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Differential Abundance Analysis 
with Bayes Shrinkage Estimation of 
Variance (DASEV) for Zero-Inflated 
Proteomic and Metabolomic Data
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Heidi L. Weiss2, Xiangrong Yin5 & Chi Wang1,2*

Mass spectrometry (MS) is frequently used for proteomic and metabolomic profiling of biological 
samples. Data obtained by MS are often zero-inflated. Those zero values are called point mass values 
(PMVs). Zero values can be further grouped into biological PMVs and technical PMVs. The former type 
is caused by true absence of a compound and the later type is caused by a technical detection limit. 
Methods based on a mixture model have been developed to separate the two types of zeros and to 
perform differential abundance analysis comparing proteomic/metabolomic profiles between different 
groups of subjects. However, we notice that those methods may give unstable estimate of the model 
variance, and thus lead to false positive and false negative results when the number of non-zero values 
is small. In this paper, we propose a new differential abundance analysis method, DASEV, which 
uses an empirical Bayes shrinkage method to more robustly estimate the variance and enhance the 
accuracy of differential abundance analysis. Simulation studies and real data analysis show that DASEV 
substantially improves parameter estimation of the mixture model and outperforms current methods in 
identifying differentially abundant features.

In recent years, many proteomic and metabolomic studies have been performed to understand diseases’ biological 
mechanisms, to identify prognostic and predictive biomarkers, and to develop better treatments1,2. A widely used 
platform for proteomic and metabolomic profiling is mass spectrometry (MS). The high-throughput data pro-
duced by MS are often zero-inflated. These zero values are called point mass values (PMVs)3. Depending on the 
origin of the zeros, PMVs can be further classified into biological PMVs (BPMVs), where the compound is absent 
from the sample, and technical PMVs (TPMVs), where the compound is present but its abundance is below the 
detection limit of the particular instrument used3,4. The proportion of PMVs can be very large3,5. Two examples in 
case are briefed here with more detailed descriptions in the Results section. The first example is a human urinary 
proteomic dataset of over 1,800 subjects with 5,270 features6. The average PMV proportion among all features 
is 81%. There are 2,537 features having PMVs in more than 90% of subjects. The second example is an exosomal 
lipids dataset of 91 lung cancer subjects with 101 features7. It has an average PMV proportion of 82%. There are 
56 features having PMVs in more than 90% of subjects. Due to the large amount of PMVs, it is critical for down-
stream statistical analysis to account for them, preferably further distinguishing BPMVs and TPMVs, to ensure 
unbiased and efficient inference.

Identifying differentially abundant features between experimental groups or disease phenotypes is central 
for many proteomic and metabolomic studies. Several statistical methods have been proposed for differential 
abundance analysis based on zero-inflated MS data. Gleiss et al.3 classified these methods into three types. The 
first type of methods is one-part tests, which consider the data as left-censored and use a single model to charac-
terize it. For example, an adaptive t-test imputes PMVs with certain non-zero values and performs a two-sample 
t-test on imputed data3. As another example, a Tobit model assumes the data follows a left-censored normal 
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distribution and use a likelihood ratio test to compare distributional parameters between groups3,8. The second 
type of methods is two-part tests, which models PMVs and non-PMVs separately. For example, a two-part t-test 
employs a first statistic to compare the proportion of PMVs and a second statistic to compare the non-PMV val-
ues between groups. These two test statistics are then combined to calculate the p-value. One limitation of these 
two types of methods is that they do not distinguish TPMVs and BPMVs. To address this problem, a third type 
of methods has been proposed by Taylor et al.5 and Gleiss et al.3 based on a mixture model. The mixture model 
explicitly characterizes PMVs as a mixture of TPMVs and BPMVs. The BPMVs are considered as a point mass 
at zero. The non-BPMVs, including both TPMVs and non-PMVs, are considered as coming from a lognormal 
distribution, where the data are left-censored at the detection limit. A likelihood ratio test is proposed to test 
whether both the proportion of point mass at zero and the mean parameter of the normal distribution are the 
same between experimental groups. Taylor et al.5 and Gleiss et al.3 compared the performance of the mixture 
model to many one-part and two-parts tests and concluded that the mixture model was preferred in parameter 
estimation in presence of TPMVs, especially when the proportion of TPMVs was large.

Although the mixture model is appealing in distinguishing TPMVs and BPMVs and therefore providing 
better characterization of MS data, parameter estimations, especially the variance paramter estimation, from the 
model are unstable in presence of large proportion of zero values. The instability in variance parameter estima-
tion substantially affects differential abundance analysis results. On the one hand, overestimation of the variance 
may lead to false negative results. On the other hand, underestimation of the variance may lead to false positive 
results. To demonstrate the impact of underestimating the variance on differential abundance analysis, Fig. 1a 
shows the top-ranked 150 features based on the mixture model in Taylor et al.5 (referred to as the TLK method) 
from a simulated two-group comparison dataset. The data simulation procedure is provided in the Simulation 
Studies section. There were more than 20 false positive features. Most of these features had large fractions of zero 
values (>90%) and very small variance estimates from TLK. As a result, these features got favorable rankings even 
though some of them had very small fold changes.

We hereby propose a new method called Differential Abundance analysis with Shrinkage Estimation of 
Variance (DASEV). Our method is based on the mixture model but provides a more robust estimation of model 
parameters. Specifically, an empirical Bayes shrinkage method is proposed for borrowing information across the 
ensemble of proteomic or metabolomic features to better estimate the variance parameter of each feature. Bayes 
and empirical Bayes shrinkage methods have been shown to provide robust estimation of model parameters, 
especially the variance parameter, for microarray9, RNAseq10,11, ChIPseq12, and NanoString nCounter13 data. To 
our knowledge, this paper is the first to introduce such method to the mixture model for MS-based proteomic or 
metabolomic studies. Based on the mixture model and stabilized variance estimate, we propose three statistical 
tests to examine whether the BPMV proportion, the mean of non-BPMVs, or both are the same between patient 
groups. Simulation studies and real data analysis demonstrate that our method substantially improves parameter 
estimation of the mixture model and outperforms current methods in identifying differentially abundant pro-
teomic/metabolomic features.

Methods
The model. The MS data for a proteomic or metabolomic feature contains non-PMVs and PMVs, where 
PMVs are a mixture of BPMVs and TPMVs. We assume that non-BPMVs follow a lognormal distribution, i.e. the 
logarithm of non-BPMVs follow a normal distribution. Due to the detection limit, non-BPMVs values below the 
detection limit are censored, leading to TPMVs. Therefore, the observed abundance of feature k for subject i, Yik, 
follows a mixture distribution3,5 with the following density function 

Figure 1. Estimated log fold change versus variance based on TLK (panel a) and DASEV (panel b) for 150 top-
ranked features from a two-group differential abundance analysis. Data were simulated from the first simulation 
scenario as described in the Simulation Studies section with a sample size of 200 per group. Features were 
ranked based on their p-values. FP: false positive; TP: true positive.
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where pik is the proportion of BPMVs and μik is the mean of non-BPMVs for feature k in subject i, σk is the stand-
ard deviation, λk is the logarithm of the detection limit for feature k, and Φ and φ are cumulative distribution and 
density functions of a standard normal distribution, respectively. The logarithm of detection limit, λk, is usually 
set as the minimal log-transformed non-PMV observations minus a small number ϵ. In this paper, we set ϵ equal 
to 0.1, which was also used in Gleiss et al.3. To quantify associations between the feature abundance and a vector 
of covariates Xi, we further assume a logistic regression model for pik and a linear regression model for μik as 
follows 
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where γk and βk are vectors of regression coefficients quantifying the covariates’ effects on the mean of logarithm 
of non-BPMVs and the proportion of BPMVs, respectively. Note that we use the same vector of covariates in the 
two models. But the method can be easily generalized to allow different vectors of covariates for pik and μik.

In presence of a large fraction of zero values, the parameter estimation based on model (1) can be unstable 
(Figs. 2 and 3). We consider an empirical Bayes shrinkage method to improve the estimation. The empirical Bayes 
shrinkage method has been shown to provide robust estimation of the variance parameter in the analysis of other 
types of omics data9–13. To our knowledge, this paper is the first to introduce such method to the mixture model 
for MS-based proteomic or metabolomic studies. Specifically, we consider the following prior distribution for k

2σ  
across all features: 

σ −~ Inv Gamma d d s( /2, /2),k
2

0 0 0
2

Figure 2. Comparison of estimated variance versus true variance for TLK (panels a and c) and DASEV (panels 
b and d) based on a single simulation with sample size 200 per group from the first scenario. Panels c and d 
are magnified lower left corner of panels a and b, respectively. The red line shows where the estimated variance 
equals the true variance.
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 where d0/2 and d s0 0
2/2 are the shape and scale parameters of the inverse-gamma distribution, respectively. As 

shown in Supplementary Fig. S1, this prior fits the empirical distribution of estimated variances from the human 
urinary proteome dataset. This prior distribution allows us to borrow information across the ensemble of features 
so that more stable variance estimation can be obtained. The hyperparameters of the prior distribution, d0 and s0, 
are determined as described in the next subsection.

Determining hyperparameters. The hyperparameters are empirically determined from a rough estimate 
of feature variance based on the observed data. From Eq. (1), the non-PMV observations follow a truncated nor-
mal distribution f Y Y Y( 0, , ; ) {log( ) / }/ /[1 {( )/ }]ik ik k k k ik ik k k k ik k

2 2β σ λ ϕ μ σ σ λ μ σ> = − − Φ − . A rough estimate 
of σk, σk, is obtained by maximizing the likelihood for non-PMVs β σ λΠ >= f Y Y( 0, , ; )i

n
ik ik k k k1 , where βk is set 

as the parameter vector for sample mean of non-PMVs, n is the number of observations. Note that 

σk is only used 

for the calculation of hyperparameters. Once the hyperparameters are determined, a more robust estimate of σk 
is obtained and used for model inference (see next subsections). Let m and v be the sample mean and variance for 
kσ  across features, respectively. Based on the inverse gamma distribution and using the method of moments (see 
Supplementary Materials for the derivation), the d0 and s0 are calculated as follows 
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 In order to robustly estimate d0 and s0, we restrict features included in this calculation to be those with at least 10 
non-PMV observations from the two groups combined. But if the number of such features is less than 30, we use 
the top 30 features with the smallest PMV proportions.

Model parameter estimation. We use an iterative procedure to obtain our estimates of ( , )k k
T
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and σk. For a given σk, θk is estimated by maximizing the likelihood 
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Figure 3. Comparison of estimated non-BPMV mean and BPMV proportion versus true values for TLK 
(panels a and c) and DASEV (panels b and d) based on a single simulation with a sample size of 200 per group 
from the first scenario. This figure only shows results for control group. Case group has identical patterns.
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For a given θk, σk is estimated by maximizing the posterior 
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from the prior mean of σk
2.

We start with σk  as the initial value of σk, plug it into Eq. (2) to find the maximum likelihood estimate of θk, θk. 
The kθ  is then plugged into Eq. (3) to obtain the posterior mode, kσ . By iteratively updating θk and kσ  until conver-
gence, we obtain estimates of θk and σk.

Hypothesis testing. For each feature, our method allows examining the following three hypotheses regard-
ing the effect of the jth covariate: 

H H: 0 vs : 0,M
jk A

M
jk0 β β= ≠

which tests if the covariate has an effect on mean abundance. 

γ γ= ≠H H: 0 vs : 0,P
jk A

P
jk0

which tests if the covariate has an effect on BPMV proportion. 

β γ β γ= = ≠ ≠H H: 0 and 0 vs : 0 or 0,B
jk jk A

B
jk jk0

which tests if the covariate has an effect on mean abundance or BPMV proportion. A likelihood ratio test statistic 
is used to test each of the three hypotheses. The test is based on the ratio of the maximum likelihood under the 
null hypothesis and that without the constraint, where the maximum likelihood is calculated based on the proce-
dure described in the previous subsection with σk estimated by 


σk. A p-value is obtained based on a χ2 distribu-

tion with one (for testing H M
0  or H P

0 ) or two (for testing H B
0 ) degrees of freedom. The Benjamini and Hochberg 

procedure14 is used to control the false discovery rate (FDR) across features.

Results
To get a comprehensive evaluation of the performance of DASEV, and to compare with TLK, we used a combina-
tion of simulations and real data. For TLK, the algorithm returns a p-value for each feature, but does not provide 
a procedure for multiple comparisons adjustment. To allow a fair comparison, we used the Benjamini-Hochberg 
procedure14 to control the FDR, the same as we used in DASEV.

Simulation studies. Simulation settings. To mimic real-world situation, we based our simulation on real 
data obtained from the human urinary proteome database. The dataset we used contains two groups (benign 
prostatic hyperplasia patients and healthy controls). A detailed description of the dataset is provided in the 
human urinary proteome data analysis subsection. We applied DASEV to this dataset and estimated feature-wise 
mean of non-BPMVs in the control group, BPMV proportion in the control group, detection limit, and variance. 
We filtered out features with the estimated group mean smaller than the detection limit. The estimated BPMV 
proportions range from 0.6% to 99.9% with 80.6% as the mean value. The estimated percentages of TPMVs 
range from 0% to 47.2% with 1.6% as the mean value. There were 971 features having q-values less than 0.01, in 
which 275 (28.3%) features had estimated fold changes ≥ 2. For our simulations, each simulated dataset con-
tained 5,000 features for two groups (case and control). The abundance level of a feature was simulated based 
on the mixture distribution in Eq. (1), where the model parameter values were randomly resampled from the 
parameter estimates of the control group of the real data. Since mean, BPMV proportion and detection limit 
were correlated, those values were resampled together. The variance parameter was resampled separately because 
we did not observe a correlation between variance and other parameters. We considered six differential abun-
dance scenarios to evaluate the method’s performance, see Supplementary Table S1 for detailed settings for all 
simulation scenarios. Part of results from the first scenario are presented in the next subsection, while all other 
results were presented in Supplementary Materials. Our first scenario aimed to evaluate methods’ performance 
in identifying the non-BPMV mean difference between groups. We randomly selected 10% of features to have a 
2-fold change in the mean abundance of non-BPMVs between case and control groups, with 5% of the features 
having higher abundance and another 5% having lower abundance in the case group. We considered sample sizes 
of 10, 20, 100 or 200 per group and replicated the simulation 100 times for each sample size. For each simulated 
dataset, we focused our analysis on features with at least three non-PMV observations and at least one PMV and 
one non-PMV observation per group. Results from sample size of 100 and 200 are presented in the following 
subsection. Results from sample size of 10 and 20 are presented in Supplementary Materials.

Simulation results. We first examined whether our simulated data represent distributions of BPMV and TPMV 
proportions in the real data. Among 100 simulation replicates with a sample size of 200 per group, the BPMV 
proportion for the control group ranged from 0.7% to 99.9% with 79.6% as the mean value. The percentage of 
TPMVs for the control group ranged from 0% to 48.1% with 1.5% as the mean value. Those percentages were 
close to the values estimated from the human urinary proteome data. For differentially abundant features, the 
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added fold changes affected TPMV proportions in the case group. Among features with higher abundance in the 
case group, the TPMV percentage ranged from 0% to 29.5%. Among features with lower abundance in the case 
group, the TPMV percentage ranged from 0% to 74.9%.

Under the first simulation scenario, we first compared the parameter estimation between DASEV and TLK. 
Figure 2 presents the feature variance estimation from DASEV and TLK based on a simulated dataset. The TLK 
variance estimation was unstable. On one side, TLK substantially overestimated the variance for a subset of fea-
tures. As shown in Fig. 2a, over 100 features had estimated variance 10 times larger than the true value. On the 
other side, TLK substantially underestimated the variance for another subset of features. As shown in Fig. 2c, 83 
features had estimated variance smaller than 0.3. Majority of those extreme estimations were for features with 
large fractions of PMVs. In contrast, DASEV provided a much more robust estimation of the feature variance. It 
seldom gave extremely large (Fig. 2b) or small (Fig. 2d) variance estimates.

The unstable estimate of variance based on TLK also affected the estimation of mean and BPMV proportion. 
As shown in Fig. 3a,c, the estimated mean and BPMV proportion were far from true values for a subset of fea-
tures, especially features with large fractions of PMVs. Among features with over 90% PMVs, 13.4% had the esti-
mated mean less than the detection limit. In contrast, DASEV yielded much fewer features (2.4%) with deviated 
mean and BPMV proportion estimates (Fig. 3b,d). The figure only shows results for control group. Case group has 
identical patterns. We obtained similar results on parameter estimation from simulations with 100 observations 
per group (Supplementary Figs. S2, S3, and S4). Parameter estimation from other simulation scenarios showed 
similar patterns (results not shown).

We next compared the performance of DASEV and TLK for identifying differentially abundant features com-
paring the two groups, where we focused on testing H M

0 . One important task in this endeavor is to rank features 
based on their likelihood of being differentially abundant. Figure 1 shows the top 150 features ranked by each 
method based on one simulated dataset. Within the top features identified by TLK, 23 (15%) were false positives. 
The corresponding true positive rate (TPR) was 85%. Most of those features had large fractions of PMVs. Their 
estimated variances tended to be very small, some were even close to zero (Fig. 1a). Therefore, TLK assigned 
favorable rankings to them even though some of them had very small fold changes. In contrast, none of the 
top-ranked features from DASEV had very small estimated variance (Fig. 1b). There were only 12 (8%) false pos-
itives. The corresponding TPR was 92%. Note that although most of the features with very small estimated vari-
ances by TLK were false positives, there were two true positive features. Those two features had large fractions of 
PMVs, and their true variances were much larger than the estimated values. TLK gave very small variance esti-
mates to many features with large fractions of PMVs, which happened to include those two true positive features. 
Since TLK tended to rank features with very small estimated variances to the top, those two true positive features 
were identified along with other false positive features. It should be pointed out that this particular simulated 
dataset we chose is representative. The TPR of the top 150 features for each method based on this dataset was 
close to the average TPR over 100 simulated datasets (Fig. 4b). In addition, we checked several other simulated 
datasets. The difference between DASEV and TLK was also observed (results not shown). To get a more general 
understanding for the improvement of DASEV over TLK, we plotted the TPR as a function of the number of 
selected top-ranked features. The resulting curve based on an average over 100 simulations is presented in Fig. 4. 
For DASEV, the TPR was one for the very top-ranked features and decreased as more features were included. In 
contrast, the TPR curve based on TLK was not monotonic, indicating that even the very top features selected by 
TLK contained false positives. The TPR curve based on DASEV was higher than that based on TLK, indicating 
DASEV was able to rank more true positive features to the top compared to TLK. As we increased the sample size 
from 100 (Fig. 4a) to 200 (Fig. 4b) per group, the TPR also increased for both methods, with the TPR based on 
DASEV still higher than that based on TLK.

In addition, we compared numbers of true positive and false positive features identified by DASEV and TLK 
for a given FDR threshold, referred to as the reported FDR, of 1%, 5%, or 10%. Figure 4c,d present the results 
averaged over 100 simulations for sample size of 100 and 200 per group, respectively. Compared to TLK, DASEV 
identified similar numbers of true positives but much fewer false positives. For example, for simulations with 100 
observations per group and at 1% FDR threshold, DASEV identified an average of 43 true positives and only 1 
false positives. In contrast, TLK identified an average of 45 true positives and 8 false positives. The numbers of 
identified features increased as sample size increased to 200 per group for both DASEV and TLK. But DASEV 
still had much fewer false positives. For both methods, the observed FDR, which was calculated as the observed 
fraction of false positives among identified features, was higher than the reported FDR. But the observed FDR 
from DASEV was much closer to the reported FDR than that from TLK. In addition, the observed FDR became 
closer to the reported FDR for both methods as the sample size increased from 100 to 200 per group.

We also performed the test for H B
0 , and compared DASEV to two additional parametric methods: accelerated 

failure time model (AFT)5 and two-part t-test (2T)3,15. DASEV still had the best performance under such a situa-
tion (Supplementary Fig. S8). In addition to the first simulation scenario presented here, we considered five other 
simulation scenarios, see Supplementary Table S1 for a summary of those scenarios. The second scenario aimed 
to evaluate DASEV’s performance in testing difference in BPMV proportions. We considered hypothesis testing 
for both H P

0  and H B
0 . DASEV outperformed TLK in testing H P

0  (Supplementary Fig. S5). For testing H B
0 , AFT 

yielded the highest TPR curve (Supplementary Fig. S9), but it was likely due to mis-characterizing the difference 
in zero proportions between groups as a difference in means of lognormal distributions, see Additional 
Simulation Results section in Supplementary Materials for details. Our third to fifth scenarios considered the 
situation where both BPMV proportion and non-BPMV mean abundance are different between groups. In reality, 
differentially abundant features can be either dissonant (lower BPMV proportion with lower mean for 
non-BPMVs) or consonant (higher BPMV proportion with lower mean for non-BPMVs)3. Therefore, we consid-
ered the following three scenarios: equal amount of dissonant and consonant features (the third scenario), more 
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dissonant features (the fourth scenario), and more consonant features (the fifth scenario). Our third to fifth sce-
narios aimed to assess the situations where both BPMV proportions and group means are different using different 
proportion of dissonant and consonant features to represent those situations respectively. DASEV outperformed 
other methods in most situations (Supplementary Fig. S10 to S12). The only exception was that for the fifth sce-
nario with small sample size (10 or 20 per group), AFT performed slightly better than DASEV. This again was 
likely due to mis-characterizing the difference in BPMV proportions as a difference in non-BPMV means, see 
Additional Simulation Results section in Supplementary Materials for details. Our sixth simulation scenario was 
designed to examine methods’ performance while no TPMVs were present. As shown in Supplementary Fig. S13, 
DASEV performed the best among all methods. More detailed descriptions of simulation settings and results are 
provided in Supplementary Materials.

Human urinary proteome data analysis. The human urinary proteome database (HUPD) contains pro-
teomic data of urine samples analyzed by capillary electrophoresis-mass spectrometry from 13,027 patients with 
47 different pathophysiological conditions6. For demonstrating our method, we focused on a subset of 362 benign 
prostatic hyperplasia patients and 1,503 healthy controls with the goal of identifying differentially abundant pep-
tide features between these two groups. In our analysis, we considered a total of 5,270 features that had at least 
three non-PMV observations and at least one PMV and one non-PMV observation per group. The range of PMV 
proportion for this dataset was from 0.7% to 99.8% with 80.8% as the mean value. The first and third quantiles 
were 75.6% and 95.5%, respectively. For demonstration, we focused on testing the hypothesis H M

0  and applied 
both DASEV and TLK. Under the threshold of FDR ≤ 0.01, DASEV identified 971 and TLK identified 1017 sig-
nificant features, within which 963 were identified by both methods. We next performed a subsample analysis to 
investigate the concordance between full data analysis and subsample analysis. Specifically, we considered the 963 
features commonly identified by both methods from the full dataset as the set of “positive” features, denoted by 
P. Likewise, we obtained 2726 features with FDR q-value > 0.3 and considered them as the set of “negative” fea-
tures, denoted by N. We focused only on those “positive” and “negative” features and randomly sampled 100 or 

Figure 4. Comparison of differential abundance analysis results from DASEV and TLK based on simulations 
from the first scenario. Panels a and b are the true positive rate of top-ranked features with a sample size of 100 
and 200 per group, respectively. Panels c and d are numbers of true positive (TP) and false positive (FP) features 
for a reported FDR threshold of 1%, 5% or 10% with a sample size of 100 and 200 per group, respectively. The 
percentage shown on top of a bar is the observed FDR. The results were averaged from 100 simulations.
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200 observations from each of the benign prostatic hyperplasia and healthy control groups to form a subsample. 
We applied DASEV and TLK to the subsample to assess whether they could recover the “positive” and “negative” 
features obtained from the full dataset. Results from subsampling 100 observations per group were shown in 
Fig. 5. Those from subsampling 200 observations per group were provided in Supplementary Fig. S6. Among the 
150 top-ranked features, DASEV identified 11 more features in P than TLK (Fig. 5a,b. Similar to our findings 
from simulation studies, the variance estimates based on TLK were very close to zero for a number of features, 
which explained the higher number of TLK identified features that were not in P. In addition, the positive con-
cordance rate, defined as the fraction of identified features that were in P, based on DASEV was always about 10% 
higher than that based on TLK at any given threshold of the number of top-ranked features (Fig. 5c). Furthermore, 
at a given FDR threshold, DASEV identified similar numbers of features in P yet fewer features in N compared 
to TLK (Fig. 5d). All these analyses suggested that the subsample analysis results from DASEV had a higher con-
cordance with the full data analysis results.

Non-small cell lung cancer exosomal lipids data analysis. For a second independent real sample type, 
we analyzed the lipid profile dataset of exosomes isolated from non-small cell lung cancer patient plasma reported 
by Fan et al.7. We focused on identifying differentially abundant lipids features between 44 early stage and 47 late 
stage lung cancer patients. Our analysis considered 101 features that had at least three non-PMV observations 
and at least one PMV and one non-PMV observation per group. The molecular formulae of the compounds were 
determined by ultra high-resolution Fourier transform MS as previously described7. We applied both DASEV and 
TLK to the dataset and focused on testing the hypothesis H M

0 . Each method returned 11 significant features at 
reported FDR < 10%. Among them, 8 features were identified by both methods. Figure 6 compares variance 
estimates between TLK and DASEV. The range of estimated variances based on DASEV was much narrower than 
that based on TLK. There were no extremely large or small variance estimates based on DASEV. We specifically 
investigated the variance estimates for the features detected only by one method. Blue triangles are for the 3 

Figure 5. Comparison of DASEV and TLK based on subsampling 100 observations per group from the human 
urinary proteome dataset. Panel a and b are estimated log fold change versus variance for TLK and DASEV, 
respectively. Panel c shows the positive concordance rate between the subsample and full dataset. Panel d shows 
numbers of positive concordance (PC) and positive non-concordance (PN) features based on the subsample 
analysis for a reported FDR threshold of 1%, 5% or 10%. The percentage shown on top of a bar is the observed 
positive non-concordance rate. For panels a and b, results were based on a single subsample. For panels c and d, 
results were averaged across 100 subsamples.
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features detected only by TLK. The TLK estimated variances were close to zero for all these three features, which 
was the reason that TLK called them as significant. In contrast, the DASEV estimated variances were larger, and 
therefore these features were not top-ranked by DASEV. Orange dots are for the 3 features detected only by 
DASEV. For two of these features, TLK returned large estimated variances, and thus failed to identify them. For 
the remaining feature, C52H76O6, TLK and DASEV gave similar variance estimates. This feature ranked #12 in 
TLK with an FDR q-value of 0.1278, which barely missed the FDR threshold. One reason was that TLK ranked 
the three features with underestimated variances ahead of C52H76O6, and therefore moved C52H76O6 above 
the FDR threshold.

Using the program PREMISE16, these features were assigned to lipidic components as shown in Table 1. Most 
of the lipids are triglycerides and glycerophospholipids. Triglycerides are typically storage lipids. However, some 
of the acyl chains of the TAGs are polyunsaturated, which can be hydrolyzed to bioactive lipids (diacylglycerols 
and the fatty acid). Studies have shown that fatty acid biosynthetic pathways can be molecular targets for cancer 
therapy, including lung cancer17. Glycerophospholipids and their lyso forms are seen to be differentially abundant 
in the plasma of the cancer patients18. One compound (C35H69N2O6P1), which was identified only by DASEV, 
belongs to sphingolipids. Sphingolipids are implicated in important cell signaling processes and are known to 
have regulatory roles in tumor growth, including lung cancer19,20.

Discussions
In this paper, we introduced an empirical Bayes shrinkage method to stabilize the variance estimation of mixture 
model for MS data in presence of a large fraction of PMVs. The stabilization of variance estimation also led to 
more precise estimations of the BPMV proportion and the non-BPMV mean, which are important parameters 
characterizing a feature’s abundance level in a group of subjects. As for differential abundance analysis to compare 
these parameters between groups, comparing to TLK, our method substantially increased the power of the anal-
ysis with a higher true positive rate among top-ranked features.

The empirical Bayes shrinkage method stabilizes the variance estimation by borrowing information from the 
ensemble of features, which is achieved by assuming a common prior distribution of variance across features. Due 
to the introduction of this prior, the variance estimation becomes slightly biased. As shown in Fig. 1b, DASEV 
underestimated the variances. However, in finite samples, especially when sample size is small, unbiasedness may 
not be that important. To stably estimate variance is more important, which can substantially improve the power 
of differential abundance analysis, see Fig. 4. In this paper, we consider an inverse chi-square distribution as the 
prior, which appears to fit the data (Supplementary Fig. S1). The general applicability of the inverse chi-square 
distribution needs to be further investigated with the accumulation of proteomics and metabolomics datasets. 
However, we examined the robustness of our method against the choice of the prior parametric distribution. 
Supplementary Fig. S7 compares the results from using lognormal versus inverse chi-square as the prior distribu-
tion. The results from the two prior distributions were similar, especially when sample size was larger. Therefore, 
DASEV appeared to be insensitive to the choice of prior distribution.

Regarding the variance estimation, the TLK method used a lower bound of 0.0025, which was set somewhat 
arbitrarily. In our simulations, we found that this lower bound was reached by some features, who tended to be 

Figure 6. Comparison of Non-small cell lung cancer exosomal lipids data analysis results between DASEV and 
TLK. Estimated variances from these two methods are plotted against each other for the 101 lipid features. The 
solid line indicates where the two estimates are equal. Orange dots indicate the three differentially abundant 
features only identified by DASEV and blue triangles indicate the three differentially abundant features only 
identified by TLK.
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identified as significant features because this lower bound value was very small. In DASEV, rather than specifying 
a lower bound, we introduced a prior distribution for the variances across features. The prior distribution does not 
specify a lower bound so that any positive number is theoretically allowed. However, the parameters in the prior 
distribution are adaptively (empirically) selected to favor variance values that are reasonable for the data by assign-
ing higher prior probabilities to those values, and thus substantially reduces the chance of getting extremely large 
or small variance estimates. Since the prior distribution is empirically determined from the data, it is sufficiently 
flexible to fit various datasets of different biological variations such as human data, mice data, and cell line data.

In practice, we recommend to focus on features having at least three non-PMVs for two group comparison 
because under this restriction, at least one group can have 2 or more non-PMV observations so that there is 
information about the variance of the feature abundance. However, one can choose alternative restrictions. On 
one side, DASEV can still be applied to features with less than three non-PMVs. Under such situations, the data 
may not contain variation information of the feature. But our shrinkage method allows borrowing information 
from other features to estimate the variance, although this is not ideal. On the other side, one may focus on fea-
tures with a decent number of non-PMVs, which contain richer information on the distribution of non-PMVs. 
Based on the first simulation scenario, we compared three different restrictions that requires at least two, three, 
or ten non-PMVs. Results are provided in Supplementary Fig. S14 (for sample size of 20 per group) and S15 (for 
sample size of 100). The overall performance was similar between the restrictions of at least two and at least three 
non-PMVs for each of the DASEV, TLK, AFT, and 2T methods. When applying the more stringent restriction of 
at least 10 non-PMVs, the performance (in terms of TPR) of DASEV, TLK and 2T all improved, while that of AFT 
remained about the same. Notably, under such situations, performances of DASEV, TLK and 2T were very close 
to each other. This is as expected because when there are a decent number of non-PMVs, the variance estimation 
becomes stable, and does not depend much on the choice of the estimation method.

In our algorithm, we have noticed two convergence issues. The first issue was sometimes observed when using 
the R function optim to find maximum likelihood estimates or during the iterative procedure for model parame-
ter estimation. We were able to solve this issue by increasing the maximum number of iterations.The second issue 
was sometimes observed for estimating BPMV proportions and fitting the model under a perfect separation, i.e. 
a group only has PMVs while the other group only has non-PMVs. This was solved in our two-group comparison 
analysis by restricting features to have at least one PMV and one non-PMV in each group. The issue can appear at 
a higher frequency when categorical covariates are included in the model. We therefore recommend to check on 
the perfect separation issue before applying the method.

We consider a lognormal model for non-BPMVs and a logistic model for BPMVs in this paper, which is most 
commonly used in MS data analysis. Our method can be extended to other models, such as a probit model for 
the BPMV proportion and a skew normal model for non-BPMVs21. Under these models, we expect the empirical 
Bayes shrinkage method can still be used to improve model parameter estimation.

The large amount of PMVs in an MS dataset causes challenges in not only differential abundance analysis but 
also other types of statistical analysis, such as cluster analysis. Traditional methods for cluster analysis, e.g. the 
k-mean and hierarchical clustering methods, do not specifically handle zero values. The mixture model provides 
a promising alternative. Extending our method to cluster analysis is one of our future research interests.

Data availability
The non-small cell lung cancer exosomal lipids dataset is available at the NIH Common Fund’s National Metabolomics 
Data Repository (NMDR) website, the Metabolomics Workbench, https://www.metabolomicsworkbench.org, where 
it has been assigned Project ID PR000854. The data can be accessed directly via it’s Project DOI: 10.21228/M8998T.

Formula Lipid group
Lipid 
class

Acyl 
chain

Unsat 
sites

# 
carbons

DASEV 
p-value

TLK 
p-value

DASEV 
q-value

TLK 
q-value

DASEV 
variance

TLK 
variance

PMV 
%

C56H102O6* Triacylglycerols TAG 53 3 56 0.0005 0.0004 0.0486 0.0103 0.9783 0.5492 91.2

C18H34N1O9P1* Lysoglycerophospholipids LysoPS 12 1 18 0.0044 0.0047 0.0896 0.0475 2.5112 2.7940 63.7

C30H58N1O6P1* Ceramides Cer-1P 30 2 30 0.0038 0.0004 0.0896 0.0103 1.0351 0.0206 96.7

C42H84N1O8P* Glycerophospholipids PC 34 0 42 0.0029 0.0029 0.0896 0.0324 1.2781 1.2790 79.1

C44H84N1O8P1* Glycerophospholipids PC 36 2 44 0.0020 0.0015 0.0896 0.0306 0.3807 0.2972 8.8

C44H82N1O8P1* Glycerophospholipids PC 36 3 44 0.0081 0.0064 0.0972 0.0586 0.4035 0.3138 22.0

C44H88N1O8P1* Glycerophospholipids PC 36 0 44 0.0077 0.0004 0.0972 0.0103 0.9188 0.0977 95.6

C66H106O6* Triacylglycerols TAG 63 11 66 0.0096 0.0023 0.0972 0.0324 1.0275 0.1820 96.7

C35H69N2O6P1D Sphingolipids SM 30 2 35 0.0092 0.0232 0.0972 0.1617 1.8705 3.3688 95.6

C52H76O6D Triacylglycerols TAG 49 12 52 0.0066 0.0164 0.0972 0.1278 1.4831 1.4947 96.7

C55H82O6D Triacylglycerols TAG 52 12 55 0.0106 0.0240 0.0976 0.1617 1.9373 3.0262 94.5

C61H104O6L Triacylglycerols TAG 58 7 61 0.0635 <0.0001 0.3308 0.0013 0.9219 0.0140 94.5

C45H82N1O8P1L Glycerophospholipids PE 40 4 45 0.0884 0.0018 0.3308 0.0311 1.0041 0.0243 94.5

C61H112O6L Triacylglycerols TAG 58 3 61 0.0589 0.0026 0.3304 0.0324 1.0452 0.0599 96.7

Table 1. Lipid information for compounds identified in differential abundance analysis by DASEV and TLK. 
*Features identified by both DASEV and TLK. DFeatures identified only by DASEV. LFeatures identified only by 
TLK.
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Code availability
An R package, dasev, and simulation analysis code used in this paper are available at http://sweb.uky.edu/cwa236/
DASEV.html. The R code for TLK and AFT was downloaded from the publication website https://www.degruyter.
com/view/j/sagmb.2013.12.issue-6/sagmb-2013-0021/Appendix2_corrected.pdf. The R code for 2T was from 
Taylor and Pollard15. All analyses were done in RStudio Version 1.2.1335 with R 3.5.3.
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