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ABSTRACT

More than a simple carrier of the genetic information,
messenger RNA (mRNA) coding regions can also
harbor functional elements that evolved to control dif-
ferent post-transcriptional processes, such as mRNA
splicing, localization and translation. Functional
elements in RNA molecules are often encoded by sec-
ondary structure elements. In this aticle, we introduce
Structural Profile Assignment of RNA Coding
Sequences (SPARCS), an efficient method to analyze
the (secondary) structure profile of protein-coding
regions in mRNAs. First, we develop a novel algorithm
that enables us to sample uniformly the sequence
landscape preserving the dinucleotide frequency
and the encoded amino acid sequence of the input
mRNA. Then, we use this algorithm to generate a set
of artificial sequences that is used to estimate the Z-
score of classical structural metrics such as the sum
of base pairing probabilities and the base pairing
entropy. Finally, we use these metrics to predict
structured and unstructured regions in the input
mRNA sequence. We applied our methods to study
the structural profile of the ASH1 genes and recovered
key structural elements. A web server implementing
this discovery pipeline is available at http://csb.cs.
mcgill.ca/sparcs together with the source code of
the sampling algorithm.

INTRODUCTION

Sequence analysis in the post-genomic era has revealed the
multiplicity of selective pressures applied on the genetic

code and therefore a frequent overlap of functional
elements. Recent studies suggested that coding regions
of messenger RNAs (mRNAs) can often include second-
ary structure elements involved in post-transcriptional
regulatory processes (1–3). Although many programs
have been developed to analyze folding properties of
large non-coding RNAs (4) or untranslated regions of
mRNAs (5), these tools cannot be directly applied to
study the structural properties in coding regions. Indeed,
the sequence of codons that specify the amino acid chain
might bias the thermodynamic folding properties of the
polynucleotide, thus preventing accurate estimate of the
statistical significance of local structural motifs. Similar
issues are encountered in the context of large-scale
studies and techniques aiming as defining RNA structure
characteristics on a genome-wide scale (6,7). Actually, as-
sessing the statistical significance of observed phenomena
or patterns requires the definition of a reliable and expres-
sive background model (a.k.a. the null hypothesis). In
particular, any sequence property that is a natural conse-
quence of a well-understood mechanism should be
captured by the background model so that it will generic-
ally appear in random sequences. Including these features
in the background model will lead to an increased statis-
tical significance for novel phenomena.

A classic exploratory approach starts with a random
generation of sequences that share similar properties as
a reference set of sequences. Various metrics can then be
evaluated, possibly leading to diverging distributions of
values within the random and reference sets. The signifi-
cance of such an observation can be empirically assessed
using classic statistical tools (Z-score, P-value . . . ). To im-
plement such an approach in the context of mRNAs, one
must restrict random sequences to synonymous sequences
(i.e. the set of sequences that encode the same amino acid
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sequence). Such sequences can trivially be generated, uni-
formly at random, by simply choosing, for each amino
acid, one of its alternative codons. Another constraint,
essential when analyzing structural properties of RNA
molecules, is the preservation of the overall dinucleotide
frequencies (DFs). Such a constraint has been popular in
the field of RNA bioinformatics following the study of
Workman and Krogh (8) and builds on the rationale
that preserving the DF maintains the feasibility of
stacking base pairs, arguably the main contributor to
RNA stability. Efficient methods have been proposed
for such a model, drawing an analogy with the random
generation of an Euler path in a De Bruijn-like graph,
whose edges represent the dinucleotides (9,10).

When attempting to infer an evolutionary pressure from
the observation of structural features within mRNA se-
quences, both constraints should ideally be satisfied.
Unfortunately, the algorithms used to capture these two
constraints rely on radically different principles and
cannot be easily combined into an algorithm that would,
at the same time, preserve the DF and an amino acid
sequence. For this reason, Katz and Burge (11)
proposed DiCodonShuffle, a heuristic algorithm based
on a swapping procedure, which repeatedly exchanges
codons while preserving the DF. As shown by Shabalina
et al. (12), such a model preserves the periodic pattern of
base pairing frequencies observed within coding regions of
mRNAs. However, this method is only asymptotically
uniform, and a bias toward certain sequences may be
anticipated in samples produced in finite time (depending
on the initial sequence and the number of swaps).
Furthermore, as noted by the authors, the codon/DF
preserving swaps may disconnect the underlying Markov
chain, causing some legit sequences to be completely in-
accessible by the sampling procedure. The impact of such
limitations turned out to be more than purely theoretical,
and we observed (see Figure 1) that the diversity
(indicated by the sequence entropy) of generated se-
quences was much lower for DiCodonShuffle than for
our truly uniform procedure, indicating a substantial bias
in the method.

In this article, we introduce Structural Profile
Assignment of RNA Coding Sequences (SPARCS), a
web server that predicts structured, unstructured and
disordered regions in coding RNA sequences. Building
on recent algorithmic advances (13,14), we developed a
novel sampling algorithm that enables us to sample uni-
formly random sequences preserving the encoded protein
sequence and the DFs. Combined with multiple classical
metrics (e.g. base pairing probabilities and base pairing
entropy), this sampling algorithm enables the calculation
of accurate Z-scores and the prediction of strongly and
weakly structured regions, along with disordered regions
in exons—an insight that could not be fully achieved using
previously existing sampling techniques.

SPARCS takes as input the coding region of an mRNA
and proceeds in three steps. First, it generates a set of
random sequences preserving the encoded amino acid
sequence and the DF of the input sequence. Next, it
uses RNAplfold (4) to predict thermodynamic properties
(e.g. the sum of base pairing probabilities, base pairing

entropy) of each sequence (input RNA and random
samples). Lastly, we compare these metrics to calculate,
for each position in the input sequence, a Z-score
estimating the statistical significance of the secondary
structure profile.
SPARCS outputs a graph showing the Z-score of the

sum of base pairing probabilities and the base pairing
entropy. It also provides a list of segments with predicted
strongly and weakly structured segments. In addition, it
also predicts disordered regions (i.e. regions with multiple
suboptimal structures). To conduct further analysis, the
user can also download the set of random sequences
generated with SPARCS. The web server and the source
code are available at http://csb.cs.mcgill.ca/sparcs.

METHOD OVERVIEW

The methodology of SPARCS is to combine the following
procedures, starting from a given RNA sequence:

(1) Use a novel statistical sampling algorithm to
generate a set of random sequences that preserve
both the encoded amino acid sequence and the DF
of the input sequence.

(2) Use RNAplfold (4) to compute thermodynamical
properties of the input sequence and all random se-
quences generated.

(3) Predict regions that are significantly structured, un-
structured and disordered, based on a comparison of
thermodynamic properties between input and
random sequences.

Multivariate Boltzmann sampling of protein-coding
sequences under DF constraint

Our approach builds on a multivariate Boltzmann
sampling scheme, initially introduced in the context of
enumerative combinatorics (13) and previously applied
to control the GC-content of sampled RNA sequences
within the RNAmutants software (14). This approach ini-
tially relaxes the goal of preserving the DF and draws
sequences that strictly preserve the amino acid sequence
while only achieving, on the average, the prescribed DF. A
further rejection of unsuitable sequences, whose DFs
differ too much from the targeted DF, filters the generated
sequences, reestablishing the uniformity within the
selected subset. The produced sequences therefore
feature both correct DF and coding capacity while being
generated with uniform probability.
Namely, let S be an amino acid sequence, and

dc�¼ðdc�AA,dc�AC,dc�AG . . .Þ be the vector of targeted DFs,
the algorithm repeats the following steps until the desired
number of samples is reached:

(1) Draw a set of structures encoding S, with respect to
a weighted distribution;

(2) Estimate expected DF from sample;
(3) Collect suitable sequences;
(4) Update weights to match expected DF with target.
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Weighted distribution

We associate a weight �XY to each dinucleotide XY. This
weight is inherited multiplicatively by any RNA sequence
in RNA(S), the set of sequences compatible with a
targeted amino acid sequence S. This implicitly defines a
probability distribution over RNA(S) where any RNA
sequence w 2RNA(S) has probability

PðwÞ ¼
�ðwÞ

P
w02RNAðSÞ

�ðw0Þ
with �ðwÞ ¼

Yjwj�1

i¼1

�wi:wi+1
:

Importantly, any pair of sequences having an equal DF
will also have equal relative probability. Therefore,
generating a set of sequences and retaining only the se-
quences that do feature the targeted DF, gives an unbiased
set of sequences. This property also holds for sequences
generated using different weights; therefore, they can be
gathered across different iterations of the adaptive
sampling without introducing a bias.

Self-adaptive calibration of weights

The weighting scheme may be used to shift the expected
number of occurrences of each dinucleotide, as illustrated
by Figure 2. Let us denote by VXY the number of copies of
XY in a random sequence generated in the weighted
model. For instance, setting �GU to 0 will cancel the prob-
ability of any sequence featuring any occurrence of GU,
and the expected number of GU will therefore drop to 0.
Conversely, setting �GU !+1 will only grant positive
probability to sequences that maximize the number of
copies of GU.

To find a weight that matches the expected DF with the
targeted one, we use a heuristic strategy to figure out
weights that achieve, on the average, the targeted DF.
To that purpose, we initially set �ðXYÞ :¼ dc�XY and,
after each iteration of the adaptive sampling, we update
each weight to �ðXYÞ � dc�XY=�XY, where �XY is the
expected value for VXY, estimated from the sample. The
process typically converges after a few iterations, leading
to a good approximation of the best weight set.

Random generation

To draw a sequence of RNA(S) within the weighted dis-
tribution, one needs to choose a compatible codon for
each of the n amino acid in S. Such choices cannot be
made independently, as the overlap between consecutive
codons contributes to an additional dinucleotide, ultim-
ately impacting the weight of a generated sequence.

Following the general principle of the recursive
approach for random generation (15,16), we precompute
the total weight Zb,i+1 of every sequence accessible on
choosing some codon ending with a base b 2 ½A,U,C,G�
at the i-th position. Such weights can be efficiently
computed using dynamic programming based on

Zb,n+1 ¼ 1 and Zb,i ¼
X

c2codðSiÞ

�ðb:cÞ � Zc�1,i+1

where codðSiÞ is the set of codons compatible with the i-th
amino acid in S, and c�1 is the last nucleotide of c. As the
first amino acid (i ¼ 1) is not preceded by any nucleotide,
it must be treated slightly differently by setting b :¼Ø and
p(Ø:cÞ :¼ 1:

Figure 2. Impact of weighted distribution on the number of occur-
rences of dinucleotides AU and GU. Either in the uniform distribution
[�ðXYÞ ¼ 1, blue] or setting larger weights to AU [� (AU)=10, red] or
GU [� (GU)=10, green], 100 000 sequences compatible with an
mRNA sequence encoding 179 amino acid (the first two exons of
oskar gene in Drosophila melanogaster) were randomly generated. The
concentration of the distribution and the shift in expected DF observed
for different weights are the key ingredients of our method, allowing
for an efficient approach based on adaptive sampling.
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Figure 1. Entropy comparison between sequences generated by
DiCodonShuffle (11) and our probabilistic shuffling method. For
both methods, 1000 sequences are generated, and, for SPARCS, the
relative tolerance was set to e ¼ 10�1. Sequences produced using
DiCodonShuffle show much less diversity than those generated
using SPARCS, either indicating a substantially limited accessibility
of compatible sequences or a substantial bias (non-stationarity) owing
to the bounded nature of their random walk.
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During the random generation, these precomputations
are used to assign probabilities to each of the possible
codons such that each sequence is generated with respect
to the weighted distribution. Namely, one picks a codon
c 2 codðSiÞ for the i-th amino acid, in the context of a
previous nucleotide b, with probability

pb,c,i ¼
�ðb:cÞ � Zc�1,i+1

Zb,i
:

The sampling algorithm starts on the first codon (i :¼ 1
and b :¼ Ø) and iterates over the amino acid sequence S in
increasing order, picking a codon with the aforementioned
probabilities and updating b to the last nucleotide in the
elected codon. After picking the last codon, it can be
shown that the generated sequence is in RNA(S) and
has probability, which is proportional to its weight (cf.
Supplementary Material). The complexity of the algo-
rithm is in �ðk � nÞ time and space for sampling k se-
quences, each consisting of n codons.

Overall time and space requirement

We empirically observed, and could formally prove using
Drmota theorem (17) for non-degenerate cases, that VXY

asymptotically follows a Normal law of mean in �ðnÞ and
standard deviation �XY in �ð

ffiffiffi
n
p
Þ. Furthermore, the co-

variations between numbers for different dinucleotides
remain provably limited, and the joint distribution of
the VXY for every dinucleotide XY asymptotically
follows a 16-variate Normal law. Consequently, the prob-
ability of generating a sequence having expected DF scales
like �ðn�16=2Þ, and it takes, on the average, �ðn8Þ attempts
to obtain such a sequence. The average-case complexity of
a rejection procedure for the uniform sampling is in
�ðk � n9Þ time, after a linear time and space preprocessing.

Such a large time complexity may be impractical for
real-life applications. However, if a small relative toler-
ance e 2 �ð1=

ffiffiffi
n
p
Þ is allowed on every targeted dinucleo-

tide count, leading any sequence w to be accepted if its
dinucleotide counts are such that

ð1� eÞ � dc�XY � dcXYðwÞ � ð1+eÞ � dc�XY,

for every dinucleotide XY. Under this setting, the prob-
ability of acceptance only decreases like oðC�16Þ, where C
is a constant, which only depends on the covariance
matrix. In particular, if

e ¼ 3 �max
XY
ð�XY=nÞ 2 �ð1=

ffiffiffi
n
p
Þ ðThe 3 std:�dev: ruleÞ,

then the probability of acceptance becomes greater than
0:9916 � 85%, and the average-case complexity of the
method becomes asymptotically equivalent to �ðk � nÞ, at
the cost of loss of uniformity, which is typically negligible,
and can be efficiently corrected through a post-processing
step (13).

Secondary structure prediction

The secondary structures of both the input mRNA sequence
and random sequences are predicted using the RNAplfold
software, distributed within the Vienna RNA package (18).

RNAplfold considers all possible locally stable secondary
structures for an input RNA sequence and calculates base
pairing probabilities, assuming a Boltzmann equilibrium. As
recommended by Lange et al. (19), we use a window size of
W+50 nt (W ¼ 150, the span, is considered to be an optimal
choice in the paper), and retain only those base pairs
separated by at most W positions, and set a base pairing
probability cut off threshold to 0.1.

Characterization of the structural profile

We screen the input sequence with a sliding window of W
nucleotides and evaluate the standardized score (Z-score)
for each window w on two classical metrics: BðwÞ is the
sum of base pairing probabilities, and HðwÞ is the base
pairing entropy. Let C be the set of all valid base pairs
in the sliding window and pi,j the probability of a base pair
(i,j). We define the sum of base pairing probabilities as the
sum of all base pairing probabilities assessed by
RNAplfold within the frame such that

BðwÞ ¼
X

ði,jÞ2C

pi,j:

The sum of base pairing probabilities estimates the sta-
bility of the secondary structures in the conformational
landscape and thus quantifies the structural potential of
the sequence.
Similarly, we define the base pairing entropy as the

Shannon entropy of the base pairing probabilities such that

HðwÞ ¼ �
X

ði,jÞ2C

pi,j � logðpi,jÞ:

The base pairing entropy aims to evaluate whether
many alternate sub-optimal structures exist in the con-
formational landscape. For each nucleotide position, the
Z-scores of all windows are averaged out to give the struc-
tural profile at a single nucleotide resolution.
We use these metrics to characterize a structural profile

consisting in three, mutally exclusive, types of regions,
based on two user-defined thresholds tB and tH:

. Structured regions: A region is said to be ‘structured’
when the Z-score of the base pairing probability
exceeds tB and the Z-score of the base pairing
entropy is lower than �tH. This configuration indicates
stable structures with few competitors.

. Unstructured regions: A region is ‘unstructured’ when
the Z-score of the base pairing probability and the
Z-score of the base pairing entropy are, respectively,
lower than �tB and �tH. In that case, the energy land-
scape is ‘flat’ with no dominant structure.

. Disordered regions: A region is ‘disordered’ when the
Z-score of the base pairing probability and the Z-score
of the base pairing entropy, respectively, exceed tB and
tH. This configuration suggests the presence of
multiple stable and competing structures in the con-
formational landscape.

By default, SPARCS uses thresholds on the Z-score of
0.2 to discriminate high or low values. As illustrated in the
next section, these settings aim to classify structural
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domains in the input sequences. Nonetheless, more strin-
gent values can be specified, for instance if the user wishes
to detect strongly (un-)structured regions.

Analysis of Ash1 gene in yeast

We illustrate the insights brought by SPARCS on the well-
studied ASH1 gene in yeast. Using mutagenesis and com-
parative sequence analysis, four functional elements have

been identified in this mRNA. Each of them has been
shown to be sufficient to localize a reporter mRNA to
the bud of dividing yeast cells (20). Of the four elements,
three (E1, E2A and E2B) are located within the coding
region of the mRNA.

Figure 3 shows the output of SPARCS for the ASH1
mRNA coding region. The Z-scores of the sum of base
pairing probabilities are represented in magenta, and
those of the base pairing entropy are in red. Structured,
unstructured and disordered regions are displayed in
green, blue and orange, and the functional elements E1,
E2A and E2B are indicated at the bottom of the figure
with yellow boxes. As aforementioned, here, we aim to
detect structural domains and tendencies in the structural
profile rather than focusing on the prediction of single
elements. Therefore, we used a threshold of 0.

Our results show that the E1 (positions 625–775) match
predicted disordered and structured regions. The presence
of disordered region at the beginning of the element could
be explained by the presence of internal loops and alternate
base pairings in the predicted secondary structure [see (21)
and (20)]. Interestingly, the elements E2A (positions 1081–
1199) and E2B (positions 1200–1447) are both surrounded
by unstructured regions, possibly to avoid interactions
between these elements. Noticeably, unlike the E2A
element, the E2B element is particularly stable and

AUG UCA AGC UUA UAC AUC AAA ACA CCA CUG CAU GCA UUA UCU GCU GGU CCG GAU UCU CAU GCA AAU · · ·

M S S L Y I K T P L H A L S A G P D S H A N · · ·

AUG UCA UCA UUA UAU AUA AAA ACU CCU CUA CAC GCU UUA UCU GCU GGA CCA GAU UCU CAC GCA AAU · · ·
AUG UCU AGC CUA UAU AUU AAG ACC CCU CUG CAU GCA CUA UCA GCG GGU CCA GAU UCU CAU GCA AAU · · ·
AUG UCC AGU CUG UAU AUA AAA ACG CCA UUG CAU GCC CUC UCG GCA GGU CCU GAU UCC CAU GCG AAU · · ·
AUG UCU UCC UUG UAU AUA AAG ACG CCA UUG CAC GCU UUA AGU GCA GGA CCA GAU UCC CAU GCC AAC · · ·
AUG AGC UCU UUA UAC AUA AAG ACA CCU CUU CAU GCA UUA UCG GCA GGG CCU GAU UCU CAC GCU AAU · · ·
AUG UCA UCA CUU UAU AUC AAA ACC CCG UUG CAU GCA CUU UCU GCU GGA CCA GAU UCG CAU GCC AAU · · ·
AUG UCA AGU CUU UAC AUU AAA ACG CCG CUA CAU GCA UUG UCA GCU GGA CCU GAC UCG CAU GCA AAU · · ·

Messenger RNA

Amino-acids Sequence + Dinucleotide Composition

Random Sequences
Random Generation

RNAplfold + Z-score Computation + Window Averaging

Figure 3. Analysis of the protein-coding region of the ASH1 gene in yeast. The Z-scores of the base pairing probability are represented in magenta
and those of the base pairing entropy in red. Structured, unstructured and disordered regions are displayed in green, blue and orange, and the
functional elements E1, E2A and E2B are indicated at the bottom of the figure with yellow boxes. Dashed lines show the thresholds for determining
high or low Z-score values.
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Figure 4. Typical runtime of SPARCS for sequence lengths varying
from 200 to 1000 nt.
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structured. Outside these functional segments, we identify a
large unstructured region (from 200 to 600) before the E1
element, which could help to stabilize the E1 element or,
hypothetically, to facilitate translation. By contrast, we
identify a strongly structured region between the E1 and
E2 elements. This prediction could reveal a buffer that aims
to prevent these elements from interacting. Finally, our
analysis also suggests a structured region at the beginning
of the sequence (positions 50–200). To the best of our
knowledge, this region has not been experimentally
studied, motivating further comparative studies.

SPARCS SERVER

The SPARCS web server takes an RNA/DNA sequence or
a FASTA file as input. On validation, a first set of 1000
random sequences, preserving both the DF and encoded
animo acid sequence of the input sequence, is generated.
A second set of 1000 random sequences, called the uniform
model, is generated to preserve only the amino acid
sequence. The input sequence and the 2000 random se-
quences are then fed to RNAplfold to predict their base
pairing properties. The Z-score is computed for a sliding
window of user-specified width (defaulting to 150 nt), and
all Z-scores are averaged for every position to evaluate the
statistical significance of the secondary structure profile.

SPARCS finally outputs a single Z-score plot based on
our metrics: sum of base pairing probabilities, base pairing
entropy, structural potential region, unstructured potential
region and disordered potential region. The dashed line(s)
indicates theZ-score thresholds for the sum of base pairing
probabilities and base pairing entropy, respectively. Users
may specificy custom thresholds for both of the base
pairing probability and base pairing entropy metrics.

SPARCS runs on a server hosted at McGill University,
which has eight cores and has a total of 63GB of memory.
Each core is an Intel(R) Xeon(R) CPU X5570 at
2.93GHz, with 8192KB cache. Figure 4 shows the
overall runtime on the server as a function of the
mRNA length, for mRNA sequences ranging from 200
to 1000 nt, and reveals a linear trend.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR online:
Supplementary Methods.
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