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Abstract: A significant amount of academic and industrial research efforts are devoted to the
encapsulation of active substances within micro- or nanocarriers. The ultimate goal of core-shell
systems is the protection of the encapsulated substance from the environment, and its controlled
and targeted release. This can be accomplished by employing “stimuli-responsive” materials as
constituents of the capsule shell. Among a wide range of factors that induce the release of the
core material, we focus herein on the light stimulus. In polymers, this feature can be achieved
introducing a photo-sensitive segment, whose activation leads to either rupture or modification
of the diffusive properties of the capsule shell, allowing the delivery of the encapsulated material.
Micro- and nano-encapsulation techniques are constantly spreading towards wider application fields,
and many different active molecules have been encapsulated, such as additives for food-packaging,
pesticides, dyes, pharmaceutics, fragrances and flavors or cosmetics. Herein, a review on the
latest and most challenging polymer-based micro- and nano-sized hollow carriers exhibiting a
light-responsive release behavior is presented. A special focus is put on systems activated by
wavelengths less harmful for living organisms (mainly in the ultraviolet, visible and infrared range),
as well as on different preparation techniques, namely liposomes, self-assembly, layer-by-layer, and
interfacial polymerization.

Keywords: smart materials; photo-responsive capsules; interfacial polymerization; layer-by-layer;
self-assembly; liposomes

1. Introduction

In recent years, a growing interest has been focused on micro- and nano encapsulation due
to their fruitful applications in controlled release of drugs [1], active agents [2], catalysts [3], and
paints [4], as well as in synthetic nano-reactors engineering [5]. Academic and industrial research
is particularly interested in so-called “environmentally responsive” materials, able to respond to an
external stimulus (e.g., temperature, pH, light, electric or magnetic field) by modifying one or more of
their intrinsic properties. For their adaptive features, these materials are often called smart [6,7]. One of
the most challenging aspects of micro- and nano-encapsulation is the obtainment of a controlled and
modulated release of the encapsulated—or core—material that can be achieved using smart materials
as components of the capsule shell [8].
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The design and development of high-sensitive systems, able to smartly recognize an external
triggering factor and to respond by modifying their own structure, is the ultimate purpose of scientists
all over the world. For this purpose, polymeric materials are particularly suitable for technical
applications because they are versatile and their properties can be easily tailored depending on the
final use. Many external stimuli, such as pH [9], temperature [10,11], biological molecules [12], and
redox reactions [13] have been employed to effect capsule permeability or induce capsule disruption,
enabling the release of the encapsulated material. Light (infrared, UV radiation or simply sunlight) is
certainly the most compelling external stimulus, because it can be delivered without direct contact,
thus representing one of the few remote-control triggering factors available [14]. Like many promising
technologies, photo-responsive systems have been inspired by nature, which has evolved many
complex biological systems able to exploit light as an external source of energy and information. For
example, the light-induced cis—trans isomerization of the retinal molecule triggers a number of events,
including a change in the conformation of the opsin protein to which is bound, leading to a neural
signal and ultimately to the perception of light [15]. Mimicking natural structures, photo-responsive
polymers can be obtained introducing photo-sensitive moieties in the polymeric backbone or in the
side chains. Among the best performing photo-sensitive molecules, azobenzene [16], stilbene [17],
and spiropyrans [18] stand out. The photoactivity of each of these functional groups is based on the
existence of two interconvertible isomers. Upon light irradiation, typically in the ultraviolet range,
the molecules undergo a conformational rearrangement. In the case of azobenzene and stilbene, this
alteration is expressed by variations in the molecular symmetry from a thermally stable trans (E)
orientation to a less favorable cis (Z) orientation (Figure 1a,b) [19]. In spiropyrans, the irradiation
induces a ring-opening reaction that leads to the formation of the isomeric merocyanine form, as

shown in Figure 1c [18].
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Figure 1. Photo-isomerization mechanism of photochromic molecules: (a) azobenzene; (b) stilbene;
and (c) spiropyrane.

One of the most interesting features of such photochromic materials is that isomerization is usually
accompanied by molecular changes in physical properties such as polarity, viscosity and absorbance
as well as macroscopic changes in material properties such as thickness, wettability and stability [20].
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The presence of photo-responsive moieties in the capsule shell can therefore affect permeability of
capsules or even lead to their disruption [21].

A key factor to take into account when designing photo-responsive micro- and nanocapsule
systems is the wavelength of the light used to trigger the release. For outdoor use or other applications
in which direct contact between light and capsules is granted, it is theoretically possible to employ
any wavelength required by the photochromic materials that constitute the capsules shell. However,
with regard to biomedical applications, the skin penetration depth of the light source involved in
the release is the factor that determines the appropriate use of the capsules. The optical behavior of
human skin upon light irradiation has been vastly studied and reviewed [22]. UV and visible light are
reported having short penetration (few micrometers) depth and are most suitable for topical uses; on
the contrary, near infrared light has a higher skin penetration depth of few millimeters and it could
therefore be employed in internal delivery applications.

This review intends to give an overview on recent advances in the preparation of light-responsive
polymeric capsules. Different preparation technologies will be discussed in detail, including interfacial
methods (interfacial polymerization and phase inversion precipitation), template methods, and
self-assembly methods. Capsules properties such as size, morphology and release behavior will
also be described, with a view on the envisaged target applications.

2. Interfacial Methods for Capsules Formation

In interfacial methods, polymer capsules shell forms at the interface between two immiscible
liquids. The first reaction at a liquid-liquid interface was performed in 1883 by Schotten and
Baumann [23,24]. Since then, simple and versatile interfacial reactions, such as polycondensation,
have been employed to overcome the challenging procedures in bulk or melt [25]. Interfacial
polycondensation method is nowadays one of the most performing for in-situ formation of capsule
shell [26]. Further, the interface between two immiscible liquids can also be used to precipitate a
preformed polymer that will constitute the capsule shell [27]. In the following, the encapsulation at
liquid-liquid interface with both polymerization and polymer precipitation will be discussed.

2.1. Emulsion Polymerization

Interfacial polymerization has been widely described in literature, and used for the realization of
thin films [28] and particles [29]. This technique can also be employed for the preparation of micro-
and nanocapsules [30,31] when supported by an emulsification step. An emulsion is defined as a
dispersed system of liquid droplets (dispersed phase) in another, non-miscible liquid (continuous
phase), stabilized by means of one or more surfactant agents. In the preparation of core—shell
structures, the most performing interfacial reactions are polycondensation and polyaddition due
to their simple mechanism, fast kinetics and high yields [26,32]. The polycondensation reaction
occurs between different multifunctional monomers, either dissolved in the droplet suspension or
in the continuous phase. The monomers react at the interface of the emulsion droplets forming
the primary membrane, and the polymerization reaction advances until the depletion of one of the
monomers. The typical hollow structure is obtained when the formed polymer is not soluble in the
core material [31]. The common approach to obtain a photo-responsive shell membrane is employing
photochromic monomers in the polycondensation reaction. For example, Tylkowski et al. [33]
proposed a new approach for the preparation of liquid crystalline polyamide microcapsules containing
azobenzene mesogens in the main chain. The triggered release of the encapsulated (3-carotene was
successfully performed by irradiating the capsules with 365 nm UV-light. At this wavelength, trans—cis
photo-isomerization of azobenzene occurs, leading to major rearrangements in the macromolecules
conformation that eventually result in the release of the encapsulated material.

In order to scale the dimensions of the capsules down to the nanometer range, the
polycondensation reaction described above has been combined with a miniemulsification step.
Miniemulsions are a special class of emulsions, produced via high-energy homogenization (e.g., high
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shear stirring or ultrasonication), stabilized against coalescence and molecular diffusion degradation,
and characterized by a narrow droplet distribution [32]. Marturano et al. [34] successfully reported
the preparation of photo-responsive polyamide nano-sized capsules. The authors described how
simple miniemulsion parameters, such as surfactant type and concentration affect key final properties,
such as capsules dimension and release behavior. Release experiments of fluorescent probe molecule
coumarin-6 (C6) confirmed the successful light-triggered release. Interestingly, dynamic light scattering
(DLS) measurements demonstrated that the average diameter of the capsules significantly increased
on UV exposure due to the rearrangement of the polyamide shell from a “closed” to a more “open”
conformation, as depicted in Figure 2.
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Figure 2. Schematization of the C6 release from photo-responsive polymer nanocapsules as depicted
by Marturano et al. [34]. Reproduced with permission from Elsevier.

Micro- and nanocapsules described above can meet the target of many specific applications,
depending on their size and release profile, and serve as carriers for the encapsulation and release of
different active agents. For example, Bizzarro et al. [35] reported the successful encapsulation and
release of cumin and basil essential oils.

One of the great advantages of the described systems is the formation of robust capsules.
The release of the core material occurs by leakage as a consequence of changes in shell permeability,
without compromising shell integrity. This mechanism makes capsules safer for biological and medical
applications, differently from systems where fragments derived from shell disruption can possibly
contaminate target environment. On the other hand, one of the main drawbacks is the use of UV light,
since this wavelength range has limited use in biological in vivo applications [36] and its concentration
in sunlight is too scarce to be employed in agricultural or packaging applications. Beharry et al. [37] and
Wegner [38] demonstrated how the incorporation of electron-donating groups in ortho or para position
on the azo moiety can dramatically red-shift the photoswitching wavelength. Taking advantage of this
work, Tylkowski et al. [39] were able to synthesize modified polyamide microcapsules shell containing
ortho-substituted azobenzene moieties. It was shown that this modification led to an increase in shell
permeability and release of core material under visible light irradiation.

A new frontier in the preparation of polymeric capsules is the use of microfluidic systems
in which low volumes of fluids are processed through automatic and high-yield mechanism to
obtain narrowly distributed droplets [40]. For example, interfacial polymerization reactions have
been successfully performed in microfluidic devices [41]. Recently, Zeng et al. [42] reported the
self-assembly of photo-responsive reversibly cross-linked hydrophilic and hydrophobic copolymers
that can be controllably brought together at the water-chloroform interface of a microfluidic droplet.
The cross-linking agent consists in a ternary host—guest complex containing azobenzene, whose



Polymers 2017, 9, 8 50f 19

UV-triggered trans—cis isomerization leads to the reversible disruption of the supramolecular assembly
and consequent release of the cargo material.

An alternative approach to obtain photo-responsive microcapsules is employing metal or metal
oxide nanoparticles acting as light absorbers. Chen et al. [43] obtained polystyrene microcapsules via
Pickering emulsion polymerization using modified SiO, and TiO, nanoparticles as Pickering agents.
The release of the encapsulated material was achieved by degradation of the polymeric shell caused by
the photocatalytic activity of TiO, nanoparticles [44].

2.2. Phase Inversion Precipitation

As mentioned before, an alternative approach to the synthesis of polymeric carriers is the
use of preformed polymers for the capsules shell. Bogdanowicz et al. [45] successfully employed
a novel photo-responsive polymer, containing photochromic stilbene moieties in the main chain,
poly(x-methylstilbenesebacoate-co-o-methylstilbeneisophthalate) (P4), as shell material for vanillin
loaded microcapsules. The capsules preparation was based on phase-inversion precipitation procedure,
previously optimized by Pefia et al. [46]. Using a nozzle device connected to compressed air flow, a
homogeneous polymer solution was broken into microdroplets and sprayed in a coagulation bath
containing a non-solvent. Precipitation of the polymer at the interface of each droplet was caused by
exchange of solvent and non-solvent molecules in contact with the polymer. The authors hypothesized
that the overall change in the shell permeability may be due to cooperative rearrangements of the
polymeric chains induced by the photo-isomerization of the photo-responsive x-methylstilbene.

3. Templating Methods

This section intends to include different examples of micro- and nanocapsules formed via
deposition of polymer material on colloidal sacrificial particles serving as template for the formation
of hollow structures. The most acknowledged templating method is the layer-by-layer (LbL) approach,
based on the consecutive deposition of interacting polymers on a sacrificial template particle which
can be removed at the end of the process [47].

3.1. Layer-by-Layer (LbL) Using Polyelectrolytes

A wide variety of LbL capsules can be found in literature [48,49], however the vast majority
of LbL capsules has been prepared using polyelectrolytes. The procedure, schematized in Figure 3,
involves alternating deposition of positively and negatively charged polyelectrolytes onto the template,
where the driving force for the assembly is the electrostatic interaction. After deposition, polymers
can be cross-linked and, finally, hollow capsules are obtained by selective etching of the inorganic
template [50].

Oppositely Charged
Polyelectolyte

Inorganic Particle

Alternative Deposition,
Crosslinking

LbL Capsule

Figure 3. Formation of polyelectrolyte based layer-by-layer nanocapsule as schematized by
Yoon et al. [50]. Reprinted with permission from [50]. Copyright 2010 Royal Society of Chemistry.
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A wide range of materials, both synthetic and bio-based, are suitable candidates to form the shell,
and the range of particle sizes spans from the nanometer to several micrometers, mostly depending on
the size of the template. The main challenges concerning the preparation of nano-sized LbL capsules are
related to aggregation phenomena. However, this size range cannot be neglected since is particularly
important for in vivo applications. On the other hand, micro-sized capsules are very attractive objects
because of the simplicity of their characterization and imaging, facile prevention of aggregation and
superior loading capacity [51]. The surface of the capsules has been frequently modified in order to
tailor the capsules properties to the final application requirements, such as improved colloidal stability,
enhanced confinement of the encapsulated core substances or incorporation in the polymer shell of
active materials for imaging and sensing [52].

Tao et al. [53] published in 2004 an early example of a LbL capsule system containing an azo dye
in the shell. Negatively charged Congo red (CR), bearing two negative charges and a chromophore
moiety, was deposited on a melamine-formaldehyde sacrificial template alternated with positively
charged polyelectrolyte. The presence of CR in the capsules shell imprinted brand new properties
to the polymer capsules. In particular, the permeability of the shells could be remotely controlled
irradiating the capsules with visible light. A similar example of photo-responsive LbL capsules,
based on azobenzene moieties, was proposed by Bédard et al. [54]. In this case, the LbL procedure
involved alternate absorption of sodium salt of azobenzene, poly(vinylsulfonate) and poly(allyamine
hydrochloride) layers. The permeability changes were caused by the trans—cis photo-isomerization of
azobenzene. Experimental results showed that exposure of microcapsules to light led to significant
shrinking, increased roughness and enhanced permeability of the capsule shell. Moreover, the authors
reported the successful encapsulation of a fluorescent probe macromolecule and its release upon
light irradiation.

In 2014, Yi and Sukhorukov [55] reported on LbL UV-responsive microcapsules made of
alternating layers of negatively charged poly[1-[4-(3-carboxy-4-hydroxyphenylazo)benzenesulfonamido]-
1,2-ethanediyl sodium salt (PAZO) and poly(diallyldimethyl ammonium chloride (PDADMAC). In this
case, the photo-responsive behavior was attributed to the presence of PAZO segments, that upon
UV-light irradiation rearrange forming J aggregates. The schematic illustration of PDADMAC/PAZO
microcapsule disruption is reported in Figure 4. Extensively investigated in the literature [56],
] aggregates are small aggregates, constituted by three or four monomeric units having the same
orientation and created via strong non-covalent aromatic-aromatic interaction. These formations are
not flexible enough to retain the spherical structure of the shell, so that the capsule gradually breaks,
swelling and leaking the core material, until final disruption.

Release experiments were performed on the capsules loaded with a model core substance, bovine
serum albumin (BSA). The results showed how the capsules disruption process could be modulated to
control the release of the encapsulated BSA by adjusting the UV intensity and microcapsule architecture.
However, it was noticed that BSA molecules were able to leak through the porous multilayer shell
even without the support of UV-light. To overcome this problem, the same authors developed a
very interesting multifunctional capsule system in which UV response was time-dependent and
involved both encapsulation and release processes [57]. This approach was specifically designed to
promote the confinement of low molecular weight water-soluble substances that usually are very
prone to leak from the capsule due to its intrinsic porosity. Instead of increasing the density of the
multilayer to obtain a decrease of permeability, Yi and Sukhorukov proposed a chemical sealing of
diazoresin (DAR)-containing microcapsules. In both Nafion/DAR and DAR single component [58]
microcapsules, irradiation with UV light at 380 nm led to photolysis of the interacting ion pairs, causing
the decomposition of the diazonium group, and the formation of a sulfonate covalent bond, as shown
in Figure 5. The photo-induced conversion from ionic to covalent chemical bonds via DAR photolysis
offers an externally controlled method to seal the multilayer capsules and guarantee minimal diffusion
of the encapsulated molecules. Interestingly, UV-sealed capsules showed a more efficient preservation
of Rhodamine B, over storage time, than their un-irradiated counterparts.
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Figure 4. Schematic illustration of (PDADMAC/PAZO) microcapsule disruption induced by UV
irradiation [55]: (a) LbL assembly of the polyelectrolytes on the capsule shell surface; (b) formation of
J aggregates under UV irradiation; (c,d) extended aggregates act as stress raisers, triggering capsule
breakage. Reprinted with permission from [55]. Copyright 2014 Royal Society of Chemistry.

Figure 5. Photolysis-induced small molecule encapsulation in: (a) Nafion/DAR; and (b) DAR single
component multilayer capsules as depicted in [57]. Reprinted with permission from [57]. Copyright
2013 American Chemical Society.

The great advantage of this method is that more interesting low molecular weight substances
could be encapsulated in the DAR capsules without changing environmental conditions, such as ionic
charge [59] or pH [60]. Moreover, the UV-induced rapid capsule sealing would be extraordinarily
useful in terms of catching and analyzing small molecules in a biological environment.

3.2. Layer-by-Layer (LbL) Using Host-Guest Systems

For a long time, the only driving force of the LbL technique has been the electrostatic interaction
between polyelectrolyte pairs, therefore the limited amount of oppositely charged and water soluble
polymers available for the process constituted the main drawback of this technique. A possible
alternative to electrostatic-driven LbL structures are supramolecular assemblies, a set of molecules
held together by non-covalent bonds. These structures can be formed by just two molecules (e.g., DNA
double helix) or, more often, by a great amount of molecules able to form complex structures such
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as spheres, rods or sheets (e.g., micelles, liposomes and biological membranes). In the domains
of supramolecular chemistry, the development of host-guest systems, in which a host molecule
can recognize and bind a certain guest molecule, was considered as an important contribution.
A host-guest system refers to a chemical system that is made up of two or more molecular subunits
self-assembled together to form a supramolecular complex. Normally, the formation of a host-guest
system involves more than one type of noncovalent interaction, for example, hydrophobic association,
hydrogen bonding, electrostatic interactions, metal coordination, van der Waals forces, and ©—m
stacking interactions [61]. In this frame, Xiao et al. [62] successfully obtained photo switchable
microcapsules based on host—guest interaction, using a host layer containing «-cyclodextrin («-CD)
and a guest layer based on azobenzene (Azo) assembled on sacrificial CaCOj; particles via LbL
deposition. a-CD-rhodamine B (x-CD-RhB), used as a model drug, was loaded on Azo layers
by host-guest interaction. Interestingly, under UV irradiation (A = 365 nm) a modification of the
host guest interaction occurred, mainly due to Azo isomerization, leading to the disruption of the
capsules shell and the release of the encapsulated drug. The capsules structure and the release
mechanism are depicted in Figure 6. The release of the modified x-CD was successfully monitored
through spectrofluorometric analysis thanks to the modification of the model drug with the fluorescent
rhodamine B. The experiment showed how the drug release from the sample irradiated with UV light
was dramatically faster compared to the un-irradiated sample.

e Azobenzene L\: a-Cyclodextrin «: Model drug

Figure 6. Capsules structure and release mechanism of x-CD/Azo LbL microcapsules as depicted by
Xiao et al. [62]. Reprinted with permission from [62]. Copyright 2011 American Chemical Society.

A further implementation of the supramolecular LbL approach was provided by Lin et al. [63].
The LbL assembly was driven by two different host-guest interactions, one between adamantine (AD)
and p-cyclodextrin (3-CD) and one between azobenzene (Azo) and (3-CD. The versatility of 3-CD
allows it to accept both AD or Azo as a guest molecule into the inner hydrophobic chamber [64,65].
In particular, the trans-Azo isomer is suitable for entering the inner chamber of 3-CD while the
cis-Azo isomer shows no supramolecular interaction because of steric hindrance. As a result, UV
photo-irradiation could cause the dissociation of 3-CD/Azo complex. The microcapsules designed
by Lin et al. are able to controllably switch between the “on” and “off” state. As shown in Figure 7,
the stable host—guest interaction between 3-CD and AD maintains the structural integrity of the shell,
while the reversible UV-sensitive interactions between Azo and (3-CD could form a dense membrane to
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confine the drug. Under UV light irradiation (A = 365 nm) the photo-switching of Azo from trans to cis
implies a weakening of the Azo/[3-CD interactions and a decrease in the density of the layers, and the
consequent diffusive release of the encapsulated molecule. Release experiments of the encapsulated
fluorescent PEGs50g9-FITC probe drug confirmed the reversible switching between “on” and “off” state
as a proof of concept of the “release-cease-recommence” mechanism.

‘ . :AD

®-® : trans-Azo

’\'_ B e~® : cis-Azo

) :gco

: PEGso00-

UV Ray
Switch On

Switch Off
Visible Light

Figure 7. On/off photo-responsive switch in the LbL microcapsules designed by Lin et al. [63].
Reprinted with permission from [63]. Copyright 2014 Royal Society of Chemistry.

3.3. Other Templating Methods

It is worth mentioning another example of LbL capsules based on photo-responsive moieties
different from azobenzene. Achilleos et al. [66] engineered LbL nanocapsules based on photosensitive
spiropyrans (SPs) moieties. Upon UV irradiation, non-polar SPs isomerize to merocyanines (MCs);
the process is reversible, since under visible-light irradiation MC regenerates the SP form [67].
The supramolecular design of these capsules was based on the intrinsic feature of MCs to aggregate
into either H- or J-type stack-like arrangements through noncovalent 7i— interactions.

In the class of templating methods, LbL is by far the most technologically advanced. However,
other methods for the formation of hollow capsules based on a sacrificial particle as template can be
found in literature. For example host—guest interactions between cyclodextrin-appended polymers
(host) and complementary ferrocene or azobenzene carriers (guest) was employed by Wajs et al. to
obtain stimuli-responsive nanocapsules using sacrificial golden colloidal templates [68]. Li et al. [69]
introduced a facile method to fabricate photo-responsive capsules, using a ortho-nitrobenzyl derivative
as cross-linking agent for polyethyleneimine (PEI) and CaCOj; templating particles. The release of the
encapsulated model cargo under UV light irradiation occurs because of the photo-cleavable nature of
the cross-linking points [70,71], leading to capsules dissociation.

For biomedical applications that involve laser-nanoparticle interaction, the light needs to
guarantee both minimum absorption by cells/tissue and maximum absorption by nanoparticles.
The ideal light source is the so-called biologically “friendly” wavelength window [72]—the
near-infrared (NIR) part of the spectrum. Light-responsive capsules have the potential for in vivo
drug delivery because NIR light is much less harmful and has a much deeper penetration depth in
tissues compared with UV or visible light. However, photo-responsive polymer moieties that typically
constitute the polymeric capsules shell are inert to IR light, so functionalization of the capsules shell
with noble metal nanoparticles becomes necessary [73]. These particles are able to efficiently absorb
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laser energy and convert it into heat, which locally and transiently dissipates to a polyelectrolyte
network. For example, Skirtach et al. proposed polyelectrolyte-multilayer microcapsules carrying
silver nanoparticles embedded in their shell. It was possible to remotely activate the capsule, injected
in living cells, by irradiation with near-IR light [74,75].

Similarly, Angelatos et al. [76] reported the preparation of NIR-responsive capsules prepared
via LbL-assembly of polyelectrolytes using melamine formaldehyde particles as sacrificial templates.
Exploiting the pH-dependence of the shell permeability, modified dextran was succesfully loaded into
preformed capsules. Subsequently, infiltration of light-absorbing gold nanoparticles into the capsule
shell was performed to render the capsules optically addressable. A schematization of the process is

?
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reported in Figure 8.

Figure 8. Schematic illustration of the various colloidal systems investigated by Angelatos et al. [76].
Reprinted with permission from [76]. Copyright 2005 American Chemical Society.

The authors demonstrated that is possible to tune the release of the encapsulated material
irradiating the capsule with a short-pulse (10 ns) NIR laser light (A = 1064 nm). Moreover,
the polyelectrolyte shell was coated with a lipid bilayer, increasing capsules bio-recognition
capabilities [77].

Such capsules are likely to have potential as delivery vehicles for drug administration,
microreactor applications, and even cell manipulation. Ambrosone et al. [78] reported an interesting
application of NIR-responsive LbL capsules for advanced in vivo delivery of an intracellular modulator
of Wnt/ 3-catenin signaling pathway. The relevance of this work lays in the importance of controlling
cell function and reprogramming cell fate upon external triggering.

4. Self-Assembly Methods

The spontaneous formation of non-covalent association of organic molecules in solution is
commonly called self-assembly. Scientists are very intrigued by this phenomenon, mainly because
of the intrinsic compelling nature of self-ordered structures, but also because this structures
naturally occur in living organisms [79]. The formation of hollow carriers is often enabled by the
use of amphiphilic molecules, characterized by both hydrophilic and hydrophobic parts. In the
following section, different preparation methods of self-assembled micro- and nanocapsules, based on
amphiphilic block copolymers and low molecular weight amphiphiles are reported.
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4.1. Block Copolymers Self-Assembly

The formation of micelles from self-assembly of block copolymers in a selective solvent has
been known since 1970s [80]. Recently, self-assembled polymer capsules have been used to
encapsulate drugs and other active agents as well as enzymes and non-biologic catalysts, serving as
nanoreactors [81]. Different approaches have been developed to obtain targeted drug delivery via
tuning the amphiphilicity of the block copolymers. In particular, Blasco et al. [82] reported a new family
of photo-responsive self-assembly formulations based on a series of amphiphilic linear-dendritic
block copolymers (LDBCs) containing photochromic azobenzene units and hydrocarbon chains
randomly connected to the periphery of the dendron. One of the main drawbacks of this technique
is the use of organic solvents and complicated preparation procedures of the block copolymer units.
The same authors proposed a simpler synthetic approach compared to the former design, based on an
azobenzene-containing miktoarm polymer that formed stable vesicles, able to load and release both
hydrophobic and hydrophilic cargo molecules upon UV irradiation [83].

To overcome the problems related to the use of organic solvents, efforts have been done
in the development of block copolymer assemblies based on electrostatic interactions [84,85].
Water is a suitable solvent for this novel class of polymeric assemblies, since they are formed by
double-hydrophilic block copolymers, containing ionic and nonionic water-soluble segments (block
ionomers). A new frontier in ionomer self-assembly was reported by Wang et al. [86]. They introduced
stimuli-responsive moieties onto surfactant molecules, so that surfactant aggregates can be tuned
toward controllable disassembly. The UV-induced variation of the critical micellar concentration
(CMC) of the trans and cis forms of azobenzene-bearing surfactants is a well-known process, that can
be used to induce the destruction/formation of micellar structures. The strategy employed to prepare
vesicles based on block ionomer complex is reported in Figure 9. UV-vis spectrophotometry tests
demonstrated that the molecules of azobenzene-containing surfactant included in the block ionomer
complex were able to undergo trans-to-cis isomerization if irradiated with UV light at 365 nm, and
reversibly switch back from cis to trans form if irradiated with visible light at 450 nm.
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Figure 9. Schematic illustration of the self-assembly of block ionomer complex vesicles as depicted by
Wang et al. [86]. Reprinted with permission from [86]. Copyright 2009 American Chemical Society.

4.2. Liposomes

Liposomes consist of concentric bilayers of phospholipids and/or other amphiphilic molecules
encapsulating an aqueous compartment, resulting in nanosized vesicles. Intensive studies have
been carried out on the encapsulation of drugs in liposomes, as they are promising carriers
in aqueous fluids [87,88]. Among other drug carriers for cancer treatment, liposomes are the
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longest-studied nanoparticles and are hence associated with a number of historic milestones [89]
Despite improvements in the therapeutic efficacy versus side effects obtained in the dosage of few
relevant drugs (e.g., amphotericin B and doxorubicin), the desired drug release from liposomes is still
a challenge [90]. One of the main drawbacks of liposome carriers is the passive release by diffusion of
the encapsulated drug. In most cases, diffusion occurs too slowly and the local drug concentrations
required for the optimum therapeutic effect are not reached [91]. Rapid and targeted drug delivery
can be achieved triggering chemical and physical changes in liposome shell using external light
irradiation [92], as illustrated in Figure 10.

A

Photopolymerizable p t: ins with surrounding pores

Photoi izable b moities Trans to cis i ization and lip destabilization

Figure 10. Schematization of light-triggered release mechanisms in liposomes by inclusion of:
(A) photo-polymerizable components; (B) photodegradable components; or (C) photo-isomerizable
azobenzene moieties. Reprinted with permission from [92]. Copyright 2012 Ivyspring International
Publisher.

The mechanism depicted in Figure 10A is based on photo-polymerization of membrane lipids.
The application of a proper light source induces photo-polymerization of reactive molecules (bearing
dienoyl, sorbyl or styryl groups) introduced into the liposome membrane. This leads to the formation
of condensed domains in the bilayer; at the same time pores are temporarily formed around the clusters
until the surrounding free mobile lipids rearrange to reconstitute the bilayer. Such pores allow drug
molecules to diffuse out of the liposome. For example, Bondurant et al. [93] showed that the inclusion
of a photo-reactive lipid component in PEG-liposomes membrane did not alter the permeability of
liposomes prior to irradiation, while exposure to UV light (A = 254 nm) for 2 min led to an increased
liposome permeability.
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Light-responsiveness of liposomes can also be photo-chemically triggered applying various
chemical stimuli responsible for the destabilization or disruption of specific components of the
liposome membrane (Figure 10B). One of the earliest examples was provided by Thompson et al. [94].
Their approach was based on the photo-cleavage of plasmenylcholine to single chain surfactants via
sensitized photooxidation of the plasmalogen vinyl ether linkage (Figure 11). The authors presented
the photo-triggered behavior of plasmenyicholine liposomes containing three different sensitizers
absorbing between 630 and 820 nm.

0] 0O
- [ 0 + I 0
Mes N CHyCH, 0—-0 O/k Me,N CH,CH,0—P—0 )‘\
Q " CH gH3, 10, é o CHHas
HO - o) o)
O/jCHMH,” ’ oH + )ko + )J\
: H & " 4”7 \CH,H,

Figure 11. Singlet oxygen-mediated photo-oxidation of plasmalogen vinyl ether linkage.

In this frame, Luo et al. [95] demonstrated that the introduction of a small amount of
an unsaturated phospholipid accelerates NIR light-triggered doxorubicin release in porphyrin—
phospholipid (PoP) liposomes. The mechanism of the enhanced release rate was related to the
oxidation of unsaturated phospholipids by singlet oxygen. In vivo studies demonstrated the efficiency
of these systems in chemo-photo-therapy. Sine et al. [96] reported in vivo release studies of a novel
photo-cleavable liposome system with projected applications for cancer treatment. In this case, the
inclusion of a red absorbing photosensitizing agent in the liposome membrane was able to induce
destabilization of “pockets” structures, resulting in defects in the liposome bilayer and causing the
release of encapsulated drug.

One of the most common approaches for the formation of light-responsive carriers is the
introduction of photo-isomerizable lipids in the liposome membrane, as schematized in Figure 10C.
Azobenzene-modified lipids (Bis-Azo PC) can undergo photo-isomerization, leading to photo-induced
conformational changes in the liposomes. The trans to cis isomerization of the azobenzene groups
alters the polarity and conformation of the lipids in a rapid and reversible process, as reported in
Figure 12. This approach can guarantee one of the finest control of drug release by simply adjusting the
liposome composition. For example, Bisby et al. [97] reported that an increase in cholesterol content
enables to lower the photo-isomerization extent necessary to trigger the release, increasing the light
sensitivity of azobenzene-containing liposomes.

More recently, Cui et al. [98] demonstrated the feasibility of fluid-phase photo-sensitive liposomes
not based on phospholipids that combine very low passive permeability and good photo-control of the
entrapped payload. The presence of the azobenzene derivative makes these liposomes sensitive to light
and allows high-precision control on the release of the encapsulated material. The authors pointed out
that the trans form of the azobenzene was compatible with the molecular packing of the bilayer, giving
impermeable membranes. On the other hand, the cis form introduced defects in the tightly packed
alkyl chains of the bilayer, allowing the photo-induced leakage of the encapsulated material.

Interesting advances in NIR-responsive liposomes consist in a new family of water-in-oil-in-wall
(W/O/W) core-shell nanocapsules made from the self-assembly of proteins in a liposome-like double
layer intercalated with reduced graphene oxide (rGO) nanosheets [99]. The rGO nanosheets are
introduced to minimize unintended drug leakage, but it also serves as the NIR sensor/actuator that
triggers drug release.

In a frontier application, multilayer capsule solely based on graphene oxide were tested as
controlled drug delivery carriers [100], opening a novel way for NIR-light triggered release in a simple
way without addition of nanoparticles or dyes.
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Figure 12. Mechanism of trans—cis isomerization under UV light irradiation of the photochromic lipid,
Bis-Azo PC.

5. Characterization Methods of Photo-Responsive Capsules

It is worth providing a short outlook on the most used [101-103] methods for collecting valuable
data to characterize photo-responsive polymers. In Table 1 the classification of characterization
techniques is based on different key capsules properties, namely: shape, size distribution, cross
section and surface morphology, surface chemical analysis, thermodynamic properties of shell and
encapsulated material, and release and stability of encapsulated material.

Table 1. Characterization techniques of photo-responsive capsules.

Capsules properties Method

Optical microscopy
Capsule shape and size Dynamic Light Scattering (DLS)
Particle size analyzer

Capsule shape, size and Environmental/Scanning Electron Microscopy (ESEM/SEM)
surface/cross-section morphology Transmission Electron Microscopy (TEM)
Atomic force microscopy (AFM)
Capsule surface physical properties Contact angle measurement (CA)
Nanoindentation

SEM + X-ray microanalysis (EDS)
X-ray photoelectron spectroscopy (XPS)
Nuclear magnetic resonance spectroscopy (NMR)
Attenuated total reflectance infrared spectroscopy (ATR-IR)

Capsule surface chemical properties

Thermodynamic properties of shell and/ Differential scanning calorimetry (DSC)
or encapsulated materials Thermogravimetry (TG)

Ultraviolet-visible spectrophotometry (UV-Vis)
Gas chromatography—mass spectrometry (GC-MS)
Active material stability and release High-performance liquid chromatography (HPLC)
Spectrofluorimetry
Olfactive Evaluation
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6. Conclusions

Significant progress in the design and the synthesis of light-responsive polymer micro- and
nanocapsules has been made in recent years. Diversification of capsule preparation techniques and
fine-tuning of materials chemical design provide an almost infinite number of strategies to obtain
a customer-tailored application. However, many challenges need to be addressed, concerning both
academic research and industrial application. Understanding the principles of the mechanisms at the
basis of these stimuli-responsive materials is essential for developing novel encapsulation, release, and
targeting methods.

The ultimate challenge for light-triggered delivery of drugs or other active agents in biological
environments is to grant the use of biocompatible materials and un-harmful release process in use.
Among the wide variety of photosensitive capsules available, a sensitive factor is the choice of an
appropriate size range of delivery systems. Microcapsules, for example, have been widely studied and
exploited in commercial applications for their facile preparation and characterization. On the other
hand, biological application, such as circulation or cellular uptake experiments, have desperate need
of nanocapsules.

Research and development in nano-sized range is currently experiencing a burst development and
is in constant need for new carriers to further impact theranostics, nanomedicine and drug delivery.
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