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ABSTRACT: Accurately calculating a weak acid’s pKa from
simulations remains a challenging task. We report a multiscale
theoretical approach to calculate the free energy profile for acid
ionization, resulting in accurate absolute pKa values in addition
to insights into the underlying mechanism. Importantly, our
approach minimizes empiricism by mapping electronic
structure data (QM/MM forces) into a reactive molecular
dynamics model capable of extensive sampling. Consequently,
the bulk property of interest (the absolute pKa) is the natural
consequence of the model, not a parameter used to fit it. This
approach is applied to create reactive models of aspartic and
glutamic acids. We show that these models predict the correct
pKa values and provide ample statistics to probe the molecular
mechanism of dissociation. This analysis shows changes in the solvation structure and Zundel-dominated transitions between the
protonated acid, contact ion pair, and bulk solvated excess proton.

■ INTRODUCTION

Weak acid ionization plays a central role in many chemical,
biological, and industrial processes. Measuring and predicting
the free energy of this process (i.e., pKa values) have become
important experimental and theoretical tools, enabling control
over and insight into acid/base chemistry and pH-dependent
biomolecular transformations. Although a large number of
theoretical methods have been developed to predict pKa values
(see recent reviews 1 and 2 and references therein), less
attention has been given to understanding the molecular-scale
mechanism of acid dissociation. This is largely due to the
complexity and cost of analyzing the full free energy surface,
which involves not only a chemical reaction but also significant
solvent and solute reorganization. Instead, most pKa methods
rely on the use of thermodynamic cycles that break the complex
process of deprotonation into computationally tractable steps.
For small molecules, this cycle typically combines the gas phase
dissociation energy, calculated with high-level quantum
mechanical (QM) calculations, with de/solvation free energies
of the reactant and product species, calculated with continuum
solvent approaches.2−6 While the gas phase energies are quite
accurate, the simple continuum description of solvation free
energies often requires parameter adjustment to reproduce all
of the entropic and enthalpic complexities that are inherent in
molecular solvation. They have been improved by hybrid
approaches that include some number of explicit water
molecules in the solvation free energy analysis.7,8 In
conjunction with methodological refinements, these QM-
continuum solvent models have enabled pKa calculations of

small acids to within a few units of the experimentally
determined values.4−6,8

In contrast, the suite of methods that have been developed to
predict biological pKa values have typically used a thermody-
namic cycle in which the solute remains in a solvated
environment. These approaches range from microscopic to
continuum to completely empirical. Each has advantages and
drawbacks as well, discussed in ref 2, however none has yet
demonstrated the ability to predict pKa values within a few pKa
units of the experimental value for all test cases. It has been
suggested that challenging moieties (e.g., buried residues that
have large pKa shifts or those with strong coupling to
conformational changes or other titration sites) will require
methods that better capture the underlying physics.1 These
conclusions highlight how interesting and nuanced a
biomolecular system can be. While it is clear that protonation
states influence everything from stability to binding and
reactivity, the details of their influence is still sometimes poorly
understood.
Few methods to date have simulated the actual process of

interest, the exchange of an excess positive charge from an acid
to bulk water. To do so involves calculating the free energy
surface for proton dissociation in the bulk phase environment,
from which one learns about the molecular mechanism and
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rate. This requires three things: (1) a method that describes the
underlying physics of bond formation and cleavage in the bulk
phase environment, (2) a method that is efficient enough that
when combined with enhanced sampling approaches can
capture the distribution of phase space that defines a free
energy in the condensed phase (where entropy and energy are
often a similar magnitude), and (3) a reaction coordinate that is
flexible enough to track the transferring excess charge defect.
The first of these requirements is most obviously filled by

QM approaches, which have been used in a handful of helpful
studies to probe acid dissociation. Ivanov et al. have used Carr−
Parrinello molecular dynamics (CPMD) to calculate the free
energy profile of histidine dissociation.9,10 Although the chosen
reaction coordinate limited their analysis to stopping just
beyond the transition state,11 they were able to calculate the
correct relative pKa value by subtracting the equivalent profile
for water autodissociation.9 Similarly, Park et al. used CPMD in
combination with metadynamics to sample the configurational
space of acetic acid in bulk water.12 While their trajectories
were too short to sufficiently converge the free energy surface,
they were able to observe and characterize multiple protonation
and deprotonation events. These reactions occurred along a
well-characterized pathway where the excess proton is briefly
shared between the acid and solvating water. They also noted
the existence of a shallow minimum in the free energy surface
corresponding to the existence of a contact ion pair (CIP) that
is separated from the protonated state by a small energy barrier.
In an alternative approach that still describes the bond
dissociation at the ab initio level, Uddin et al. recently used
QM/MM to calculate the free energy surfaces for several small
molecules.13 Although they obtained quite accurate pKa values,
their method cannot describe the mechanism of dissociation
since they include only one water molecule and the acid in the
QM region. Hence, this method changes the physical process
from the dissociation of a delocalized charge defect to proton
transfer followed by separation of a localized hydronium cation
and acid anion in a solvating MM environment. Just as for
thermodynamic cycles, their results show that sampling an
alternative pathway between reactant and product states can
yield accurate pKa values for small molecules.
Another approach that describes the bond dissociation

process is reactive MD (RMD).14−17 The efficiency of these
models allows them to sample reactive dynamics on much
longer length and time scales than ab initio MD. Since they are
parametrized to work with MM force fields, they also avoid the
boundary issues suffered by QM/MM calculations. Both of
these factors make RMD models ideal for simulating reactions
in large, complex systems with slow dynamics. Proteins and
proton exchange membranes are two important examples of
such systems.18−25 Without sufficient sampling in these types of
systems, the final result can be strongly influenced by the initial
conditions. A common criticism of RMD models is that they
are only approximations to the true quantum mechanical
behavior of the system. While this is certainly true, if the
functional form is both flexible enough and parametrized
correctly, then the reactive model will retain the ability to
accurately reproduce the potential and free energy surfaces
from which it was parametrized.26,27

The multistate empirical valence bond (MS-EVB) method is
a RMD force field that has been used to characterize proton
transport in many condensed phase and biological environ-
ments.11,28 It is especially well suited to the challenge of acid
ionization since it inherently defines a center of excess charge

that can be used to track reactions involving proton transport,
thereby avoiding issues with geometric reaction coordinates.9,11

Although MS-EVB has been used to study weak acids29,30 and
amino acid dissociation,19,31 these efforts involved a larger
degree of empiricism since the pKa value was needed to fit the
MSEVB potential. It has been a long sought goal to find a
procedure that would minimize the empiricism in RMD
models, such that the bulk property of interest was derived
entirely from quantum data in combination with extensive
sampling.
This work reports the achievement of that goal, a multiscale

approach to calculate the free energy profile for acid ionization
that is based entirely on QM data and yields an accurate
absolute pKa value. An iterative procedure, in the spirit of
adaptive force matching,32,33 is used to sample the reactive
phase space, obtain reference ab initio data (QM/MM forces),
and fit a RMD potential. Care has been taken to modify the
functional form such that it is sufficiently flexible to reproduce
the QM/MM reference data and, in principle, capture the
essential physics. Our approach is applied to aspartic acid (Asp)
and to glutamic acid (Glu). Both of these amino acids play
crucial roles in proton and ion transport in biological channels
and pumps and are also commonly involved in salt bridges that
influence protein dynamics, structure, and binding. We show
that accurate estimates of the pKa values of both Asp and Glu
are obtained from the resulting reactive models, which is the
first time a reactive model has been able to accurately predict
the correct pKa without being explicitly parametrized to do so.
Finally, we discuss the mechanistic description our models
provide of acid deprotonation in water.
To emphasize that these models were fit entirely to QM/

MM data and without adjustments to match the experimental
pKa, we will hereafter refer to them as multiscale reactive
molecular dynamics (MS-RMD) models.26 It should be noted,
however, that the MS-RMD Asp and Glu models are
parametrized to work with a refined version of the MS-EVB3
hydronium model that accurately describes a proton solvation
and transport in water.28

■ METHODOLOGY
MS-RMD Description. MS-RMD is similar to the MS-EVB

framework that has been successfully used to model proton
solvation and transport in many aqueous systems.11,15,28,31,34,35

The power in this approach lies in its ability to describe
electronic delocalization as a linear combination of topologi-
cally distinct states. For a given configuration, states |i⟩ and |j⟩
differ only in their bonding topology. Each diabatic state
describes a localized protonated species. For example, state |i⟩
could be a protonated amino acid in a box of water (Figure 1a).
State |j⟩ would have the same coordinates but have a topology
describing a CIP between a solvated hydronium ion and a
deprotonated amino acid (Figure 1b). At each step in the
simulation, a state search algorithm first determines all the
possible states based on geometric criteria and then calculates
the energy of each state. The lowest energy state is termed the
pivot state and is the start of the state search algorithm at the
next step. Since the number of waters, and therefore the
number of possible states, grows exponentially with distance
from the pivot state, only states in the first three solvation shells
are included in the Hamiltonian. This has been shown to
provide sufficient accuracy and energy conservation.
The reactive system is described by the following

Hamiltonian:
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∑= | ⟩ ⟨ |i h jH r r r( ) ( ) ( )
ij

ij
EVB

(1)

where r is the vector describing the nuclear coordinates, hij is
the sum of MM potential terms for state i, and hij is the
coupling between states |i⟩ and |j⟩. The details of these terms
will be provided in the Force Field section. With the
Hamiltonian defined this way, the relative weight of each
state is described by the components of the eigenvector, ci:

=c E cH 0 (2)

Finally, forces are calculated using the Hellmann−Feynman
theorem. These forces are then passed to a standard MD
integrator such as velocity Verlet.
Free energy calculations require a continuously varying

reaction coordinate (RC) to describe the process of interest.
The EVB formalism provides a convenient reference for the
RC; the center of the excess charge (CEC):

∑= cr r r( )
i

N

i iCEC
2 COC

EVB

(3)

In this equation, ri
COC is the geometric center-of-charge for the

protonated molecule in state i, and ci is the relative weight of
that state. We then use the distance between the CEC and the
center of mass of the Asp or Glu carboxyl group to describe the
progress of the deprotonation reaction.
Force Field. The diagonal elements of the MS-RMD

Hamiltonian matrix are derived from the standard CHARMM
MM force field.36 The protonated form uses all of the standard
parameters with the exception of the acidic O−H bond. This
bond is replaced with a Morse potential to allow dissociation:

α= − − −U D r r[1 exp( ( ))]Morse
0

2
(4)

where r is the bond length and D, α, and r0 are parameters fit to
reproduce the bond length and frequency of the harmonic

potential it replaces while still allowing for a reasonable bond
dissociation energy. The deprotonated form of amino acid uses
all of the standard CHARMM bonded and nonbonded terms
and parameters. Since the CHARMM force field was not
originally intended for use in reactive simulations, additional
repulsive terms are used between the carboxyl oxygens of the
deprotonated model and the hydronium oxygen and hydro-
gens. These terms help to correct for the overattraction at close
distances due to the use of point charges.37 The functional
forms for the repulsions are the same as those used in the MS-
EVB3 hydronium model:28

∑= − − · − ′V B b R d b Rexp[ ( )] exp[ ( ) ]
j

OO
rep

OO OO
0

3

H O
2

k k j k

(5)

= − −V C c R dexp[ ( )]HO
rep

HO OH
0

k k (6)

where B, b, b′, C, and c are fitted parameters. Following the
logic in previous work, and to avoid parameter redundancy,
dOO

0 and dOH
0 were fixed the same values used in MS-EVB3.

The sum of Gaussians term in eq 5 is included to help the fitted
potential to reproduce the correct asymmetric solvation
structure around the hydronium, and the same switching
function is used as given in eq 9 of ref 28.
The Asp and Glu models are designed to work with a refined

version of the MS-EVB3 force field, herein referred to as
MSEVB 3.1. This refinement uses the same functional forms for
the Hamiltonian but revised parameters. Using a genetic
algorithm, the fitting parameters were optimized using the
original ab initio data sets as well as potential energy surface
scans for the Eigen ion at the same level of the original ab initio
calculations. Furthermore, the oxygen partial charge of the
hydronium is an adjustable parameter (the charge for the
hydrogens is automatically determined to maintain the
hydronium +1 total charge). MS-EVB 3.1 better describes
contact ion pairs. Parameters for this force field are presented in
the Supporting Information.
In this study, the limiting species are the de/protonated Asp

or Glu models and the MS-EVB 3.1 solvated proton in SPC-FW
water. The MS-RMD force field is parametrized to smoothly
switch from one protonated species to another. The asymmetry
of the reaction necessitates several modifications to the original
MS-EVB equations, which were designed with water in mind.
The off diagonal coupling term, hij, is designed to reproduce the
correct transition state geometry. Previous MS-EVB models
used a complex off-diagonal term to describe a symmetric
reaction pathway between two waters. However, the asymmetry
of the Asp-water system was better fit by a simple Gaussian
potential:

= − −h r c c r c( ) exp[ ( ) ]ij
Asp

OH 1 2 OH 3
2

(7)

where rOH is the distance between the deprotonated Asp
oxygen and the excess proton. The other parameters determine
the shape and size of the Gaussian and are fit to the QM/MM
data. In practice, protonation reactions occurring between
different species require a constant energy term (Vii) to be
added to the deprotonated state. This term accounts for the
difference in energy resulting from different MM force fields.
Without it, the protonated and deprotonated Asp potential
energy surfaces would be offset by hundreds of kilocalories per
mole, and no reaction would ever take place. This difference is
due primarily to electrostatics and can be estimated by

Figure 1. Several different bonding topologies are shown for a given
set of nuclear coordinates, r. Dashed lines surround the protonated
molecule, as defined by the bonding topology. (a) A protonated Asp
solvated by water. (b−d) Different possible locations for the
hydronium molecule.
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subtracting the coulomb energy of the most favorable
hydronium state (containing the favorable electrostatic
interactions between the hydronium cation and amino acid
anion) from the coulomb energy of the protonated (and
neutral) amino acid state. Figure 2 shows a plot of the average

value of this term as a function of RC. Since Vii controls the
relative stability of the protonated and deprotonated states, it
was used in past work to tune the behavior of the model to
reproduce experimental quantities such as pKa.

31 In the current
work, an iterative fitting approach is used to rigorously
determine the value of Vii along with all other MS-RMD
parameters.
Fitting Procedure. Our fitting procedure is described

graphically in Figure 3. It is similar in some ways to that used in
previous work in which MS-RMD models were force matched
from AIMD data.26,38 There are, however, a few important
differences, including the use of QM/MM instead of AIMD,
the use of empirical functional forms instead of tabulated

potentials, and the use of an iterative scheme for sampling
configuration space starting from a guessed Hamiltonian. These
choices were partially motivated by the success that has been
demonstrated with the adaptive force matching method by
Wang and co-workers.32,39 The general fitting procedure is
conceptually simple. First, umbrella sampling simulations are
run with a “best guess” reactive Hamiltonian in order to
generate a set of configurations along the reactive pathway.
Next, high-level QM/MM calculations are performed to collect
the atomic forces for those configurations. The new reactive
Hamiltonian is then used to generate new configurations via
umbrella sampling, and the process is repeated until the
parameters reach the desired convergence.
Due to the nonlinearity of several of the reactive force field

parameters, the reactive model is fit to the QM/MM reference
data using a genetic algorithm40 to minimize the residual:

∑ ∑χ = | − |
= =N N

w r F F
1

3
( )

C j

N

i

N

ij ij ij
2

A 1 1

QM/MM 2
C A

(8)

Here, NC and NA are the number of configurations and the
number of atoms in each configuration, respectively. w(rij) is
the weight for each atom that, unless specified otherwise, is set
to 1. Fij is the atomic force from the current MS-RMD
parameter set and Fij

QM/MM is the reference force from the QM/
MM calculation.
The fitting calculations were run in parallel and used 4000

genomes (parameter sets) per generation. To lessen the danger
of overfitting, a two-step minimization scheme was used. The
first step followed the uniformly distributed mutation scheme
outlined in section 3.1 of ref 40. The range of parameters was
chosen to be as broad as possible without allowing
unreasonable values. For example, c3 in the off-diagonal term
would be unreasonable if it were greater than the AspO−OW
distance. Once a converged parameter set was reached with the
uniform distribution, the mutation scheme was switched to the
normally distributed scheme described in section 3.2 of ref 40.
This scheme is very good at quickly finding a local minimum
and was therefore used to find the best genome in the vicinity
of the result from the first step. Since the second scheme is
easily trapped in local minima, it was not ideal for use on its
own. The combination described here was found to quickly and
reliably converge on the optimum solution. The discrete
recombination scheme described in section 2.2 of ref 40 is used
with both mutation schemes.
The nature of the reactive model introduces additional

complexity into this otherwise simple scheme. Vii, which
directly controls the depth of the protonated well relative to the
deprotonated CIP, is a constant that is only included for states
in which the amino acid is protonated. Hence, its influence is
negligible beyond the transition state. The off-diagonal term
acts over a broader range spanning the protonated amino acid
and CIP configurations but also has a negligible effect once the
CIP dissociates. In contrast, the repulsive terms, which are only
applied to the deprotonated amino acid, are significant at longer
distances and negligible at distances below the transition state.
Furthermore, since both Vii and the repulsive terms are added
to the diagonal matrix elements, they tend to have correlated
behavior if fit simultaneously. Thus, the value of Vii for the first
iteration after generating new QM/MM data is chosen to be
the average value described in Figure 2. This value has been
found to be within a few kilocalories per mole of the final value
of Vii and is therefore a good initial approximation. Holding the

Figure 2. Plot of the difference in coulomb energy between the
protonated Asp state and the lowest energy non-Asp state. At short
distances, this quantity is a good initial estimate of Vii.

Figure 3. Schematic representation of the iterative fitting procedure
used in this paper. Details of each step are discussed in the text.
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value of Vii fixed, the off-diagonal and repulsive terms can be fit
to the full set of QM/MM reference forces. Once the off-
diagonal and repulsive terms reach their optimum value for the
current value of Vii, umbrella sampling is used to generate a
PMF with the model. Since Vii’s effect is most important at and
around the transition state, a range of RC values immediately
surrounding the transition state is chosen from the PMF, and
configurations from that range are then used to fit a new value
of Vii. Using this new value of Vii, the off-diagonal and repulsive
terms are refit while Vii is again held constant. This procedure
fits an empirical model from solely QM/MM data and results in
models that correctly predict the bulk phase pKa values for both
Asp and Glu.
Computational Details. Solution simulations of Asp and

Glu include one solute molecule solvated by 486 and 467
waters, respectively. To reduce interactions with the charged
backbone protonatable sites, the N-termini were capped with
an acetyl group and the C-termini were capped with
methylamine. The systems were equilibrated in the NPT
ensemble at 1 atm and 310 K for 200 ps before changing to the
NVT ensemble with a cubic box of 24.55486 Å on a side for
Asp and 24.24938 Å for Glu. All reactive simulations were run
with a modified version of the LAMMPS simulation pack-
age.41,42 The RC was chosen to be the distance between the
CEC and the center-of-mass of the amino acid’s side chain
carboxylic acid. Umbrella sampling was used to evenly sample
the RC. For the Asp system, 25 windows were spaced every
0.36 Å starting at a RC value of 1.0 Å. Umbrella restraints were
chosen to be 20.0 kcal/mol. The Glu system used 36 windows
spaced every 0.25 Å with 20.0 kcal/mol restraints. Each
production window was further equilibrated for 100 ps, and
then statistics were collected for 1.7 ns. The weighted
histogram analysis method was used to integrate all
PMFs.43,44 The pKa is calculated from the resulting PMF
using the following equation:

∫ π β= −
†

−K C r w r rp log[ ( 4 exp[ ( )] d ) ]a
0

0

2 1
(9)

where w(r) is the free energy from the PMF and β is the
product of the simulation temperature and the Boltzmann
constant. The integral is calculated from zero to the transition
state, as denoted by †. C0 is the standard state concentration
whose value is 1660 Å3/molecule and results from the entropic
freedom that is gained by the proton when it dissociates from
the acid.45,46

Atomistic configurations for the QM/MM calculations were
selected from the umbrella sampling trajectories. In order to
ensure a uniform distribution along the RC, individual
configurations were sorted by their RC value into 60 0.067 Å
wide bins. Five configurations were then selected at random
from each bin, giving a total of 300 configurations for each
iteration. QM/MM was performed in CP2K47 using
B3LYP48,49 with the double-zeta basis set. Unrestricted DFT
was used to allow the most accurate calculation of forces near
the dissociation barrier. B3LYP was chosen over MP2 because
recent studies have shown comparable accuracy with a reduced
computational cost for water and the solvated excess
proton.39,50,51 Calculations were run on 256 Intel Sandy Bridge
cores and on average completed within 10 min. The QM region
included the entire amino acid residue and all of the waters
found by the MS-RMD state search. Because proximity to
classical point charges reduces the accuracy of forces calculated
on QM atoms, an additional 3 Å buffer layer of QM water was

added around the QM atoms. All together, this results in a QM
region containing an average of 208 atoms, or one Asp/Glu and
61 waters. In total, four iterations were needed for Asp
parameters to converge, while Glu parameters converged in
three iterations.

■ RESULTS AND DISCUSSION
MS-RMD Model Parameters. Parameters for the new Asp

and Glu models are presented in Table 1. These parameters

were fit to QM/MM reference forces using the previously
described iterative scheme to ensure convergence. It must be
noted that the Asp and Glu models were parametrized using
the same method, but entirely independent data sets. The fact
that the final parameters for each model are so similar is not
surprising, however, given the molecular similarity and small
difference in experimental pKa values. As the next section
discusses, the pKa predicted by each model is a very good
estimate of the experimental value. The fact that the models are
able to capture such subtle differences is evidence that the
methodology works well.

Deprotonation PMF and pKa. The potential of mean
force (PMF) of deprotonation describes the free energy of the
process as a function of the RC. To obtain a free energy change
between any two points on the PMF, one simply integrates the
PMF. Figure 4a shows the PMF for deprotonation of Asp, and
Figure 4b shows the PMF for Glu (black lines). As depicted in
Figure 5, the RC gives the distance between the center-of-mass
of the carboxylic moiety and the CEC. RC values around 1.3 Å
correspond to the protonated amino acid, while values between
2.1 and 5 Å correspond to the stable CIP. Values above 5.5 Å
represent an excess proton separated from the anionic acid by
bulk solvent.
The protonated forms of Asp and Glu are much more stable

than the deprotonated forms, which is consistent with their
status as weak acids. Evaluating the integral in eq 9 estimates
the pKa values for Asp and Glu to be 3.82 ± 0.17 and 4.56 ±
0.18, respectively. These are both in very good agreement with
the experimental ranges of 3.71 to 3.90 for Asp and 4.15 to 4.31
for Glu.52,53

The CIP is a significant feature of weakly acidic systems. It is
stabilized by the electrostatic attraction between oppositely
charged ions. The barrier that prevents protonation is due to
the cost of forming a Zundel-like arrangement between the acid
and hydronium. The depth and extent of the CIP varies with
the system; however its existence has been predicted in a
variety of weak acid systems simulated with different
methods.12,31,54,55 When preparing a simulation to calculate a
PMF of deprotonation and a pKa, care must be taken to ensure
that the RC is sampled far enough beyond the CIP to ensure

Table 1. Final Parameters for the Asp and Glu Models

Asp Glu Asp Glu

B 0.579 671 1.013 770 Vii −150.505 417 −150.291 915
b 1.506 881 1.418 695 c1 −25.099 920 −25.013 330
b′ 0.000 108 1.084 593 c2 2.799 262 3.018 957
dOO
0 2.4 2.4 c3 1.299 994 1.280 649
C 0.579 841 0.987 714 D 143.003 143.003
c 0.931 593 1.146 188 α 1.8 1.8
dOH
0 1.0 1.0 r0 0.975 0.975
rs 3.5 3.5
rs 4.0 4.0
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bulk-like properties. If this is not done, then the PMF from
which the pKa is calculated will be shifted and the resulting
“pKa” will neither be accurate nor reflect the quality of the
model. Fortunately, sampling well beyond the CIP is not a
problem with MS-RMD models due to their efficiency.
However, care needs to be taken when running QM/MM
simulations to ensure that a large enough QM box and enough
solvating waters are used to not only sample beyond the CIP
but also to avoid boundary issues.13

Solvation Structure. With the PMF in hand, one can
additionally probe the molecular mechanism governing weak
acid dissociation. The MS-RMD methodology conveniently
provides a measure of the structure of the solvated complex. It
has been shown that the square of the largest component of the
ground state eigenvector (cmax

2, from c in eq 3) describes the
solvated structure.28 A value of 1 indicates the limiting case of
an entirely localized excess charge, while values less than that
quantify the degree of charge delocalization. Eigen structures,
where the excess charge is shared among a central hydronium
and three H-bound water molecules, have a cmax

2 value around
0.65. Zundel structures, which share the excess charge more
equally between two water molecules, have a cmax

2 value closer
to 0.5. It should be emphasized that there is always additional
delocalization to other surrounding water molecules, even for
these limiting Eigen- and Zundel-like cations. By plotting the
cmax

2 probability density as a function of the RC, we gain insight
into the structural changes that accompany deprotonation. This
probability density is plotted as a colormap in Figure 4. At low
RC values, both Asp and Glu have an average cmax

2 greater than
0.9, which indicates that the structure and dynamics mostly
resemble the limiting case of a protonated acid in bulk water
with little charge transfer to the surrounding water molecules.
This is notably different than the protonated water molecule,
which always involves a significant amount of charge
delocalization.56 As the proton begins to dissociate, the cmax

2

decreases as the proton goes through a clear Zundel-like
transition between the acid and solvating water. Beyond the
transition state, the system begins to resemble an Eigen cation
where one of the solvating waters is replaced with the acid
anion. However, the Eigen structure seen in the CIP is
distinctly different from that seen in bulk water, as evidenced by
a cmax

2 of ∼0.73. The close proximity of the anionic acid helps
to stabilize the hydronium, leading to a more localized charge.
Further evidence of the uniqueness of the CIP is that there is a
well-defined Zundel transition around 4 Å linking the CIP to
the bulk-like structure at longer distances. While proton
transfers always occur via Eigen−Zundel−Eigen transitions in
bulk, the water around the anionic amino acid is more
structured, as evident in the distinct Zundel-like transition at a
RC value around 4 Å. Figure 5 shows snapshots of the typical
structures found at different RC values and characteristic of

Figure 4. PMFs and cmax
2 distributions from the final (a) Asp and (b)

Glu models. The PMF describes the free energy as a function of the
RC. The pKa is calculated from the PMF. The colormap in the
background gives the cmax

2 probability distribution normalized for each
RC value. This distribution describes the extent of charge
delocalization and, by extension, the solvation structure.

Figure 5. Snapshots from umbrella sampling trajectories illustrating the types of structures suggested by the cmax
2 distributions and the 2D-RDFs.

Arrows indicate the region of the PMF where the windows were run, while the distances in the box are the center of the harmonic restraint. Atoms
are colored according to their type. The position of the CEC is shown as a yellow sphere. In Eigen structures, the CEC is nearly aligned with the
central water’s oxygen. In Zundel structures, the CEC resides close to the midpoint between neighboring oxygens.
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significant regions in the PMF. A yellow sphere indicates the
location of the CEC. Its position relative to the atoms
reinforces the analysis presented herein. The bonding topology
reflects O−H distances less than or equal to 1.6 Å, which is
commonly considered to be the length of a hydrogen bond.
It is also interesting to look at the structural changes that

occur directly around the CEC. To do so, the two-dimensional
radial distribution functions (2D-RDFs) between the CEC and
surrounding water oxygens (OW) and water hydrogens (HW)
are shown in Figure 6. These results corroborate the cmax

2

analysis. A slice along the first dimension of the 2D-RDFs gives
a traditional 1D-RDF, which describes the probability of finding
the indicated pair a given distance apart. Scanning the second
dimension shows how the solvation structure changes as the
reaction progresses according to the RC. In combination with
the cmax

2 analysis, the 2D-RDFs show that the solvent has well-
defined rearrangements as the proton dissociates from Asp and
travels to bulk. Figure 6a shows the 2D-RDF for Asp’s CEC−
OW distance. Once Asp is deprotonated, the first peak is near
2.5 Å, which is characteristic of the Eigen structure. When the
RC reaches 4 Å, the peak distance drops to around 1.5 Å, which
is characteristic of a slightly asymmetric Zundel cation where
the CEC resides close to the midpoint of the O−O vector. The
2D-RDF showing Asp’s CEC−HW distribution shows similar
behavior and is displayed in Figure 6b. Figures 4b and 7 show
that Glu behaves similarly to Asp.

■ CONCLUSION
We have presented a procedure for fitting the parameters of a
MS-RMD model to reproduce the forces from QM/MM
calculations. Due to the efficiency of MS-RMD, we are able to
collect and analyze data from large time and length scales that
can reveal intricate behavior and is essential for converged bulk

phase thermodynamic properties. This new methodology was
used to parametrize new models of both Asp and Glu that
correctly predict the correct experimental pKa values. This is
the first time that a MS-RMD model has been able to
reproduce the experimental pKa values without any fitting to
experimental data. Multi-nanosecond trajectories were analyzed
to extract important information about the mechanism
underlying the deprotonation process. It is shown that the
deprotonation process follows a well-defined series of Zundel
to Eigen transitions as the excess proton travels from Asp to
bulk solution.
This work is considered continued progress toward the goal

of having flexible and systematic algorithms to reliably make a
multiscale connection between accurate electronic structure
calculations and efficient empirical models to describe complex
reactive processes. As more accurate ab initio methodologies
(e.g., those explicitly accounting for electronic correlation)
become computationally tractable for QM/MM of condensed
phase systems, the procedure presented herein and related
force matching algorithms will be invaluable tools for mapping
high level data into efficient RMD models that can significantly
extend the time and length scales of reactive simulations to
explore complex phenomena.
While the results presented herein are important, the true

test of this procedure will be to apply it in biological systems
where the pKa of individual residues can be shifted by several
pKa units. Proton transport in proteins is very sensitive to the
underlying protonatable residue models, and it is therefore
crucial to have a procedure to ensure that those models are
physically accurate. Furthermore, biological systems are orders
of magnitude larger and have much slower dynamics than the
systems presented here. While it is conceivable that QM/MM
MD simulations could reach the same sort of time scales as the
solution simulations presented here, they would be prohib-
itively expensive to run the length-and time-scales needed to
account for the slow dynamics commonly found in biological

Figure 6. 2D-RDFs for (a) CEC−OW and (b) CEC−HW with Asp.
These plots show how the water structure changes around the CEC as
deprotonation occurs.

Figure 7. 2D-RDFs for (a) CEC−OW and (b) CEC−HW with Glu.
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processes. The MS-RMD methodology has already been shown
to scale well to hundreds of thousands of atoms and can
realistically reach tens of nanosecond simulations with large
explicit biomembrane systems. Work is already underway to
implement these reactive models in protein environments and
to use the presented methodology to fine-tune these and other
individual amino acid models to behave properly in their
specific protein environments.
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