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Case in Natural Language

Male, 28 years old, designer, live in Si County,
Suzhou City. On January 19th, the patient
went to Guzhen County, Bengbu City to
attend the wedding, and lived with three
people in the Green Tree Inn Guzhen County
(a room). One of the people living with him
was from Wuhan. At 15:40 pm on January
20th, the patient returned to Si County by bus
from Guzhen. From that evening, he stayed at
his sister's house in Sizhou Scenic Area, Si
County, and his sister lived in Yulan Mansion,
Si County. On January 22nd, his brother-in-
law drove back to his hometown of Pengbao
Village, Pingshan Town, and accompanied 5
people. On January 26th, his wife and brother
drove to Peng Village, Dulou Town, Xiao
County. He became ill on January 30th, and
went to Xiaoxian People's Hospital for
isolation treatment on February 1st, and was
diagnosed on February 2nd. The current
condition is mild and stable.

Case in Structured data fields

Gender: Male
Age: 28
Place of Departure: Guzhen County
Place of Transit: Green Tree Inn Guzhen; Sizhou Scenic Area, Si County;
Pengbao Village, Pingshan Town; Peng Village, Dulou Town, Xiao County
Place of Destination: Si County
Admitted Hospital: Xiaoxian People's Hospital
Arrival Date: January 20th
Date of Symptom Onset: January 30th
Date of Quarantine: February 1st
Date of Hospitalization: February 1st
Date of Confirmation: February 2nd

Event: Multi-person gathering
Place: Social
Person: People in the affected area
Discovery: Active detection
Isolation: Institution
Degree: Stable

Entity fields
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Epidemiologic information discovery
from open-access COVID-19 case reports via
pretrained language model

ZhizhengWang,1,10 Xiao Fan Liu,2,10 Zhanwei Du,3,10 LinWang,4,10,* YeWu,5 Petter Holme,6 Michael Lachmann,7

Hongfei Lin,1 Zoie S.Y. Wong,8,* Xiao-Ke Xu,9,* and Yuanyuan Sun1,11,*

SUMMARY

Although open-access data are increasingly common and useful to epidemiolog-
ical research, the curation of such datasets is resource-intensive and time-
consuming. Despite the existence of a major source of COVID-19 data, the regu-
larly disclosed case reports were often written in natural language with an
unstructured format. Here, we propose a computational framework that can
automatically extract epidemiological information from open-access COVID-19
case reports. We develop this framework by coupling a language model devel-
oped using deep neural networks with training samples compiled using an opti-
mized data annotation strategy. When applied to the COVID-19 case reports
collected from mainland China, our framework outperforms all other state-of-
the-art deep learning models. The information extracted from our approach is
highly consistent with that obtained from the gold-standard manual coding,
with a matching rate of 80%. To disseminate our algorithm, we provide an
open-access online platform that is able to estimate key epidemiological statistics
in real time, with much less effort for data curation.

INTRODUCTION

The coronavirus disease 2019 (COVID-19) pandemic has been a global public health crisis (Malhotra et al.,

2020; Le et al., 2020; Agbehadji et al., 2020; Chinazzi et al., 2020), with more than 300 million confirmed

cases as of the end of 2021. Many countries and regions, such as China (Liu et al., 2021), Singapore

(Singapore Ministry of Health, 2020), and Taiwan (Taiwan (2020), were able to publish COVID-19 case re-

ports obtained from detailed epidemiological investigations in real time, with the aim of enhancing situa-

tion awareness (Bunker, 2020) and promoting individual behavior of self-protection (Zheng et al., 2021).

These disclosed epidemiological survey results may contain demographic, travel-related, and diagnostic

information for each confirmed case.

Analyses using open-access data have contributed key insights to help understand the epidemiological and

pathological characteristics of COVID-19 (United States of America, 2021; Freunde von GISAID, 2021; Xu

et al., 2020a; Du et al., 2020a; Ali et al., 2020; Xu et al., 2020b) to estimate the infection and disease burdens

(O’Driscoll et al., 2021; Salje et al., 2020), characterize population behavioral changes (Zhang et al., 2020; Du

et al., 2020b; Tian et al., 2020), and optimize control measures (Hale et al., 2021; Yang et al., 2021; World Health

Organization, 2022). However, publicly disclosed case reports obtained from epidemiological investigations

were often written in natural language without a standardized structure (e.g., different writers may use different

words toexpress the same information). Thedata curation and standardizationprocesses canbe resource-inten-

sive and time-consuming (Kraemer et al., 2021). For example, Liu et al. (Liu et al. (2021) recruited a teamof 20data

curators to trace and manually annotate the demographic information, mobility history, and epidemiological

timelines for each COVID-19 case that was publicly reported in mainland China as of March 4 2020. To reduce

the burden on human resources and facilitate the real-time analyses of open-access case reports, the early

research (Ghosh et al., 2017) inspired us to develop a deep learning framework using natural language process-

ing (NLP) techniques to automatically identify key information from the raw case reports (Figure 1A).

Generally, different from the rule-based methods that use regularization formulation to match line lists

from raw data, a deep learning framework that curates open case reports involves a combination of named
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Figure 1. COVID-19 cases information extraction (CCIE) framework

(A) The CCIE framework can automatically translate data from open-access COVID-19 case reports into structured data fields.

(B) CCIE’s workflow: The annotation data provided to the CCIE framework contain entity labels and category labels, with the letter ‘‘B-’’ indicating the start

position of an entity and ‘‘I-’’ representing themiddle or end position of an entity. CCIE comprises a pretrained languagemodel, a named-entity-recognition

network, and a text classification network. Specifically, the pretrained language model is built with Transformer, which uses each token of case reports as

data input, with [CLS] indicating the start of a sentence and [SEP] denoting the separator between two adjacent sentences. The panel ‘‘T: Transformer’’

explains the internal structure of Transformer, with the symbol⨁ indicating the concatenation operation. The named-entity-recognition network is built with

the BiLSTM model and CRF predictor. The panel ‘‘L: LSTM’’ explains the internal structure of this network, with the symbol ⨂ indicating the elementwise

multiplication, s indicating the sigmoid function, tanh denoting the activation function, and Xt and ht representing the input and output of BiLSTM,

respectively. The text classification network consists of a fully connected neural network, with the [CLS] vector denoting sentence embedding. The

assessment of model performance requires the evaluation of both the named-entity recognition and the text classification.
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entity recognition, text classification, and knowledge inference tasks in NLP. For example, the identification

of spatial locations and calendar dates requires named-entity recognition. Distinguishing the case detec-

tion method, such as the RT-PCR test or symptom onset, requires text classification, as the expressions

often vary with the different natural language writing styles used in the reports. Where there were incom-

plete data fields or vague language expressions, knowledge inference and standardization were required

(e.g., the correction of ‘‘Guzhen County’’ to ‘‘Suzhou City’’ according to geographical knowledge). The

complexity in the real-world case report data prevents the direct application of advanced NLP tools, as

exemplified by the poor performance of applying the seminal pretrained language model (Devlin et al.,

2019) directly to the human-coded data (Figure S1).

Therefore, we were required to adjust the existing NLP models for our data curation task via the prepara-

tion of appropriately high-quality annotated data. We first propose a machine-learnable annotation strat-

egy to refine the codebook in ref. (Liu et al., 2021), in which we target 17 data fields and group them into

named-entity-recognition tasks and text classification tasks. After that, we propose the COVID-19 cases

information extraction (CCIE) framework, which uses three deep neural networks to perform the named-en-

tity recognition and text classification (Figure 1B). The pretrained language model with the whole-word-

mark (WWM) mechanism (Cui et al., 2021) encodes each case report into vector representations; a bidirec-

tional long short-termmemory (Bi-LSTM) (Kadari et al., 2017) performs the named-entity recognition, and a

fully connected network performs the text classification. Finally, we evaluate CCIE in relation to three as-

pects. First, we apply our annotation strategy to different deep neural networks to observe the adaptability

of the annotated data. Second, we compare the proposed CCIE framework with state-of-the-art models

with regard to the tasks of named-entity recognition and text classification. Last, we investigate the effec-

tiveness of the CCIE framework through cross-validation using manually extracted values. In practice, we

also develop an online system based on CCIE, which is publicly available to all researchers worldwide.

RESULTS

Performance evaluation

Annotation strategy

The annotations of case reports were used as labels for different deep neural networks. To guarantee the con-

sistency and accuracy of the manual annotation, we randomly examined and modified a subset of 100 case re-

ports after they had been annotated by different graduate students. Then, three public-health experts partici-

pated in the revisions. After these, we discussed the annotations of the case reports to reach a consensus on the

modifications. Next, we continued to examine and manually annotate the remaining case reports. The agree-

ment rate for our revisions reaches 90%, which suggests that the inter-annotator agreement rate is acceptable.

Any inconsistent revisions were submitted to the experts for final revisions. Based on our annotation data, all the

deep neural networks demonstrated high adaptability across different tasks (i.e., named-entity recognition and

text classification). For example, in the named-entity-recognition tasks (Figure 2A), all models achievedF1 values

of higher than 70% formost entities. For fieldswith a fixed language format, such as ‘‘dates,’’ and obvious trigger

words, such as admitted hospital, the F1 values (a global evaluation for precision and recall, which were calcu-

lated using Equation (9)) for all models exceed 90%. Notably, for fields with a long text length and high ambi-

guity, such as ‘‘place of transit,’’ most deep neural network models obtained F1 values of over 50%. In the text

classification tasks (Figure 2B), most models achieved F1 values of higher than 80% for the data fields with

limited labels. Even for the category withmore possible labels, such as ‘‘event,’’ the evaluatedmodels obtained

an F1 value that exceeded 75%. All these results passed the t-test, with a confidence interval of 0.95, under the

assumption that all values follow normal distribution.

Text classification tasks

To further analyze the performance of the CCIE, we first compared it with seven benchmark text classifica-

tion algorithms (i.e., Transformer (Vaswani et al., 2017), DPCNN (Johnson and Zhang, 2017), FastText (Jou-

lin et al., 2017), TextCNN (Kim, 2014), TextRNN (Liu et al., 2016), TextRCNN (Lai et al., 2015), and LSTM

(Zhou et al., 2016)) for the classification of six categories (Table S1A). The F1 values obtained by the

CCIE for all six categories were above 82%, with the highest value reaching 93.2%. Especially in the event

category, with maximum category labels, the CCIE increased by 2.6% compared to TextCNN and by 10.7%

compared to Transformer. This result shows that the pretrained language models obtained word embed-

dings with richer semantic expression for mining deep features in the text, such as syntactic dependence

and semantic role.
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Named-entity recognition tasks

Then, we also compared the CCIE with four classic deep neural network models (i.e., Lattice (Zhang and

Yang, 2018), Tener (Yan et al., 2019), GraphNER (Sui et al., 2019), and FLAT (Li et al., 2020)) with regard

to the recognition of nine entities (Table S1B). The CCIE demonstrated better performance for most entity

recognitions (7/9 cases), including all ‘‘dates’’ and two ‘‘places.’’ This achievement is attributed to the fact

that the pretrained model used for the CCIE adopts the WWM mechanism to capture the regular date

format ‘‘xx (month) xx day, xx year’’, or ‘‘xx (month) xx day’’ and helps determine the entity boundaries.

The same reason applies to the recognition of the departure place and the destination place, as the

description granularities of these fields are recorded as ‘‘xx City’’ and ‘‘xx County,’’ respectively. In addition,

we compared the CCIE with other pretrained language model-based solutions (i.e., ‘‘TENER + BERT’’ and

‘‘TENER + (BERT with WWM)’’). The results show that the CCIE outperforms ‘‘TENER + BERT’’ and obtains

results comparable to those of ‘‘TENER + (BERT with WWM)’’ (Table S1C), which, in turn, indicates that the

WWM mechanism is key for identifying entity boundaries.

Sample size threshold of annotated data

Given that data annotation requires considerable labor, determining theminimum label set size for themodels

to obtain reasonable performance is important. Therefore, we conducted the named-entity-recognition task

Figure 2. Distributions of F1 values for the named-entity-recognition and text classification models, obtained

using our proposed annotation strategy

(A) The distribution of the F1 value for each named entity, which aggregates the results of five different named-entity-

recognition methods, namely Lattice (Zhang and Yang, 2018), TENER (Yan et al., 2019), GraphNER (Sui et al., 2019), FLAT

(Li et al., 2020), and our CCIE (denoted as ‘‘+’’). The colored distributions correspond to different named entities.

(B) The distribution of the F1 value for each text category, which aggregates the results of eight text classification

methods, namely Transformer (Vaswani et al., 2017), DPCNN (Johnson and Zhang, 2017), FastText (Joulin et al., 2017),

TextCNN (Kim, 2014), TextRNN (Liu et al., 2016), TextRCNN (Lai et al., 2015), LSTM (Zhou et al., 2016), and our CCIE.

For each named entity or category, the scattered dots indicate the F1 values obtained from different methods, which are

used to fit the distribution as indicated by the box plot. [See also Figure S1 and Tables S1 and S6].
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using theCCIE under different annotated data volumes.With an increase in the annotated data size, the overall

performance for named-entity recognition showed an upward trend (Figure 3). However, when the annotated

data size reached 400, the upward trend was no longer evident, and the revenue curve appeared to be stable

between 0.1% and 0.2%.Moreover, from the perspective of the recognition accuracy for each entity (Figure S2),

the result and revenue stopped fluctuating significantly when the annotated data size reached 600, and the

average revenue remained between 0% and 0.04%. Note that the recognition of admitted hospital reached

anoptimumvalue (90%)when theannotateddata sizewasmerely 100,meaning that themoreevident the trigger

word is, the lesser data are required to be annotated.

Performance variance due to language styles

The confirmed COVID-19 cases in our dataset were reported from 27 provincial health departments and

264 municipal health departments, which lead to large differences in their language styles. Moreover,

our CCIE is a feature learning model and, therefore, sensitive to language styles. We selected eight prov-

inces that reported the highest number of cases (i.e., Zhejiang, Jiangsu, Shandong, Guangdong, Chongq-

ing, Hunan, Anhui, and Henan) and compared the CCIE performance for the reports released by each prov-

ince (Figure 4A). The CCIE framework performed well for the reports released by the health departments of

Zhejiang (91.67%), Jiangsu (89.33%), and Shandong (88.23%) but not for those released by the health de-

partments of Guangdong (78.82%) and Chongqing (76.28%).

After parsing the report examples released by different provinces (Figure 4B), we found that case reports

can be most easily processed by the CCIE when (1) the reported entities have a concise text description, (2)

the correspondence between the trigger words and entities is clear and unique, and (3) the distance be-

tween an entity and its trigger words is relatively short. Therefore, we propose a template for future epide-

miology surveys (Table S2) and design the corresponding questions that should be asked in epidemiology

surveys (Table S3), which covers travel history and social (contact) behaviors.

Cross-validation with manually extracted information

We compared the 17 machine-extracted fields with the manually extracted ones from the dataset of Liu et al.

(Liu et al. (2021) for the first 10,000 case disclosure reports (i.e., from January 2 to March 4, 2020). We used

a simple fuzzy matching logic (Figure 5A) to deal with the style differences between the machine- and
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Figure 3. Performance gain across all data fields by increasing the annotation size

The CCIE framework was used for the named-entity recognition and text classification. The blue curve in the upper panel

indicates the increase in the overall F1 value as the size of the annotation increases. The red curve in the bottom panel

indicates the reduction in the revenue value as the size of the annotation increases. The revenue value is calculated as

(after-orginal)/original; after indicates the F1 value of CCIE after the size of the annotation data is increased, while original

indicates the F1 value of the CCIE before the addition of annotation data. When the size of the annotation data is smaller

than 200, the revenue value is calculated for every additional 20 annotation data; further, when it is larger than 200, the

revenue value is calculated for every additional 100 annotation data. [See also Figure S2].
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human-extracted fields—if themachine-extracted text was present in themanually coded fields, we considered

the machine to have provided meaningful information. The comparison results (Figure 5B) showed high con-

sistency between machine extraction and manual coding. The agreement rates for ages and genders were

97.2% and 97.96%, respectively; those for the places of departure, transit, and destination were 74.95%,

86.84%, and 66.62%, respectively; and those for thedates of arrival,quarantine, symptomonset, hospitalization,

and confirmation were 87.67%, 75.14%, 86.21%, 69.24%, and 65.89%, respectively.

The matching rate for the admitted hospital field was relatively low. We found that the inconsistency be-

tween machine extraction and human coding stems from the following facts: (i) The machine extracts

the abbreviations of hospital names, while human coding converts them into full names (�85% of the

Figure 4. Performance of CCIE in terms of identifying data fields from the COVID-19 case reports disclosed by

each province in China

(A) Eight provinces, Zhejiang, Guangdong, Hunan, Anhui, Henan, Chongqing, Jiangsu, and Shandong, were selected to

assess the effectiveness of the CCIE with regard to the handling of case reports with different natural-language writing

styles.

(B) To illustrate the data fields identified using our CCIE framework, the text boxes provide five examples of case reports

from Zhejiang, Guangdong, Chongqing, Jiangsu, and Shandong, with the identified data fields highlighted in blue, the

trigger words highlighted in red, and the field labels highlighted in bold black. [See also Tables S2 and S3].
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cases); (ii) the vague term ‘‘designatedmedical institution’’ used by the local authorities instead of the exact

hospital names was not considered in human coding but recognized by the machine (�10% of the cases);

and (iii) the machine failed to recognize the correct admitted hospital field mentioned in the report or did

not recognize this element at all (�5% of the cases).

The machine-extracted information could also be used to determine the epidemiological characteristics of

COVID-19 with close-to-human-coding precision. For example, we used the date of the symptom onset

field to compute the real-time reproduction (Rt) number. From January 8 to February 26 2020, the distribu-

tion of Rt values calculated by human coding and machine extraction remains consistent. We also calcu-

lated the R-square value and root-mean-square error (RMSE) for these two groups of numerical distribu-

tions (Figure 6). The results demonstrated high consistency between the two distributions, which

Figure 5. Cross-validation with manually extracted named entities

(A) The fuzzy matching method (highlighted in yellow) is used to compute the matching rate, where the term ‘‘label

mapping’’ indicates the projection of the named entities obtained from our CCIE into the readable fields, ‘‘remove

duplicate’’ indicates the removal of duplicate values for the same data field, and ‘‘date formatting’’ indicates the

calibration of the date fields identified from our CCIE into the regular format of ‘‘xx (month) xx-day, xx year.’’

(B) The accuracy of the eleven data fields identified using our CCIE algorithm as compared to the gold-standard results

obtained by manual human coding; the mean value is obtained by averaging the accuracy of all data fields.
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showed that the field extracted by the machine yields a result that is comparable to that obtained through

human encoding in the calculation of the Rt index.

Details of the online system

We provided an online system (http://covid19.caseassistant.top) to help extract structured data fields from

open-access COVID-19 case reports. The system can automatically extract the activity trajectory (e.g.,

places of departure, transit, and destination), infection cycle (such as dates of arrival, symptom onset,

quarantine, hospitalization, and confirmation), and the admitted hospital of infected patients. We orga-

nized the location fields extracted from an infection case into a timeline based on temporal logic to allow

researchers to more intuitively grasp the activity trajectory of infected patients. We also added a geograph-

ical analysis module of infection cases to the system—which can count the high incidence areas of

COVID-19 according to the location of the infected person—to analyze the geographical distribution of

disease transmission in a targeted manner. The system exhibits high scalability and can satisfy the deploy-

ment of both GPU and CPU environments simultaneously. The average processing speed for the GPU is five

seconds per case, while that for the CPU is approximately ten seconds per case.

DISCUSSION

The epidemiological analysis of community transmission is vital for formulating public health interventions

against COVID-19 (Byambasuren et al., 2020; Whaiduzzaman et al., 2020). This is critical for clarifying the

host selection and physiological mechanism of COVID-19, as it allows us to obtain essential content,

such as the gathering behavior and activity trajectory for the massive infection cases. To facilitate the auto-

matic extraction of epidemiological information from open-access COVID-19 case reports, we first pro-

posed a refined annotation strategy using the available human coding and then developed an information

extraction framework that incorporates multiple deep neural networks to perform the named-entity recog-

nition and text classification tasks. The accuracy of our CCIE framework is very high (>80%), which outper-

forms several state-of-the-art models such as Transformer (Vaswani et al., 2017), LSTM (Zhou et al., 2016),

Lattice (Zhang and Yang, 2018), and TENER (Yan et al., 2019). In particular, our method reduces, on average,

around 80% of the labor (about 20 annotators), who work on the manual coding of raw case reports written

in natural language; in addition, the machine-extracted data fields are able to correct some fields that were

incorrectly coded by humans, such as the inconsistency in the word segments extracted for admitted

hospital.

To ease the implementation of our framework, we provided an online system that can be accessed

through this website: http://covid19.caseassistant.top. This system allows users to extract all 17 data
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Figure 6. Confluence between the real-time reproduction number (Rt) estimated using data fields of symptom

onset date identified from our CCIE and that estimated using gold-standard data produced through manual

human coding

The analysis used COVID-19 cases with symptom onset occurring between January 8 and February 26 2020. The Rt was

estimated using a ready-to-use tool (Cori et al., 2013), which was implemented in popular software including Microsoft

Excel. To quantify the accuracy of the CCIE with regard to estimating Rt, the inset panel shows the R-square and the root-

mean-square error (RMSE) for the time series of Rt, which was estimated using two data-extraction methods.
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fields analyzed in our study from their respective case reports. This serves as a preliminary step in the

automatic information extraction of epidemiology survey reports and is expected to benefit the wider

research community.

Our system automatically extracts key epidemiological information, including demographics, travel his-

tory, contact scenarios, and epidemiology timeline information, from the open-access case reports and

has great potential to accelerate COVID-19 research. Although we only focus on the case reports written

in Chinese here, our CCIE framework can be easily adapted for other languages. This is because our

annotation strategy can be used for case reports written in different language styles, and we can easily

change the pretrained language model used for Chinese to the most suitable models for a different

language.

However, caution is needed when attempting to apply our framework to other situations. This may require a

clear understanding of the background information. For example, raw case reports might contain a sen-

tence like ‘‘the patient showed symptom on January 25 and was sent to hospital on 26.’’ Our algorithm

will not be able to extract ‘‘January 26’’ as the ‘‘hospitalization date’’, because of the lack of indication

that the number 26 actually denotes the calendar date. Same problemmay exist when extracting the ‘‘hos-

pitalization date’’ and ‘‘confirmation date’’. Although our framework can extract the ‘‘admitted hospital’’

from case reports, it may identify an improper hospital if some patient transferred amongmultiple hospitals

before the final admission. Nonetheless, these problems can be resolved with a more comprehensive

annotation strategy, such as with additional definitions of the attributes and relations to describe the rela-

tionship between words (Brat nlplab, 2020).

Therefore, we call for standardization of the case reporting format and propose additional questions

that should be asked in epidemiology surveys (Table S3), covering travel history and social (contact)

behaviors. In particular, we distinguish the respondents based on whether they belong to returning

home from abroad, which dissolves the information diversion in the case release. The content

involved in the questionnaire refers to the publicly released report without any personal privacy, and

our design makes it closer to the format that the NLP algorithm can directly handle. Compared to

the traditional epidemiological questionnaire (Beijing Preventive Medicine Association, 2020), our de-

signed questionnaire focuses on the trajectory of the infected person and the exact dates, which

compensate for the information absence of infection cases. In addition, the questions and options of

this questionnaire are fault-tolerant to a certain extent, which can accommodate the respondents’ under-

standing of specific questions. Thereby, it effectively reduces the difficulty of information processing

after the data collection.

Rapid COVID-19 linelist data curation and sharing have been emphasized by public health organizations

and research institutions from the start of the COVID-19 pandemic (Moorthy et al., 2020). Although there

are exemplar communities (GlobalHealth, 2022) hosting data repositories, the lack of structure hinders

data processing at a large scale (Gardner et al., 2021). The raw COVID-19 linelist data from official

case reports is unstructured data with application limitations. Analysis of such unstructured data is

very complicated and slow. Although deep learning models have a great potential for learning the com-

plex rules underlying the case reports, there is no study trying to extract structural fields from raw

COVID-19 case reports. Our work contributes to automated data extraction and can be easily extended

to data structured processing of publicly available unstructured data, which is attributed to the flexibility

of neural network models. Making these data easy to use can not only mobilize interested researchers

but also saves their effort in going through lengthy ethical review process before obtaining data for their

studies. What’s more, our work will continuously serve for curating the new COVID-19 case reports of

mainland China.

Ethical approval for this study was provided by the Ethics Committee of Dalian University of

Technology (Approval code: DUTIEE220615_01). During the data collection process, we followed the

usage guidelines of the data publishing platform and utilized the collected data only for scientific research;

further, the data were obtained with the consent of all participants. In the data processing stage,

we sincerely considered the ethical decision making of regulatory bodies, strictly abided by ethical

regulations to protect all private information in the data, and established an external advisory

committee to supervise the data processing activity. However, we have to admit that, when disseminating
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the data and technology, there will be challenges of information leakage and technology abuse. There-

fore, we will strive to improve the security of the information, control the motivations for the continued

use of technology, and improve the timeliness of decision feedback. We will design a more complete

registration mechanism to take into account the motivation of the platform users. When publishing the

data, the anonymized information in the data to be disclosed will be strictly screened to protect data

privacy.

Limitations of the study

We implement automatic extraction of information from COVID-19 case reports using natural language

processing techniques. Such a technical solution currently cannot fully identify specialized information

that requires background knowledge and reasoning. Although we have adopted the optimal system

deployment scheme and privacy protection mechanism, the operating efficiency of online systems under

different network environments and hardware configurations is still unclear.
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KEY RESOURCES TABLE

RESOURCE AVAILABILITY

Lead contact

Further information and request should be directed to the lead contact, Yuanyuan Sun (syuan@dlut.edu.

cn).

Materials availability

This study did not generate new unique reagents.

Data and code availability

Data reported in this paper will be shared by the lead contact upon request. All interested investigators will

be allowed access to the COVID case reports once they register and pledge to not re-identify individuals or

share the data with a third party. The dataset that contains the annotated fields and categories of case re-

ports is obtainable upon request by contacting the corresponding authors. The code used in this study is

listed in key resources table and also available upon reasonable request from authors. Any additional in-

formation required to reanalyze the data reported in this paper is available from the lead contact upon

request.

METHOD DETAILS

Data preprocessing

We used the natural language case disclosure reports published in the dataset of Liu et al. (https://

abcdefg3381.github.io/COVID_19_China_case_reports/) and organized a team of a dozen graduate stu-

dents who have majored in computational communication or artificial intelligence to manually annotate

the case reports. Each case disclosure was encoded into 17 fields, including demographic information,

travel history, exposure to known infections, and timelines of case admission. These data fields correspond

to two NLP tasks: 11 named-entity recognition tasks and six text classification tasks.

The annotation process has three steps: manual annotation, calibration, and consistency inspection. The

manual annotation involves performing field-screening sentence by sentence and determining the field la-

bel based on the trigger words or their context. The calibration requires individuals who annotate the same

infection case exchange their annotation cases for inspection. Consistency inspection corrects the same

infection cases annotated by different individuals by using the machine program that screens for inconsis-

tent field labels and timely feedback to the annotators.

REAGENT or RESOURCE SOURCE IDENTIFIER

Deposited Data

COVID-19 case reports disclosure in natural language Liu et al. (Liu et al., 2021) https://abcdefg3381.github.io/COVID_19_China_

case_reports/

Other

Named Entity Recognition Baseline Model Lattice https://github.com/jiesutd/LatticeLSTM

Named Entity Recognition Baseline Model TENER https://github.com/fastnlp/TENER

Named Entity Recognition Baseline Model GraphNER https://github.com/D2KLab/GraphNER

Named Entity Recognition Baseline Model FLAT https://github.com/netless-io/flat

Text Classification Baseline Models Chinese Text Classification https://github.com/649453932/Chinese-Text-Classification-

Pytorch

Epidemic Record Extraction System CCIE System http://covid19.caseassistant.top
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Annotation strategy

Named-entity recognition (Table S4)

We annotated 11 data fields for each case report, namely (1) age (AGE), (2) gender (GED), (3) departure

place (SL), (4) transit place (TL), (5) destination place (DL), (6) arrival dates (DT), (7) quarantine dates (IT),

(8) symptom onset dates (OnT), (9) hospitalization dates (TT), (10) confirmation dates (CT), and (11)

admitted hospital (TDH). For each named entity, we defined a group of trigger words, i.e., representative

words that can clearly indicate the field (e.g., ‘‘hospital’’ is the trigger word for the admitted hospital field).

We observed that themajor difference among the infection cases is the description granularity of the fields,

especially those related to location. Take the transit location of an infected person as an example: Some

infection cases are accurate to the level of ‘‘community,’’ while others are only recorded till the level of

‘‘city.’’ Thus, if the text contained multiple expressions belonging to the same data field, they were all

labeled under this field. We also added three additional labels (other location, other time, and other insti-

tution) in the annotation strategy. Though of little practical use, it is critical to associate the dates and pla-

ces with vague descriptions to these labels to decrease the possibility of the neural networks recognizing

the dates and places as incorrect entities.

We manually coded 1,200 case reports from the data of Liu et al. These samples were chosen by examining

the difference between their label distribution and that of the entire dataset. Specifically, a loss function

was defined and minimized:

Loss =
1

L

XL

i = 1

����Ni
gold � Ni

sample

���� (Equation 1)

Here, L = 11 is the total number of data fields;Ni
gold andNi

sample are the number of the i-th label in themanu-

ally coded data and the number of the i-th label in the sampled data, respectively.

Text classification (Table S5)

We annotated six categories for each case report: (i) the location (Place), (ii) event (Event), (iii) individuals

(Person) causing possible exposure, (iv) quarantine place (Isolate), (v) methods of detection (Discover),

and (vi) degree of clinical symptoms (Degree). We asked the human coders to group the expressions

with similar semantics into a predefined set of annotations. Among all categories, the ‘‘Event’’ data field

had the largest number of annotations (n = 8), whereas ‘‘Place’’ had the least number of annotations

(n = 3). We adopted text-matching techniques to assign labels to infection cases. We first constructed a

vocabulary for each category to capture all possible expressions and the corresponding annotations.

Then, we matched all the words in each case report with the vocabulary to determine the most relevant

category to which the case should belong. The first 10,000 case reports (i.e., from January 2 to March 4

2020) were annotated.

Structure of CCIE

The CCIE is a two-step framework (Figure 1B). First, the CCIE uses a pretrained language model with the

WWM (Cui et al., 2021) to encode case reports to convert each word (token), as well as the entire document,

to vector representations. Then, it finetunes the embeddings in downstream tasks. The named-entity-

recognition network comprises a Bi-LSTM network and a conditional-random-field (CRF) (Kadari et al.,

2017) layer for named-entity-recognition tasks. The text classification network is a fully connected neural

network used for text classification tasks.

The pretrained language model is a concatenation of a bidirectional transformer (Vaswani et al., 2017). The

objective function of this model can be expressed as follows:

Objective = Pðwi

��w1;.;w1;wi + 1;wi + 2;.;wnÞ (Equation 2)

where wi is each word in an infection case report.

The initial input of themodel is a set of infection record reports C = {c1, c2,., cM , where Cm represents the

m-th infection case, and m˛M Any infection case c can be represented as c = {w1, w2,.,wN} where wn is

the n-th word in the infection case, and n˛N. The input vectors Ei = fCword;Cseg;Cposgði ˛MÞ of the pre-

trained language model are the initial vectors of each infection record report ci, comprising the word

embedding Cword, segment embedding Cseg, and position embedding Cpos. The pretrained language

model uses a 12-layer transformer to learn the contextual information of the words in infection cases. The
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core component of the transformer is the multi-head attention mechanism, which can be calculated as

follows:

Q = En �WQ;K = En �WK ;V = En �WV

MulHeadðQ;K ;VÞ = concatðhd1;.;hdhÞWo (Equation 3)

where hdi = AttðQWQ
i ;KWK

i ;VW
V
i Þ and AttðQ;K ;VÞ = softmax

�
QKTffiffiffiffi

dk

p
�
V,Q;K ;V are the input embeddings

of the attention, representing the query vector, key vector, and value vector, respectively, and dk represents

the dimensions of the input vectors.

The pretrained languagemodel randomlymasks 15%words for encoding infection cases, and the objective

function calculates only the conditional probability of these 15% masked words. Of all the masked words,

10% are replaced with other words in infection cases, another 10% remain constant, and the remaining 80%

are replaced with the [mask] symbol. In the training phase, the pretrained languagemodel reduces the sen-

tence length to 128 words in 90% of the training periods to improve training efficiency and decrease time

consumption. In addition, the pretrained languagemodel can learn the features of long texts by adding the

task of predicting the next sentence. Therefore, the vector conversion for infection cases can be summa-

rized as follows:

Xn = Pre trainedðEn;qÞ (Equation 4)

where n˛N;E˛ℝdPre trained and q represents the parameters of the pretraining language model. When Xn

denotes the real-value embeddings corresponding to each word in infection cases, the output of the pre-

training language model is a word vector. When Xn assumes the real-value embeddings of the [CLS] start

symbol, the model’s output is the sentence vector.

The named-entity-recognition network comprises a Bi-LSTM layer and a CRF layer. It extracts structural in-

formation through sequence labeling. It identifies the entity in infection cases based on the word embed-

dings Xword
n obtained from the pretrained language model. Bi-LSTM is a recurrent neural network that can

learn the long-distance dependence among entities. The principle of Bi-LSTM is as follows:

in = s
�
WiX

word
n +Uihn� 1 +bi

�
fn = s

�
WfX

word
n +Uf hn� 1 +bf

�
~cn = tanh

�
WcX

word
n +Uchn� 1 +bc

�
on = s

�
WoX

word
n +U0hn� 1 +bo

�
cn = fn1cn� 1 + in +1~cn
hn = on+tanhðcnÞ

(Equation 5)

W and U are two trainable parameters, n˛N and N is the sentence length. The variables in; ðfn; ~cnÞ and on

indicate the input, forget and output gates, respectively. cn and hn indicate the cell-state and hidden-state

of Bi-LSTM.

Considering the correlation among the entities, CCIE adds a CRF layer behind LSTM, which takes hn as an

input to learn the probability distribution of the entity labels. For a given infection case set c = fc1;c2;.;

cNg, the probability of its label sequence y = fl1;l2;.;lNg can be calculated as follows:

PðyjcÞ =
exp

�P
n

�
Wln

CRFhn +bðln� 1 lnÞ
CRF

��
Pby exp

�P
n

�
Wln

CRFhn +bðln� 1 lnÞ
CRF

�� (Equation 6)

where y 0 = fl01; l02;.; l0Ng represents any possible label sequence, andWln
CRF and b

ðln�1; lnÞ
CRF are trainable param-

eters. Therefore, if there are M training samples fðci;yiÞgjNi = 1, then the loss function of the named-entity-

recognition network can be expressed as follows:

L = �
XN

logðPðyijciÞÞ (Equation 7)

ll
OPEN ACCESS

iScience 25, 105079, October 21, 2022 15

iScience
Article



The text classification network comprises a fully connected neural network. It aims to predict the true anno-

tation of the entire case report based on the sentence vector Xsentence
n obtained from the pretrained lan-

guage model. ForM given infection cases Si jMi = 1 and their annotations yijMi = 1, the loss function of text clas-

sification tasks network is calculated as follows:

PðyjsÞ = �
XM

i = 1
yðiÞ logby ðiÞ

+
�
1 � yðiÞ	log�1 � by ðiÞ	 (Equation 8)

where i represents thei-th report, by represents the annotation predicted by CCIE, and y represents the true

annotation of the infection case.

Model training

The samples used for model training and validation were collected only from officially released public case

reports. All the collected data was anonymized for the purpose of this study. The study protocol was re-

viewed and approved by the original data publisher.

For the training and evaluation of the CCIE framework, we adopted the traditional evaluation method of

deep-neural-network models, which divided the unified dataset into training, verification, and test sets.

The training set was used to train the model parameters, and the verification set was used to select the

best model. For the best model, the test set was used to evaluate themodel’s performance. The verification

set can be a part of the data separated from the training set, but the test data must never be considered in

the training process, which means that these data are completely invisible to the CCIE framework.

To recognize the entities, we used 80% of the annotated data for training, 10% for verification, and the re-

maining 10% for testing. In the training stage, we set the training period to 32 and the word embedding

dimensions to 768. We evaluated the label prediction performance in terms of precision (P), recall (R),

and F1 values (F); the formulations for these three evaluations are as follows:

P =
TP

TP + FP
;R +

TP

TP + FN
; F =

2,P,R

P +R
(Equation 9)

where TP indicates the number of correct predictions of positive samples, FP indicates the number of incor-

rect predictions of positive samples, and FN indicates the number of incorrect predictions of negative sam-

ples. The F value is the harmonic mean value of precision and recall. To obtain objective results, the exper-

iment was conducted three times on the dataset, and the results were then averaged to obtain the final

result.

For the training of the text classification network, we set the training period to 50 and the sentence embed-

ding dimensions to 768. We employed the weighted F value to evaluate CCIE, and the formulation is as

follows:

weighted F =
1

n

XK

i� 1
Fi,Wi (Equation 10)

where K represents the number of label types, Fi represents the F value of each category i, and W repre-

sents the weight matrix (the number of labels in each category is used as the weight).

Parameter setting

The main parameters of our CCIE are as follows: (i) The pretraining model is Roberta-WWM_ext_Large-12-

768 containing a 12-layers transformer, where Roberta is trained with theWWMmechanism. (ii) The named-

entity-recognition network contains BiLSTM and CRF. BiLSTM employs a two-layer neural network to

reduce the word embeddings to 300 dimensions. In the training stage, the number of training periods

was 40, and the batch size in each training iteration was 32. (iii) The text classification network is a fully con-

nected layer. In the training stage, the number of training periods was 50, and the batch size was set to 32 in

each period.

The main parameters used in baseline models for the named-entity-recognition task are as follows: (i) The

LSTM in Lattice (Zhang and Yang, 2018) uses one-layer architecture and 200 hidden units to compute word

embeddings. The learning rate is set to 0.015, and the dropout is set to 0.5. (ii) TENER (Yan et al., 2019)

employs two blocks of transformer architecture and four heads in the transformer. The training period is

set 50, and the batch size is set to 16 in each period. The learning rate is set to 7e-4, and the dropout is
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set to 0.15. (iii) GraphNER (Sui et al., 2019) adopts one graph convolution layer to encode case reports. The

training period is set to 5, and the batch size is set to 64 in each period. The learning rate is set to 5e-4, and

the dropout is set to 0.5. (iv) FLAT (Li et al., 2020) uses one block of transformer architecture and four heads

in the transformer. The training period is set to 100, and the batch is set to 10 in each period. The learning

rate is set to 6e-4, and the dropout is set to 0.5. These parameters are the optimal settings that are picked

from the source code published in the original literature.

The baseline methods used in the text classification task are reproduced from the GitHub library Chinese-

Text-Classification-Pytorch (Hu, 2020). Hence, we preserve the same parameters for these benchmarks to

conduct experiments. The main parameters are as follows: The dropout is set to 0.5, the padding size is set

to 32, the hidden unit is set to 1024, the number of transformer layers is set to 1, the learning rate is set to

5e-4, the dropout is set to 0.5, the training period is set to 20, and the batch size is set to 128 in each period.

GitHub entries for the source codes of the baseline methods are listed in the key resources table.

QUANTIFICATION AND STATISTICAL ANALYSIS

All experiments and evaluations were performed using a Linux system with a GPU (3090), a CPU of 48 cores,

and 128 GB of memory. The t-test was performed using the SPSS tool.

ADDITIONAL RESOURCES

The Epidemic Record Extraction System to help extract structured data fields from open-access COVID-19

case reports: http://covid19.caseassistant.top.
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