and SnAMA1b) occur in op-
posite directions, suggesting an inverted duplication. Supporting
this, two inverted repeats �100 bp in length and with �70% iden-
tity were identified ~20,000 bp apart, separating the two paralogs.
While the region upstream of the paralogs appears repeat rich,
containing simple repeats, as well as LINEs and DNA elements,
the region downstream of the second paralog is uncharacteristi-
cally repeat poor, with no repetitive sequences in ~14,000 bp of
sequence. T. gondii possesses additional paralogs of the AMA1
protein, including TGME49_300130. Again, S. neurona appears to
possess these two additional AMA1 paralogs (SnAMA1c and
SnAMA1d), but in this case, they are present on two different
scaffolds. AMA1 has been shown to interact remarkably strongly
with RON2, RON4, and RON5 (32).

In general, RONs were well conserved in S. neurona and T. gon-
dii, with RON2, RON3, RON5, and RON8 orthologs displaying
significant sequence similarity across their entire length. Three
paralogs of T. gondii RON3 (TgRON3) were identified on a single
scaffold, suggesting a tandem duplication, two of which appear to
be expressed as predicted by the RNA-Seq data. Putative S. neu-
rona orthologs of RON4 and RON6 were identified through man-
ual inspection of sequence alignments. A pattern of conservation
and divergence was observed for a putative ortholog of TgRON9.
In T. gondii, RON9 and RON10 form a stable complex distinct
from the AMA1-RON2/4/5/8 complex, with disruption of either
gene leading to the retention of its partner in the endoplasmic
reticulum, followed by degradation. This complex does not play a
role in T. gondii invasion and virulence but, because of its conser-
vation with C. parvum, has been linked to interactions involving
epithelial cells (33). While an S. neurona protein could be aligned
over ~25% of the TgRON9 sequence, it was found to lack a single
copy of the 22 copies of the PAEENAEEPKQAEEQANASQSSET

motif associated with the T. gondii protein. No homologs to
RON1 or RON10 could be identified.

Another critical organelle required for host invasion is the
IMC, which additionally confers stability and shape on the cell and
is thought to mediate critical roles in cytokinesis and host cell
egress (34). We identified 20 putative S. neurona IMC orthologs,
with additional evidence of a further six (see Table S2A in the
supplemental material). Only TgGAP70, TgAlv6, and TgAlv7 ap-
pear to lack homologs.

Molecular modeling reveals that SnAMA1a is capable of in-
timately coordinating SnRON2. To examine if S. neurona AMA1
homologs can bind S. neurona RON2 homologs, we generated
structural models of SnAMA1a and SnAMA1b, which show the
highest sequence identity (49 and 44%, respectively) with
TgAMA1. Both models possess a PAN-like domain architecture
for DI and DII (SnAMA1a, Fig. 4A) consistent with homologs
from other apicomplexans (35, 36). A key feature of DII is an
extended loop that packs into the groove of DI and regulates
RON2 binding in related AMA1 proteins (37). In the SnAMA1a
model, a cysteine pair localized within the DII loop is a novel
feature of AMA1s and may serve as a hinge to regulate loop dis-
placement and, consequently, RON2 binding (Fig. 4A). Further-
more, the SnAMA1a DII loop appears to be loosely anchored
within the DI groove via a Val-Val pair surrounding a central Leu
(Fig. 4A). This is in contrast to TgAMA1 (Fig. 4C), where a Trp-
Trp pair surround a central Tyr, and the SnAMA1b model
(Fig. 4B), where a Trp-Leu pair surround a central Tyr (Fig. 4B).
These models suggest that AMA1 paralogs in S. neurona employ
divergent strategies that control DII loop dynamics and govern
access to the ligand-binding groove. Focusing on the interaction
with RON2, removal of the apical segment of the DII loop from
the model of SnAMA1a (mimicking the mature binding surface)
led to a pronounced groove similar to the RON2 binding surface
observed in TgAMA1 (Fig. 4D). Indeed, an energy-minimized
docked model revealed that SnRON2 domain 3 was accommo-
dated in a U-shaped conformation (SnRON2D3; Fig. 4E) with an
overall topology conserved with respect to the TgAMA1 costruc-
ture with a synthetic TgRON2D3 peptide (Fig. 4D) (37). Key fea-
tures of the TgAMA1-TgRON2sp interface appear to be conserved
at the SnAMA1-SnRON2D3 interface, including a RON2 proline
residue that occupies an AMA1 pocket exposed by displacement
of the DII loop (Fig. 4D and E, yellow arrow) and a reliance on
hydrophobic interactions to engage AMA1.

Overall, modeling of apo SnAMA1a and SnAMA1b, in combi-
nation with the complex of SnAMA1a with SnRON2D3, supports
the hypothesis that these two proteins can form an intimate binary
complex, as observed in related apicomplexan homologs (37, 38).
Of note, both SnAMA1a and SnAMA1b exhibited relatively low
levels of expression in the merozoite stage sampled (10.4 and 6.7
fragments per kilobase of exon model per million mapped reads
[FPKM], respectively) compared to SnAMA1c and SnAMA1d
(63.1 and 83.9 FPKM, respectively), perhaps reflecting a stage-
specific role for each AMA1-RON2 pairing.

Proteins involved in host regulation in T. gondii are not well
conserved in S. neurona. In addition to RONs, rhoptries also
secrete a battery of ROP proteins, the products of a group of genes
displaying high levels of correlated expression (Fig. 3B). ROP pro-
teins are secreted into the host cytosol to interact with host cell
targets, manipulating pathways that protect the intracellular par-
asite against clearance. To identify putative S. neurona ROP ho-
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mologs, we used previously published hidden Markov models
(HMMs) (39). In addition to the eight SnROPKs reported previ-
ously (39), our phylogenetic analysis identified seven new ROPK
orthologs, including: ROP20, ROP26, ROP33, ROP34, and
ROP45, as well as two SnROPKs that appear unique to S. neurona
(Fig. 5A). RNA-Seq data support the expression of six of these
(ROP14, ROP21, ROP27, ROP30, ROP35, and ROP37) during
the merozoite stage, despite this stage’s lack of rhoptries and the
ability of schizonts to develop in host cell cytoplasm in the absence
of a PV (3).

Overall, S. neurona contains a smaller complement of ROPKs
(n � 15) than E. tenella (n � 27) and a considerably smaller set
than T. gondii (n � 55) and N. caninum (n � 44), both of which
feature distinct lineage-specific expansions. However, despite its
lower number of ROPKs, S. neurona was found to have more
ROPKs in common with T. gondii and N. caninum than with
E. tenella; only two of the ROPKs in the three tissue cyst-forming
coccidia are conserved with E. tenella (ROP21/27 and ROP35),
Importantly, we did not find S. neurona homologs corresponding
to T. gondii ROPK proteins implicated in murine virulence (ROP5
and ROP18), modulation of STAT3 and STAT6 signaling
(ROP16), or mitogen-activated protein (MAP) kinase signaling
(ROP38), which suggests that S. neurona’s success and pathogen-
esis are not dependent on the inactivation of these host-specific
pathways and may explain, in part, why this parasite is not infec-
tious in rodents. No information is available regarding the func-
tional role of S. neurona ROPKs. However, six are likely to be
active kinases since they retain key “catalytic triad” residues
critical for protein kinase function (SnROP21/27, SnROP30,
SnROP33, SnROP34, SnROP35). Further, five are likely to be
pseudokinases (SnROP20, SnROP22, SnROP26, SnROP36,
SnROP37) that have been shown to act as cofactors of the active
kinases (e.g., SnROP5 to SnROP18).

Finally, only two dense-granule (GRA) protein homologs of
T. gondii, GRA10 and GRA12, were identified. The discovery of
the latter is surprising, given that it has not been annotated in the
N. caninum genome. In addition, like the ROPKs, the majority of
the GRA proteins encoded by T. gondii that specifically target host
immune signaling pathways to alter parasite pathogenesis are not
encoded by S. neurona. These include GRA6, which regulates the
activation of the host transcription factor nuclear factor of acti-
vated T cells (NFAT4); GRA15, which regulates NF-�B activation
(40); GRA24, which promotes nuclear translocation of host cell
p38a MAP kinase (41); and the phosphoprotein GRA25, which
alters CXCL1 and CCL2 levels to regulate immune responses and
control parasite replication (42). These data indicate either that a
different suite of GRA proteins facilitate Sarcocystis host and niche
specialization or that Sarcocystis does not require an expanded
repertoire of GRA proteins during merozoite replication since it
replicates in the host cytosol and is not contained within a PV, like
T. gondii or N. caninum.

S. neurona encodes a distinct set of SRS proteins. The SRS
proteins exist as a developmentally regulated superfamily of par-
asite surface adhesins within the tissue cyst-forming coccidia that
promote host cell attachment and modulate host immunity to
regulate parasite growth and virulence. In previous work, we iden-
tified 109 and 246 SRS proteins in the T. gondii and N. caninum
genomes, respectively (4, 7). Applying our previously generated
HMMs, we identified a more restricted set of only 23 SRS-
encoding genes in the S. neurona genome. Twenty of the 23 SRS-
encoding genes were distributed across 11 of the major scaffolds,
but unlike the SRS-encoding genes in T. gondii and N. caninum,
only one genomic locus (SnSRS7 on scaffold 4) existed as a tan-
dem array of duplicated paralogs. The 23 SRS-encoding genes
were made up of 75 putative SRS domains (Fig. 5B). Of note, 63
(84%) of these 75 domains were associated with family 2 (fam2)
domains, including SRS7A, which contained 26 fam2 domains. In
general, each SRS protein possessed either one or two SRS do-
mains, with individual domains classifiable into one of the eight
previously defined families, although no fam5 domains were iden-
tified. The 26-fam2-domain SRS7A protein genomic locus also
contained several gaps bordered by nucleic acids with which a
high number of reads could be aligned. This might indicate repet-
itive elements that could promote domain expansion within this
locus through ectopic recombination. Interestingly, the SRS7A
protein fam2 domains possessed the highest sequence similarity to
the 13 fam2 domains encoded by TgSRS44, a protein previously
implicated as an integral structural constituent of the T. gondii cyst
wall (43). TgSRS44 also possesses a mucin domain, which has been
shown to be highly glycosylated and is thought to protect the cyst
from immune recognition and/or dehydration. However, we did
not identify any mucin domains in our S. neurona homolog. Only
four SRS proteins possessed either fam7 or fam8 domains (one
and three copies, respectively), in contrast to T. gondii and N. cani-
num, where the majority of SRS proteins possess one or the other
of these two fam domains. Previous work suggested that the rela-
tive expansion of fam7 and fam8 domains in T. gondii and N. cani-
num is linked to their role in host specificity (7). Other noteworthy
features include unique combinations of a fam1 domain with a
fam8 domain (SnSRS1), and a fam3 domain with a fam6 domain
(SnSRS16), which likely promote specific cell recognition events
for S. neurona.

RNA-Seq data identified at least seven SRS proteins express-
ed in merozoites, which was confirmed by TaqMan reverse
transcription-PCR (Fig. 5C). The three most abundantly ex-
pressed SnSRS proteins were SnSRS12 (SnSAG3), SnSRS8
(SnSAG2), and SnSRS4 (SnSAG4), as has been observed previ-
ously (44). Importantly, the SO SN1 strain did not express
SnSRS10 (SnSAG1). SnSRS10 is a highly immunogenic protein
and is the major surface antigen expressed on the SN3 strain (45),
which explains the high number of SN3-derived expressed se-

FIG 4 SnAMA1a and SnAMA1b accessorize the canonical AMA1 DI and DII domains with unique features but maintain an apical surface capable of
coordinating SnRON2D3. (A) Secondary-structure (left) and surface representations of SnAMA1a DI (purple) and DII (orange); five conserved disulfides and
two extra cysteines in the DII loop are highlighted as ball-and-stick structures. Two cysteines predicted to form a disulfide at the DII loop hinge are shown as a
ball-and-stick structure (black arrow). Residues anchoring the DII loop are labeled and surround a central Leu residue colored yellow. (B) Surface representations
of SnAMA1b colored and labeled as for SnAMA1a. (C) Surface representation of TgAMA1 (Protein Data Bank [PDB] accession no. 2x2z); DI, light grey; DII, dark
grey. (D) Complementary views of the TgAMA1-TgRON2sp costructure (PDB accession no. 2y8t) with TgAMA1 colored light grey (DI) or dark grey (DII) and
TgRON2sp colored cyan. (E) Complementary views of the SnAMA1a-SnRON2D3 costructure model, with SnAMA1 colored as in panel A and SnRON2D3 in
green. Residues making up the RON2 cystine loop tip are shown as ball-and-stick structures to highlight shape complementarity.
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FIG 5 Coccidian-specific protein families implicated in virulence and host range determination. (A) Maximum-likelihood-based phylogenetic tree of the
ROPK family. Values indicate the bootstrap support (of 1,000 replicates). S. neurona members are red. T. gondii members are dark blue. N. caninum members
are cyan. T. gondii and N. caninum clades are blue. E. tenella members and clades are yellow. (B) Summary of the 23 SRS family members identified in the S.
neurona genome. Relative expression in the S. neurona merozoite stage are provided as FPKM values, and domain architectures are indicated. #ESTs, number of
expressed sequence tags. (C) The expression of the SnSRS-encoding genes was assessed by TaqMan qPCR. Genes were sorted in descending order by their
expression levels.
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quence tags that mapped to SnSRS10, which was transcriptionally
silent in this study (Fig. 5).

Reconstruction and analysis of S. neurona metabolism re-
veal the potential to exploit alternative sources of energy. S. neu-
rona has 372 metabolic enzymes (unique enzyme classification
[EC] numbers, excluding those involved in nonmetabolic reac-
tions) in common with T. gondii but is missing 42 enzymes and
has an additional 13 enzymes that are expressed by RNA-Seq in
the merozoite stage (Fig. 6A; see Text S1 in the supplemental ma-
terial). Our analyses predict putative T. gondii orthologs for 12 of
these enzymes, including the fatty acid elongation genes very-
long-chain 3-oxoacyl coenzyme A synthase (EC 2.3.1.199;
TGME49_205350) and very-long-chain (3R)-3-hydroxyacyl acyl
carrier protein dehydratase (EC 4.2.1.134; TGME49_311290).
Only threonine ammonia-lyase (EC 4.3.1.19) is unique and adds
functionality to S. neurona.

We incorporated these differences into our previously pub-
lished metabolic reconstruction of T. gondii named iCS382 (8)
and performed flux balance analyses of both iCS382 and the mod-
ified S. neurona reconstruction. Scaling the iCS382 model to pro-
duce a doubling time of 11.8 h with glucose as the sole energy
source (see Text S1 in the supplemental material), we show that S.
neurona has a slightly longer doubling time of 13.8 h. Single-
reaction knockouts identified 22 reactions whose deletion resulted
in a significantly greater impact on S. neurona than on T. gondii
(�20% maximal growth rate difference) (Fig. 6B; see Table S2 in
the supplemental material). Critical reactions include members of
the pentose phosphate and glycolysis pathways, the tricarboxylic
acid (TCA) cycle, and two members of the pyrimidine biosyn-
thetic pathway, nucleoside-diphosphate kinase (EC 2.7.4.6) and
cytidylate kinase (EC 2.7.4.14). Conversely, we identified only a
single reaction, catalyzed by pyruvate dehydrogenase, whose de-
letion had a significantly greater impact on T. gondii than on S.
neurona (�20% maximal growth rate difference).

The S. neurona annotation effort predicted a gene for alpha-
glucosidase (EC 3.2.1.20) (see Text S1 and Fig. S4 in the supple-
mental material). Since conversion of sucrose to fructose and glu-
cose by alpha-glucosidase would add functionality to the
metabolic reconstruction, we tested in silico for its potential im-
pact on growth. S. neurona was predicted to grow faster in the
presence of sucrose and the absence of glucose than in the pres-
ence of glucose and the absence of sucrose (doubling time of 11.4 h
versus 13.8 h). This is due, in part, to an increase in the concen-
tration of fructose-6-phosphate caused by the action of hexoki-
nase (EC 2.7.1.1, Fig. 6C). Consequently, under conditions of su-
crose uptake, knockout of enzymes involved in glycolysis has a
greater impact on the growth rate than conditions of glucose up-
take (see Table S2 in the supplemental material). When we exam-
ined the impact of combining access to different carbohydrates,
our simulations suggested that S. neurona has the capacity to sig-
nificantly enhance its growth by utilizing fructose, with an even
greater effect when sucrose is used as an additional energy source
(Fig. 6D). For example, while fructose supplementation alters par-
asite growth to 120%, supplementation with sucrose extends par-
asite growth to 180% of its original rate. Interestingly, glucose-6-
phosphate isomerase, the enzyme responsible for the conversion
of glucose-6-phosphate to fructose-6-phosphate, operates in the
reverse direction under glucose or sucrose uptake conditions.
When only sucrose is available, more glucose-6-phosphate is pro-
duced from the conversion of fructose-6-phosphate, which is pre-

dicted to feed into other pathways (e.g., the pentose phosphate
pathway), resulting in the elevated production of NADPH and an
increased growth rate. Importantly, glycolysis is utilized more
when sucrose is available, so there is less reliance on the TCA cycle.
Furthermore, the breakdown of sucrose makes fructose available
for the synthesis of other key metabolites (e.g., branched-chain
amino acids), decreasing the parasite’s dependency on the TCA
cycle for their production. Hence, the deletion of individual TCA
cycle reactions has a greater impact on the growth rate in the
presence of glucose than in the presence of sucrose (Fig. 6C).

DISCUSSION

Coccidian parasites represent a major clade within the phylum
Apicomplexa, and the genomes of three species, E. tenella, T. gon-
dii, and N. caninum, have already been sequenced (7, 21). S. neu-
rona is the first genome in the genus Sarcocystis to be sequenced.
The 127-Mbp genome is more than twice the size of other se-
quenced coccidian genomes, largely because of a high proportion
of repetitive LINEs and DNA elements. The organization of the S.
neurona genome into 116 genomic scaffolds produces the first
molecular karyotype, or physical linkage map, which should
greatly facilitate future genetic and comparative genomic studies
of this important genus. Sarcocystis chromosomes do not con-
dense, nor have they been resolved by pulse-field gel electropho-
resis. Our comparative genomic, transcriptomic, and metabolic
flux data analyses show that the invasion machinery is largely con-
served among the coccidia but that the tissue cyst-forming coc-
cidia have evolved families of dense-granule (GRA), ROPK, and
surface-associated SRS adhesins that promote their ability to per-
sist chronically in cyst-like structures or disrupt the induction of
sterilizing immunity, representing novel molecular strategies that
facilitate their transition from largely enteric pathogens within a
single host (Eimeria) to heteroxenous pathogens that cycle be-
tween a definitive host and an intermediate host(s) (Sarcocystis).

Genome comparisons reveal that S. neurona has more or-
thologs in common with T. gondii than with E. tenella (3,169 ver-
sus 1,759 orthologs, respectively), supporting the notion that the
Eimeria lineage is more divergent. However, S. neurona is also
quite distinct from T. gondii; it possesses only limited genomic
synteny, restricted to only dozens of genes, and additionally en-
codes 1,285 (18%) genes with no detectable homology to any
other species. As in E. tenella, LINEs and DNA elements are pres-
ent in S. neurona, but the DNA elements are significantly ex-
panded in S. neurona, partially accounting for its increased ge-
nome size. The presence of the LINEs and DNA elements,
however, is not associated with gene model misannotation, since
LINEs are as frequently associated with T. gondii orthologs
(13.3%) as they are with unique genes (11.6%), indicating that
they may drive genome innovations within S. neurona (46). We
did not find any examples of the coronavirus-like long terminal
repeat (LTR) element previously associated with the E. tenella ge-
nome (21), strengthening the suggestion that this element was
acquired by horizontal gene transfer within that lineage.

The Sarcocystis invasion machinery was largely conserved
within the coccidia, and the construction of the S. neurona inter-
action network based on gene expression data identified two main
clusters of conservation, one composed largely of MIC, AMA1,
and RON proteins required for the mechanics of cell attachment
and invasion and another composed of a limited set of ROP and
GRA proteins thought to alter host immune effector function.
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FIG 6 Metabolic reconstruction and analysis of S. neurona based on iCS382. (A) Overlap in enzyme predictions for genes from S. neurona, T. gondii, and
P. falciparum. (B) Species-specific differences in growth rates of single-reaction knockouts. Only reactions that show a growth rate difference of 20% between
T. gondii and S. neurona are shown. (C) Impact of deletion of reactions involved in glycolysis and the TCA cycle on S. neurona growth under conditions of
exclusive glucose or sucrose uptake. D-glc-6-P, D-glucose-6-phosphate; G6PI, glucose-6-phosphate isomerase; D-frc-6-P, D-fructose-6-phosphate; DF6P1P,

(Continued)
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However, the complement of the latter ROP and GRA proteins is
greatly reduced compared to that of other tissue cyst-forming coc-
cidia such as Toxoplasma or Neospora. While mouse models have
shown ROP5 and ROP18, which are absent from S. neurona, to
impact virulence in Toxoplasma, the lack of a suitable such model,
i.e., immunocompetent mice, for S. neurona means that little is
known about its strain virulence determinants. Additionally, all
strains induce fatal encephalitis in immunodeficient mice, irre-
spective of the dose. Only two ROPKs were conserved with
E. tenella, implying specialization in the ROPK machinery re-
quired for the different life cycles. Hence, the reduced comple-
ment of ROPKs within the S. neurona genome likely underscores
the important role the expanded repertoire of ROPKs plays in
promoting Toxoplasma and Neospora host and niche adaptation
among the susceptible hosts in which these parasites establish
transmissible infections. Likewise, the distinctive set of ROPKs
previously reported for E. tenella and thought to map to the sporo-
zoite rhoptry (47) might suggest a specialized role for these pro-
teins during the initial establishment of infection.

Consistent with a transition from a strictly enteric coccidian
pathogen to a tissue-invasive one capable of establishing long-
term, chronic infection by encystment within host cells, S. neu-
rona expresses a distinct surface antigen coat of SRS proteins that
promote parasite recognition, attachment, and long-term encyst-
ment within host cells to promote transmissibility of infection. In
comparison to T. gondii and N. caninum, however, the S. neurona
SRS protein repertoire is surprisingly small and less divergent
(25); there is a dramatic reduction in the number of SRS proteins
composed of fam7 and fam8 domains, with the vast majority of
the 23 SnSRS-encoding genes composed of fam2 domains. Previ-
ous studies of T. gondii suggest that proteins composed of the
former domains modulate host immune responses and mediate
critical roles in parasite virulence. Our data suggest that with only
a single copy of a fam7- and fam8-containing SRS protein, S. neu-
rona has evolved other mechanisms for control of immune acti-
vation and/or that such control is not required for the successful
transmission of this highly prevalent protozoan pathogen. The
latter point is consistent with observed differences between the S.
neurona and Toxoplasma/Neospora life cycles. Sarcocystis spp.,
once encysted, undergo a terminal commitment to their gamont
stage, requiring access to their definitive host to complete their life
cycle. In contrast, both Toxoplasma and Neospora are capable of
recrudescing their infection after encystation, and expansion of
fam7 and fam8 domain SRS proteins capable of altering host pro-
tective immunity may function to increase the cyst burden or alter
intermediate-host behavior, promoting transmission of the para-
site to the definitive host to complete its life cycle. Alternatively,
Sarcocystis spp. are exclusively restricted to sexual development
within the intestine of the definitive host, whereas Toxoplasma
infection of its felid definitive host results in both sexual develop-
ment and asexual expansion of infection, so the expanded reper-
toire of fam7 and fam8 domain SRS proteins may promote dis-
semination of infection to a wide range of tissue and cell types and
vaccinate the definitive host against reinfection.

The sheer dominance of the fam2 domain proteins among the
limited repertoire of SnSRS proteins suggests that they play a crit-
ical functional role in the life cycle. A recent study (43) found that
TgSRS44 (CST1), a T. gondii SRS protein with 13 tandemly re-
peated fam2 domains, is an important structural constituent of
the cyst wall, suggesting that the emergence of fam2 SnSRS
domain-containing proteins in the common ancestor of S. neu-
rona and T. gondii likely provided the parasite with the ability to
form cysts, thereby extending its host range and promoting the
transition to a heteroxenous (two-host) life cycle. Strains of S.
neurona are known to exhibit important differences in the immu-
nodominant SnSRS-encoding genes that they possess. SnSRS10
(SnSAG1) is encoded by an immunodominant gene present and
expressed abundantly in some S. neurona isolates but absent from
others (45). While the type II SO SN1 strain sequenced encodes
SnSRS10, it does not express it during merozoite growth (Fig. 5),
whereas SN3, another type II isolate, highly expresses this protein.
While the mechanism of gene regulation within the SnSRS family
has yet to be elucidated, it may influence the host range, the ca-
pacity to promote coinfection, and/or pathogenicity among the
broad intermediate-host range of S. neurona, much the same way
differential expression of TgSRS2 alters the parasite load and the
pathology of T. gondii infection in mice (4). Importantly, a high
prevalence of coinfection with different genetic types of S. neurona
within intermediate hosts would promote outcrossing during sex-
ual reproduction. Outcrossing in Toxoplasma has previously been
shown to produce progeny possessing altered biological poten-
tials, including virulence and a capacity to cause outbreaks (48),
which has recently also been established for S. neurona (15).

Finally, regulation of energy production has likewise evolved as
a strategy for parasites to extend their host range, by tuning
growth in relation to the host burden or carrying capacity (8). We
found only a limited number of differences between the enzyme
complements of T. gondii and S. neurona. Notably, S. neurona
possesses 13 enzymes not present in T. gondii and a homolog of an
alpha-glucosidase (EC 3.2.1.20) that preferentially gives S. neu-
rona the potential to use alternative carbon sources to help drive
growth. Hence, our flux balance analysis showed that S. neurona is
less reliant on the TCA cycle when it is grown in the presence of
sucrose and that sucrose supplementation can increase parasite
growth to 180% of its original rate, a capability that may be im-
portant for allowing the parasite to exploit new host niches. These
findings serve to highlight subtle differences in pathway utiliza-
tion that the two parasites may have adopted to optimize their
distinct life cycle strategies.

Together, our data support a model in which, following the split
with the Eimeria lineage, the ancestor of Sarcocystis and
Toxoplasma gained the ability to invade intermediate hosts and form
tissue cysts. This transition required the evolution of SRS family pro-
teins as structural constituents of the cyst wall, as well as immune
evasion molecules protecting the parasite from sterilizing immunity.
Subsequently, while the Sarcocystis lineage abandoned the use of the
PV during its schizont stage in the intermediate host, committing the
parasite to its sexual cycle after encystation, the Toxoplasma lineage

Figure Legend Continued

diphosphate-fructose-6-phosphate 1-phosphotransferase; FBA, fructose-bisphosphate aldolase; PK, pyruvate kinase; Cyt, cytosol; Mito, mitochondrion; PC,
pyruvate carboxylase; CS, citrate synthase; AH, aconitate hydratase; ID, isocitrate dehydrogenase (NADP�); OD, oxoglutarate dehydrogenase (succinyl-
transferring); DS, dihydrolipoyllysine-residue succinyltransferase; SL, succinate-CoA ligase (ADP-forming); SD, succinate dehydrogenase (ubiquinone); FH,
fumarate hydratase; MD, malate dehydrogenase; frc, fructose. (D) Relationship between fructose, glucose, and sucrose import and growth.

Genome Sequence of Sarcocystis neurona

January/February 2015 Volume 6 Issue 1 e02445-14 ® mbio.asm.org 13

mbio.asm.org


maintained the use of a PV during intermediate-host infection. The
use of the PV could conceivably shield the parasite from the host
developing an effector memory CD8 T cell response that is naturally
induced by the presence of parasite antigens in the cytosol of infected
host cells. This, in turn, allows Toxoplasma to recrudesce postencys-
tation and, aided by an expanded repertoire of ROPK, GRA, and SRS
proteins, provides further opportunities to increase the cyst burden
and extend its host range. In addition to addressing questions of host
range and specificity, we expect that the availability of this resource
will help drive the development of novel therapeutics that are ur-
gently required for these devastating pathogens. Further, reference
genome mapping will facilitate genus-wide and population studies
that focus on questions of host specialization and virulence mecha-
nisms. The latter, for example, might be expected to inform on the
spate of fatal infections in marine mammals to resolve at the genome
level the genetic basis of the emergence of these disease-producing
strains. Key to these studies will be the generation of robust expres-
sion data sets that allow the identification of critical proteins associ-
ated with distinct stages of the parasite’s life cycle.

MATERIALS AND METHODS
Culturing of parasites, extraction of DNA/RNA, and sequencing. S. neu-
rona strain SO SN1 was isolated from a southern sea otter (19) and ob-
tained from Patricia Conrad, University of California, Davis, CA. S. neu-
rona parasites were maintained in MA-104 cells as described previously
(49). Genomic DNA was extracted from frozen pellets of S. neurona SO
SN1 by proteinase K digestion and subsequence phenol-chloroform extrac-
tion. Five libraries were prepared: two Roche 454 Shotgun GS-Titanium li-
braries prepared in accordance with the Rapid Library Preparation Method
Manual (Roche), a Roche 454 8-kb paired-end GS-Titanium Library pre-
pared in accordance with the Paired-End Library Preparation Method Man-
ual with the modification of setting up four circularization reactions to in-
crease the final library yield, an Illumina 2- to 3-kb mate pair library
synthesized with the TruSeq DNA sample prep kit (Illumina) and run on an
Illumina GA IIx, and a Nextera 8- to 15-kb mate pair library prepared in
accordance with the manufacturer’s recommendations and run on an Illu-
mina HiSeq 2000. These sequencing efforts generated 7,020,033 shotgun
reads, 5,919,255 shotgun reads, 1,100,788 paired-end reads, 128,614,194
mate pair reads, and 136,301,151 mate pair reads, respectively. S. neurona SO
SN1 RNA was isolated from merozoites with the RNeasy minikit (Qiagen),
snap-frozen, and stored at �80°C. A single TruSeq v2 RNA library (mRNA
enriched) was prepared for Illumina sequencing by the standard Illumina
protocol and used to generate 59,622,019 reads. For further details of genome
assembly and annotation, as well as bioinformatics and experimental analy-
ses, see Text S1 in the supplemental material.

Nucleotide sequence accession number. Further information on the
S. neurona genome project, including sequence files, is available through
the bioproject repository at the National Center for Biotechnology Infor-
mation (http://www.ncbi.nlm.nih.gov/bioproject/252030) using the ac-
cession number SRP052925.
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