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Abstract: Several health benefits are obtained from resistant starch, also known as healthy starch.
Enhancing resistant starch with genetic modification has huge commercial importance. The variation
of resistant starch content is narrow in wheat, in relation to which limited improvement has been
attained. Hence, there is a need to produce a wheat population that has a wide range of variations in
resistant starch content. In the present study, stable mutants were screened that showed significant
variation in the resistant starch content. A megazyme kit was used for measuring the resistant starch
content, digestible starch, and total starch. The analysis of variance showed a significant difference
in the mutant population for resistant starch. Furthermore, four diverse mutant lines for resistant
starch content were used to study the quantitative expression patterns of 21 starch metabolic pathway
genes; and to evaluate the candidate genes for resistant starch biosynthesis. The expression pattern
of 21 starch metabolic pathway genes in two diverse mutant lines showed a higher expression of
key genes regulating resistant starch biosynthesis (GBSSI and their isoforms) in the high resistant
starch mutant lines, in comparison to the parent variety (J411). The expression of SBEs genes was
higher in the low resistant starch mutants. The other three candidate genes showed overexpression
(BMY, Pho1, Pho2) and four had reduced (SSIII, SBEI, SBEIII, ISA3) expression in high resistant starch
mutants. The overexpression of AMY and ISA1 in the high resistant starch mutant line JE0146 may be
due to missense mutations in these genes. Similarly, there was a stop_gained mutation for PHO2;
it also showed overexpression. In addition, the gene expression analysis of 21 starch metabolizing
genes in four different mutants (low and high resistant starch mutants) shows that in addition to the
important genes, several other genes (phosphorylase, isoamylases) may be involved and contribute
to the biosynthesis of resistant starch. There is a need to do further study about these new genes,
which are responsible for the fluctuation of resistant starch in the mutants.

Keywords: expression analysis; mutant population; resistant starch; wheat

1. Introduction

Starch is the main part of the wheat grains (70% to 80% of the dry weight of seed)
and any change in their nutritional composition can help to provide benefits to a lot of
people. The composition of the nutrients in starch depends upon the ratio of amylopectin
and amylose [1]. Amylopectin represents 70% to 80% of the starch dry weight in wheat; in
addition, it is easily digested by humans and animals. The remaining part of the starch,
20% to 30%, is amylose; and this part helps to form complexes that assist resistance in the
digestion of food [2,3].
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The portion of the starch that passes through the small intestine in undigested form
from the healthy person is called resistant starch [4]. By using the resistant starch, there
will be less chance of many diseases, such as obesity, cardiovascular, diabetes, and colon
tumors [4–7]. Many starch synthesis genes are involved in the formation of resistant starch
synthesis during grain formation [8]. Resistant starch content increases in rice by a null
mutation in the SSIIa gene [9]. Similarly, in rice, wheat, and barley, SBEIII knocking out or
silencing the gene helps to increase resistant starch [10–13]. The functional loss of the starch
synthase gene GBBSS decreases the percentage of resistant starch in wheat grains [14]. It
is a complex quantitative trait that is controlled by many genes. Seventeen quantitative
trait loci (QTLs) have been identified at the different chromosomes of rice for resistant
starch [15,16]. In addition, 10 SNPs have been identified at chromosomes 1,3, 6, and 7 that
are associated with resistant starch in lentils [17]. Moreover, 40 SNP markers related to
resistant starch have been identified through GWAS by screening 209 genotypes of spring
barley [18]. Two additive QTLs at chromosome 4A have been identified out of 14 QTLs;
this showed variation in the phenotype of wheat [19].

Variations have been produced in many crops through different chemical agents. Ethyl
methane sulphonate (EMS) is the main agent for producing variations in different crops [20].
It helps with the mispairing of a guanine base with thiamine instead of cytosine, and causes
a transition from G/C to A/T [21]. This biotechnological approach is more preferable than
other mutagens as it causes a huge number of mutations by giving multiple alleles of a
specific gene in a small population. Many genes of starch biosynthesis produce novel allelic
variations by using EMS-induced mutagenesis. By targeting the GBSSI loci in wheat, many
partial waxy and full waxy phenotypes have been produced [22]. Similarly, many other
starch metabolic genes, such as SBEIIa, SBEIIb, and SSIIa, have been studied in wheat for
the development of high resistant starch and low resistant mutant lines [3,23].

In wheat, seed formation is divided into three stages: (1) the division and expansion
stage (0–14 days after anthesis); (2) the grain-filling stage (14–24 days after anthesis); and
(3) the maturation stage (28 days after anthesis) [24]. The maximum starch accumulation
in the seed is at the grain-filling stage; later, its concentration gradually decreased [18].
The genes involved in sucrose hydrolysis showed maximum expression and significantly
increased at the grain-filling stage [25]. Different studies have illustrated that transcrip-
tion factors regulate the starch-related gene expression at different stages in wheat [25].
During grain development, the ZIP TF family is preferentially expressed to regulate starch
synthesis [26]. In transgenic wheat, the overexpression of TaMYB13-1 and bHLH helps to
increase starch in wheat [26,27]. Different studies have reported the increasing of starch
content through chemical, physical, and other genetic regulations [28]. For genome-wide
analysis, we used a set of mutants having the same genetic background and a wide range
of variations in resistant starch content to understand resistant starch biosynthesis.

In the present study, the EMS stable population was screened, whose parent variety
was J411; it showed variation for resistant starch content. This stable population consisted
of one hundred and fifty mutant lines. Further, two high resistant mutant lines and two
low resistant starch mutant lines were used to study quantitative gene expression patterns
of 21 starch metabolic pathway genes during seed development. The overall workflow is
given in Figure 1.
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experimental area of the Institute of Crop Sciences, Beijing with three replications. From 
these 150 mutant lines, samples of each replication were collected at the maturity stage of 
the crop. Resistant starch content, digestible starch, and total starch content were meas-
ured from these samples by using the Megazyme kit. One-way ANOVA analysis showed 
significant variation in the resistant starch content of the lines in the three biological rep-
lications. Some lines showed resistant starch of more than 17% and low resistant starch in 

Figure 1. A schematic diagram of the overall workflow.

2. Results
2.1. Mutant Population Screening for Resistant Starch

The EMS mutant library was screened, which was the uniform population. This
mutant population was consisting of 150 mutant lines. These mutant lines were sown
in the experimental area of the Institute of Crop Sciences, Beijing with three replications.
From these 150 mutant lines, samples of each replication were collected at the maturity
stage of the crop. Resistant starch content, digestible starch, and total starch content were
measured from these samples by using the Megazyme kit. One-way ANOVA analysis
showed significant variation in the resistant starch content of the lines in the three biological
replications. Some lines showed resistant starch of more than 17% and low resistant starch
in lines of 0.7%; while the resistant starch of J411 was 1.3%. Similarly, the maximum
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digestible starch in some mutant lines was 76.2%; while the lowest digestible starch in
some mutant lines was 27.4%. The overall results of all the mutant lines are given in
Supplementary Figure S1.

2.2. High and Low Resistant Starch Mutant Lines

Firstly, two high resistant starch lines (JE0146 and JE0296) and two low resistant starch
(JE0244 and JE0213) lines were selected after screening the mutant population. These lines
showed a significant difference from WT (J411) whose value was 1.2% in 2019–2020 and
2020–2021 (Figure 2). In both years, the highest resistant starch was in JE0146; its value
was 16.5% and 15.3% in 2020 and 2021, respectively. Similarly, in both years, the digestible
starch of JE0146 and JE0296 was lower as compared to WT (J411); while digestible starch
was higher in low starch mutant lines. All the lines showed a significant difference in total
starch as compared to J411. Similarly, for the protein content, gluten, and grain hardness,
all the mutants showed a significant difference in both years of data as compared to J411
(Figure 2).

2.3. Study of Yield Realted Traits in the High and Low Resistant Starch Mutant Lines

The images of high starch mutant lines and low starch mutant lines were taken to
observe the length and width of the mutant lines (Figure 3). The grain width of the high
starch mutant lines was significantly higher than J411; in which, the width of JE0146 was
7.2 mm and 7.6 mm in 2020 and 2021, respectively; while the width of JE0296 was 7.9 mm
and 8.1 mm in 2020 and 2021. The grain length of the low resistant starch was lower as
compared to J411; while it was higher for the high resistant starch mutant line JE0296,
which was significantly higher than J411 (Figure 3). The thousand-grain weight of the high
resistant line “JE0146” (43.2 g and 44.6 g in 2020 and 2021, respectively) was significantly
higher than J411; while there was no significant difference in both years for JE0296 (Figure 3).
Similarly, the 1000-grain weight (TGW) of the low resistant starch mutant lines was lower
than J411. It showed a significant difference in both years’ data. In the present study,
the lines that had a higher resistant starch content also showed a significant change in TGW;
moreover, these lines can be used in the breeding program for the development of high
resistant starch varieties (Figure 3). All the mutant lines also showed significant differences
in the grain area.

2.4. Influences on the Morphology of Starch Granules in High and Low Resistant Starch Mutants

Pure starch was extracted from wheat flour; a TM4000 scanning electron microscope
observed the difference in the morphology of starch granules between the wild-type (J411)
and resistant starch mutants (Figure 4). The results showed that compared with the wild
type, the starch granules of the mutants were reduced, morphologically shrunk, and
decreased in number in the low resistant starch mutant lines (JE0244, JE0213). Similarly,
in the high resistant starch mutants (JE0146, JE0296), the size of the granules is bigger than
in the WT and there is an increased number of granules. The number of A-granules and
B-granules were higher in the high resistant starch mutant lines as compared to J411 (WT).
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Figure 2. Representative mutants with altered resistant starch content and other physiological traits 
in the selected lines in 2019–2020 and 2020–2021: (A) resistant starch; (B) digestible starch; (C) total 
starch; (D) protein; (E) gluten; and (F) hardness. Asterisks (*, **, ***) indicate that the trait mean was 
significantly different (p-value < 0.01) between the WT and mutant lines. 

Figure 2. Representative mutants with altered resistant starch content and other physiological traits
in the selected lines in 2019–2020 and 2020–2021: (A) resistant starch; (B) digestible starch; (C) total
starch; (D) protein; (E) gluten; and (F) hardness. Asterisks (*, **, ***) indicate that the trait mean was
significantly different (p-value < 0.01) between the WT and mutant lines.
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Figure 3. Study of morphological traits in the mutant lines. The graphs show the distribution of
morphological traits for the wild-type and resistant starch mutant wheat lines: (A) image of the
mutant lines and WT for grain length; (B) image of the mutant lines and WT for grain width; (C) grain
width; (D) grain length; (E) seed area; and (F) 1000-grain weight. Asterisks (*, **) indicate that the
trait mean was significantly different (p-value < 0.01) between the WT and mutant lines.
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Figure 4. Comparison between the grain morphology of the high and low resistant starch mutants,
and the WT (J411). JE0146 and JE0296 are the high resistant starch mutant lines; while JE0244 and
JE0213 are the low resistant starch mutant lines.

2.5. Expression Analysis for Resitant Starch Mutant Lines

Expression analysis was studied in 21 starch metabolic genes, including the genes
responsible for high resistant biosynthesis. Expression analysis was conducted at four
seed development stages (6DAA, 12DAA, 18DAA, and 24DAA) between four selected
mutants and J411 (WT). These four mutant lines contain about 0.8% and 16.5% resistant
starch content. There were fifteen starch biosynthesis genes, in which of the large and
small subunits of ADP-glucose pyrophosphorylases (AGPaseL and AGPaseS): two were
granule-bound starch synthase (GBSSI and GBSSII); four were soluble starch synthase
isoforms (SSI, SSII, SSIII, and SSIV); three were isoforms of branching enzymes (SBEI,
SBEII, and SBEIII); and the other four were debranching enzymes with pullulanase (ISA1,
ISA2, ISA3, and PUL). Further, four starch-degrading genes and two transcription factors
(PHO1, PHO2, AMY, BMY, SPA, and TaRSR1) were selected for expression analysis.

2.6. High Resistant Starch Mutant Lines Expression Analysis of Starch Metabolic Genes

The comparative expression analysis of 21 genes showed that the expressions of twelve
genes in JE0146 and nine genes in JE0296 were consistent throughout the seed development
stages in the high resistant starch mutant lines with comparison to ‘J411’ (Figure 5). From
these genes in both mutant lines, ten genes in JE0146 (GBSSII, SBEII, AMY, BMY, ISA1,
PHO2, PUL, AGPaseS, GBSSI, and SPA) and six genes in JE0296 (GBSSII, BMY, ISA1, PHO1,
SSIV, and GBSSI) showed overexpression; moreover, two genes of JE0146 (SBEI and SBEIII)
and three genes of JE0296 (SBEI, SBEII, and SBEIII) showed reduced expression during
all the seed development stages. The expression of the remaining starch metabolic genes
was inconsistent; i.e., either high or low expression during the seed development stages
(Figure 5).
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Figure 5. Real-time quantitative expression data (Log2 of fold change) of 21 starch metabolic
genes during the seed development in the high resistant starch mutant lines, ‘JE0146 and JE0296’,
in comparison to the parent variety, ‘J411’. The seed development stages were 6, 12 18, and 24 days
after anthesis (DAA). All the data are represented as mean ± SD from two biological and three
technical replicates.

2.7. Low Resistant Starch Mutant Lines Expression Analysis of Starch Metabolic Genes

Similarly, a comparative quantitative gene expression analysis of 21 starch metabolic
genes identified twelve genes in JE0244 and thirteen genes in JE0213; the expressions of
these genes were consistent throughout the seed development stages in the low resistant
starch mutant lines in comparison to ‘J411’ (Figure 6). Of the twelve genes of JE0244
and thirteen genes of JE0213, five (SBEII, AMY, BMY, PHO2, and SSII) and seven (SBEII,
AMY, BMY, PHO1, PHO2, SBEIII, and SSIV) genes showed overexpression, respectively.
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In addition, eight genes (GBSSII, SSI, SSIII, ISA1, ISA2, TaRSR1, GBSSI, and AGPaseL) of
JE0244 and six genes (GBSSII, SSI, TaRSR1, AGPaseS, SSII, and GBSSI) of JE0213 showed
reduced expression during the seed development stages in the low resistant starch mutant
lines (Figure 6). The expression of the remaining starch metabolic genes was not consistent;
i.e., either high or low expression during the seed development.
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to the parent variety, ‘J411’. The seed development stages were 6, 12 18, and 24 days after anthesis
(DAA). All the data are represented as mean ± SD from two biological and three technical replicates.
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2.8. Identification of SNPs and InDels in High and Low Resistant Starch Mutant Lines

Exome sequencing was conducted for the selected high resistant starch mutant lines
(JE0146 and JE0296) and low resistant starch mutant lines (JE0244 and JE0213). It was
depicted that in the mutant lines, the number of SNPs were more in all four mutant
lines than in the Indels. The number of SNPs in JE0296 was higher than the other three
mutants. However, the Indels were almost in an equal amount in all the mutant lines. The
different types of SNPs between the mutants suggested that there were more transitions
than transversions in the four mutants (Figure 7). There were also fewer synonymous
mutations in all the mutant lines.
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Figure 7. Identification of mutations in the four mutant lines (JE0244, JE0213, JE0146, and JE0296):
(a) SNPs and Indels; (b) transition and transversion mutants in the four mutants; (c) Syno, Nsyno,
UTR_3, UTR_5, and frameshift mutations; and (d) the number of mutations in four mutant lines in
the A, B, and D genomes.

From the four mutant lines, seventeen variants were identified in twenty-one starch
biosynthesis genes. Eight variants were discovered in JE0146: five were missense mutations;
two were synonymous mutations; and the remaining one was a stop_gained variant. JE0296
had five variants that consist of three synonymous and two missense mutations. Similarly,
JE0244 and JE0213 both had two variants (Supplementary Table S1).

The overexpression of AMY and ISA1 in the high resistant starch mutant line JE0146
may be due to missense mutations in these genes. Similarly, there was a stop_gained
mutation for PHO2 and it also showed overexpression. SBEIII had a missense mutation
with reduced expression. These mutations could be responsible for the high resistant starch
in JE0146. JE0296 had two missense mutations in the AMY and SSII genes; however, their
expression was inconsistent. Thus, we can say that there may be some other starch-related
genes that may be responsible for high resistant starch content in this line, and that change
the expression of other genes. In the low resistant starch mutant line JE0244, there was
one missense mutation in SBE1, with inconsistent expression; wherein, in the early stages,
there was reduced expression and later, overexpression. The overexpression of SBE genes
helps to reduce the resistant starch. There was also one conservative_inframe mutation in
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SSII and gene expression increased in the mutant line JE0244. Similarly, there were two
mutations in the known 21 genes of JE0213; in which one was a 5_prime_UTR mutation in
SBEI and due to this, mutation expression was inconsistent. The second mutation was a
disruptive_inframe mutation in the SSII gene and the expression was reduced.

3. Discussion

Wheat is the major staple crop and it is the main source of cereal-based products.
The modification of starch composition in wheat by increasing the resistant starch content
helps to improve the quality and yield of crops [2]. There has been significant use of
chemical mutagenesis for crop functional genomics and breeding research [29]. Artificial
mutagenesis technology is an efficient way to improve the crop because of less variation
in the natural population for different crops. Therefore, it presents a good opportunity
to understand the function of genes in any organism by using the mutants with altered
phenotypes [30]. EMS-induced lines have been used to identify a functional mutation for a
candidate gene in diploid, tetraploid, and hexaploidy wheat [29,31,32]. The bread wheat
variety, J411, used in this study was treated with EMS. In total, 150 uniform mutant lines
were used for screening resistant starch content to identify high resistant starch lines and
low resistant starch lines.

Different pieces of published literature have shown that the resistant starch contents
were in the range from 1% to 18% in different wheat mutants [19]. In this study, some
mutant lines showed >16% resistant starch content. Therefore, these mutants will be useful
for the study of genome-wide analysis of the genetic and molecular basis for resistant
starch variation and help to improve the quality of wheat. The lines which showed high
resistant starch had a better weight than the parent variety; in addition, they can be used
to improve the resistant starch and yield through breeding techniques in wheat. Different
studies showed the relation between resistant starch, total starch, and TGW. Resistant
starch enhances slowly in the initial stage of grain development, and the process becomes
fast in the medium stage with a total that ceases at the end of the grain-filling stage. The
correlation between resistant starch and TGW, and total starch was consistent as shown in
previous studies [18]. Granule morphology mainly affects the proportion of amylose and
amylopectin concentration. Starch granules are altered in high resistant lines of wheat and
maize [18,33]. This altered shape of starch granules is likely to increase the resistant starch
proportion in the granules [34].

The expression analysis of 21 starch metabolic genes was conducted by including
genes responsible for changing the resistant starch of four altered resistant starch mutants
and a parent variety (J411) at four different stages of grain formation (Figures 6 and 7). The
overexpression of GBSSI in the present study supports the previous results that may be the
accumulation of high amylose; this is because GBSSI plays an important role by elongating
the a-amylase chain, which ultimately increases the resistant starch content [35]. Amylose
content increased by the overexpression of GBSSI in wheat and rice; while the silence of this
gene or null mutants produced waxy and partial waxy wheat with a low amount of resistant
starch [34,36,37]. Decreasing the activity of SSs, SBEs, and isoamylase helps to increase the
content of resistant starch in wheat. In maize, the functional loss of SSIII helps to increase
the resistant starch content [38]. Similarly, the inhibition of ISA significantly increased the
amylopectin content in rice [39]. SBEII silencing helped to increase the amylose content in
wheat, which ultimately increased the resistant starch content [40]. Therefore, this study
reveals that the overexpression of the main genes of starch biosynthesis helps to increase
the amount of resistant starch.

Amylase (AMY and BMY) with starch phosphorylases (plastidial; Pho1 and cytosolic;
Pho2) plays an important role in starch metabolism with degradation and hydrolysis [41].
These are main starch genes that help in the maintenance of the starch structure and also
starch morphology. The alteration of starch was observed in rice and potato by the silencing
of starch phosphorylase [42]. Similarly, AMY and BMY overexpression also altered the
starch structure and starch granules. Morphology, with changing the structure of starch
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granules, affects the baking quality of wheat [43]. SSI also plays important role in the
increment of resistant starch. In wheat and rice, losing the function of SSI helped to increase
the resistant starch as well as amylose content [44]. Similarly, the overexpression of SBEII
decreased the amylose content in potato and increased the amylopectin content [45]. In
rice, a negative transcription factor (RSR1) was identified [46]. This transcription factor
negatively regulates the other starch metabolic genes; consequently, it modulates starch
metabolism and starch-associated phenotypes.

4. Material and Method
4.1. Plant Material

An EMS mutant uniform population was used in the present study, whose parent
variety was J411. This uniform population was grown in a field in 2019–2020 at the Institute
of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing. This population
consisted of 150 mutant lines. Seed samples were collected from each mutant line and
crushed to make the flour for studying the resistant starch content and other traits. Similarly,
in 2020–2021, the selected lines were sown and seed samples were collected to study the
different physiological and morphological traits.

4.2. Measurement of Resistant Starch and Digestible Starch

The resistant starch (RS) and digestible starch (DS) of 150 mutant lines were measured
by using a commercial Megazyme kit (K-RSTAR 05/19, Megazyme Int., Wicklow, Ireland)
following the manufacturer’s protocol; this being the detailed protocol followed by McClary
et al. [47]. Three biologicals with two technical replications were performed for each sample.

Resistant Starch % = ∆A × F × EV/0.1 × 1/1000 × 100/W × 162/180
= ∆A × F × EV/W × 0.90

(1)

Digestible Starch % = ∆A × F × EV/0.1 × 1/1000 × 100/W × 162/180
= ∆A × F × EV/W × 0.90

(2)

∆A = absorbance of sample solution read against reagent blank.
F = factor to convert absorbance values to mg glucose.
EV = sample extraction volume (10.3 mL or 100 mL).
0.1 = volume of sample analysed.
1000 = conversion from mg to mg.
100/W = conversion to 100 mg sample.
W = sample weight in mg.
162/180 = factor to convert from free glucose, as determined, to anhydroglucose, as

occurs in starch.

4.3. Determination of Total Starch

The total starch content was determined using the Megazyme International Starch
Assay Kit (K-STAR) as per the manufacturer’s protocol [47]. Three biologicals with two
technical replications were performed for each sample with a starch assay kit.

Starch % = ∆A × F × EV/0.1 × D × 1/1000 × 100/W × 162/180
= ∆A × F × EV × D/W × 0.90

(3)

∆A = absorbance of sample solution read against reagent blank.
F = factor to convert absorbance values to µg glucose (100 µg glucose divided by the

GOPOD absorbance value obtained for 100 µg of glucose).
EV = sample extraction volume (10.2 mL for the procedure).
0.1 = volume of sample analysed.
D = further dilution of sample solution.
1/1000 = conversion from µg to mg.
100/W = conversion to 100 mg sample; W: sample weight in mg.
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4.4. Protein, Gluten Content, and Seed Hardness

A grain analyzer was used to measure the protein, gluten content, and hardness of
the seed. A FOSS infratecTM 141 (FOSS Analytical AB, Sweden) grain analyzer was used
to measure these traits by using WinISI II v1.50 (InfraSoft International LLC, 2000, Port
Matilda, PA, USA) [48]. All these traits were measured in the percentage.

4.5. Measurement of Grain Weight, Width, and Length

Samples of seed from each of the mutant lines and WT were collected with three repli-
cations for measuring the grain width, grain length, grain area, and thousand-grain weight
(TGW). SmartGrain was used for evaluating these traits by following the methodology
described in previous studies [49]. TGW was measured in grams, while width and length
were measured in millimeters.

4.6. Starch Purification and Grain Morphology

Seed starch purification was conducted by following the method described by Hawkin
et al. [49]. To study the grain morphology, a Nova NanoSEM 450 (FEI) scanning electron
microscope (SEM) was used to watch the A-granules and B-granules.

4.7. Exome Sequencing of Mutant Lines

Selected mutants were used to capture the genetic diversity. The four mutant pools
were subjected to exon capture and sequencing to compare the polymorphisms between
different extreme pools. The process of exon sequencing was followed as described by
King et al. [50]. First, the quality of DNA in the mixed pool was detected, and the DNA
library was constructed after being qualified; then, the sample library was amplified by
PCR; the captured DNA fragments were subsequently eluted and recovered; and finally,
the captured DNA fragments were enriched. The abundance was subsequently detected by
qPCR; after quality control, high-throughput sequencing was performed on the Illumina
platform. Further analyses were followed, as described by Du et al. [51].

4.8. Quantitative Gene Expression Analysis

Twenty-one starch metabolic genes were used to perform quantitative expression
analysis at four seed development stages (6DAA, 12DAA, 18DAA, and 24DAA) in two
low resistant mutant lines (JE0244 and JE0213) and two high resistant mutant lines (JE0146
and JE0296), and the parent wheat variety ‘J411’. The samples were collected from the
selected line at 6, 12, 18, and 24 days after anthesis and stored quickly in liquid nitrogen;
they were then stored at -80 degrees centigrade for the extraction of RNA. The detailed
protocol for RNA extraction and cDNA formation used in this study followed that of Singh
et al. [52]. Primer information on these 21 genes was retrieved from Singh et al. [53]. Three
technical replicates with two biological replicates were used for quantitative expression
analysis in all the stages by using a fast real-time PCR system (Applied Biosystems, Forster
City, CA, USA); in addition, Actin (GenBank accession no: AAW78915), a housekeeping
gene, was used as an internal control. We followed the method of Singh et al. [53]. The
∆∆CT method was used to analyze the relative expression level. The formula used for
quantitative expression analysis is given below:

∆∆CT = ∆CT (a target sample) − ∆CT (a reference sample) = (CTD − CTB) − (CTC − CTA).

4.9. Statistical Analysis

Microsoft Excel formulas were used to calculate the mean value and standard devia-
tion. In order to study the variations in resistant starch and other traits, a one-way analysis
of variance (ANOVA) was used. To find the significant difference between the mutant lines
and parent variety for all the traits, the Dunnet test was used. For the purpose of these
analyses, three biological replications were used for studying all of these traits.
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5. Conclusions

In this study, 150 mutant lines were used that showed variations in resistant starch
content; this useful germplasm can be used for a genome-wide study and help to improve
the starch-based nutritional quality in wheat. This study indicates that low resistant starch
accumulation in mutant lines may have resulted from the reduced expression of key genes
for resistant starch and starch biosynthesis. The differential gene expression analysis in the
low and high resistant starch mutant lines in comparison to the parent variety supports
the involvement of other starch metabolic pathway genes; these include phosphorylases,
isoamylases, etc. in resistant starch biosynthesis. There is a need to find out about starch
metabolic genes through the backcrossing of these mutant lines and a developed NILs
population for mapping.
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