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Abstract

Proteins drive biochemical transformations by transitioning through distinct con-
formational states. Understanding these states is essential for modulating protein
function. Although X-ray crystallography has enabled revolutionary advances in
protein structure prediction by machine learning, this connection was made at
the level of atomic models, not the underlying data. This lack of connection
to crystallographic data limits the potential for further advances in both the
accuracy of protein structure prediction and the application of machine learn-
ing to experimental structure determination. Here, we present SFCalculator, a
differentiable pipeline that generates crystallographic observables from atom-
istic molecular structures with bulk solvent correction, bridging crystallographic
data and neural network-based molecular modeling. We validate SFCalculator
against conventional methods and demonstrate its utility by establishing three
important proof-of-concept applications. First, SFCalculator enables accurate
placement of molecular models relative to crystal lattices (known as phasing).
Second, SFCalculator enables the search of the latent space of generative models
for conformations that fit crystallographic data and are, therefore, also implic-
itly constrained by the information encoded by the model. Finally, SFCalculator
enables the use of crystallographic data during training of generative mod-
els, enabling these models to generate an ensemble of conformations consistent
with crystallographic data. SFCalculator, therefore, enables a new generation of
analytical paradigms integrating crystallographic data and machine learning.

Keywords: Protein Structure, Protein Dynamics, Generative Models, X-ray
crystallography, Structure Factors
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1 Introduction

Machine learning (ML) is making rapid strides in the prediction of biomolecular

structures and their conformational ensembles. Key capabilities include the ability to

predict structure from sequence with near-experimental accuracy[4, 30, 36], to design

practically viable structures from geometric or functional constraints[14, 19, 66], and

to predict ensembles of possible conformations given an initial structure[29, 35]. The

capability to generate credible conformations as a function of a sequence, sequence

alignment, or a latent variable overcomes some sampling limitations inherent in

stepwise Molecular Dynamics and Monte Carlo algorithms.

X-ray crystallography, on the other hand, has enabled experimental structure

determination for many biomolecules, including assemblies such as ribosomes, nucle-

osomes, and proteasomes, and a wealth of smaller systems such as enzymes, ion

channels, GPCRs, and kinases. Spurred on by powerful new X-ray Free Electron

Lasers[49, 61] and synchrotron beamlines[26, 58], X-ray crystallography has also begun

to enable visualization of the dynamics of proteins on timescales from femtoseconds

to seconds—for example visualizing enzyme catalysis[13, 60], photosynthesis[6], K+

ion channel permeation[34], and the first events in vision[24]—and across physical and

chemical conditions—for example enabling crystallographic screening of interactions

of drug targets with thousands of drug fragments[62].

Generative ML models and X-ray crystallographic data could be productively com-

bined to improve the accuracy of generative models, and the accuracy and throughput

of crystallographic structure determination. Recent work has taken important steps in

this direction. McCoy et al.[40] showed that AlphaFold models are often sufficiently

accurate to provide an initial solution to the crystallographic phase problem. Ter-

williger et al.[64] showed that by iteratively feeding intermediate structure refinement

models as templates into the AlphaFold module one can achieve higher-quality models.
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This iterative procedure is necessary, however, because there was no direct interface

between predictive models and crystallographic data.

Differentiable algorithms that integrate cryo-electron microscopy (cryo-EM) and

nuclear magnetic resonance (NMR) data with machine learning have significantly

accelerated structure determination, boosting both efficiency and throughput[33, 69].

Here, we introduce SFCalculator, a fast, differentiable likelihood-calculation tool that

connects structural models—complete with solvent corrections—to crystallographic

observables. SFCalculator is designed as a bridge between the rapidly evolving machine

learning ecosystem and crystallographic datasets, as illustrated in Fig. 1.

We validate SFCalculator by benchmarking it against conventional calculations

and demonstrate its utility through three examples. First, we show how SFCalculator

can be combined with a hierarchical grid search algorithm[68, 69] and gradient-based

optimization [32] to place a search model (here, an AlphaFold prediction, Figure 1a)

relative to a protein crystal lattice, a procedure known as molecular replacement

(Figure 1b). We then asked if the latent space of a pre-trained conformational gen-

erative model, the Boltzmann Generator [47], could serve as a search space to find

a protein conformation maximally consistent with experimental data (Figure 1c). By

doing so, we find that AlphaFold models can be refined to yield conformations with

excellent stereochemistry and fit to the data.

Finally, we show how SFCalculator can be used to train generative models on

crystallographic data, offering, at once, a perspective on the further improvement of

generative models, and a principled strategy for tackling the crystallography inverse

problem: inference of conformational ensembles that exhibit both strong data fit

and favorable physical energies. These approaches naturally incorporate constraints

encoded in the generative model design, potentially obviating the need for explicit

physical restraints[25, 44] during refinement.
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2 Results

SFCalculator provides a fast and differentiable interface

SFCalculator relates atomic models of protein structure to the primary crystallo-

graphic observables. Specifically, X-ray scattering methods measure the amplitudes

of the Fourier components (structure factors) of the electron density of a sample.

SFCalculator, likewise, provides access to the Fourier components of the electrostatic

potential map and thus, in principle, supports electron scattering methods like cryo-

electron microscopy and electron diffraction—we will address this further in future

work.

The electron density of a protein crystal includes contributions from both macro-

molecular atoms and the surrounding solvent. The disordered solvent component is

particularly significant in low-resolution data. A widely implemented approach for

modeling this solvent contribution is the bulk-solvent model, which presumes a uni-

form solvent density in all regions not occupied by the atomic structure. A more refined

variant, known as the probe-shrink model[28], permits variations in solvent density

within a boundary region at the interface between the solvent and macromolecule

to account for the ordered hydration layer. This model has become the default in

contemporary crystallographic refinement programs[3, 45].

Despite its utility, the discretization and rounding operations inherent in this

approach hinder differentiability, thereby precluding the simultaneous optimization

of the macromolecular and bulk-solvent components during refinement. To address

this, Fenn et al.[18] introduced a differentiable algorithm that smooths the solvent

boundary using Gaussian or polynomial functions. However, this method is computa-

tionally intensitve and relies on Babinet’s principle[43], neglecting the influence of the

hydration layer. In SFCalculator, we have designed algorithms to ensure that both

contributions are incorporated in a fast and differentiable manner, as illustrated in
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Fig.2 (a). We adopt the direct summation method for the macromolecular contribution

and a cutoff-sigmoid approximation of the solvent mask (see Methods). To assess the

accuracy and performance of SFCalculator, we first performed a rigorous comparison

with the widely used software PHENIX [3]. For a comprehensive evaluation, the com-

parison was conducted across a large sample of PDB entries (N=868), covering data

resolutions from 0.8 to 3.0 Å, various spacegroups, and a range of molecular sizes (see

Fig. A1). The results demonstrate strong agreement with PHENIX across key metrics,

while showcasing the computational efficiency and scalability of SFCalculator.

A comparative analysis of solvent masks was performed between the probe-shrink

method[28], the default in PHENIX, and the differentiable solvent mask generated by

SFCalculator. Fig. 2(b) presents slice views of the probe-shrink mask, as comparison

to our differentiable mask slice in Fig. 2(a). While the overall shapes of the two masks

closely agree, notable differences are evident in the boundary regions. The probe-

shrink method provides more nuanced details in these areas, primarily due to its

”shrink” step, which excludes the hydration layer surrounding the macromolecule. This

adjustment is crucial, as solvent molecules in the hydration layer are often ordered

and are not adequately represented by a flat solvent model.

To assess the agreement between structure factors generated by SFCalculator and

PHENIX, we calculated their correlation. For the protein component, SFCalculator

shows perfect correlation with PHENIX (Fig. 2c), demonstrating the accuracy of its

calculations. For the solvent component (Fig. 2d), high correlations are observed at low

resolutions (high Å values) with less correlation at high resolutions due to differences

in handling of the protein-solvent boundary.

We further compared the quality of structure factors calculated for the same

deposited models by SFCalculator and PHENIX, using the cross-validation metric

Rfree to relate structure factors calculated by both to the data (see Methods). Overall,
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SFCalculator achieves high consistency, with discrepancies primarily for dataset/-

model combinations with high Rfree (Fig. 2e). These discrepancies are primarily due

to the larger contribution of solvent at low resolution, where differences between

the solvent models of SFCalculator and PHENIX become more pronounced. Despite

these differences, SFCalculator maintains robust performance across a wide range of

resolutions.

SFCalculator is computationally efficient. In performance tests comparing forward

and backward computations, SFCalculator achieved speeds 50–200 times faster than

PHENIX’s phenix.fmodel (Fig. 2f), which operates exclusively on CPUs. This large

performance gain derives from the ability of GPUs to leverage parallel processing and

the differentiable backends integrated into SFCalculator.

We further evaluated the memory efficiency of SFCalculator (Fig. 2g). We find that

SFCalculator can handle proteins with approximately 1000 residues at a resolution

of 2 Å (PDB id: 4PKF) on a single Nvidia A100 80GB GPU. Handling even larger

systems can be achieved by further partitioning certain bottleneck operations that

involve large matrices with NHKL × Natoms elements. This scalability underscores

the potential for large-scale applications in structural biology, making SFCalculator a

valuable tool for analyzing complex macromolecular systems.

Taken together, these results establish the accuracy, efficiency, and scalability

of SFCalculator, positioning it as a promising complement to established tools like

PHENIX, for workflows requiring high throughput and differentiability.

SFCalculator Enables Efficient Molecular Replacement

As a first test of SFCalculator’s potential to facilitate crystallographic data process-

ing, we used it to implement a simple molecular replacement (MR) algorithm. MR

is used in crystallography to find an initial, approximate solution to the phase prob-

lem and is practically useful when the target molecule shares structural similarity
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with a previously solved model. With the advent of highly successful protein structure

prediction algorithms, many targets that were previously challenging or intractable–

—particularly those involving novel folds—–can now be readily solved using MR

[5, 31, 40, 42]. The immediate goal of MR is to establish the position and orienta-

tion of a protein relative to the crystal lattice—inherently, a 6-dimensional search.

MR has been extensively studied, resulting in the development of several efficient

programs[23, 39, 41] based on a decomposition of the 6D search into subsequent

rotational and translational searches, comparing observed and calculated Patterson

functions as proposed by Rossmann and Blow [56]. Our implementation follows the

same principles but incorporates a hierarchical rotational grid constructed using Hopf

Fibration [68, 69] (see Methods).

We illustrate molecular replacement using SFCalculator using a crystallographic

dataset of the inverting cellulase PcCel45A, a fungal endoglucanase (PDB id: 3X2I)

with a “Newton’s cradle proton relay mechanism in its active site[46]. This enzyme

crystallizes in an orthorhombic space group, P212121, with symmetry-related hydro-

lase molecules within the unit cell. Each molecule represents a distinct ground-truth

solutions for the pose search (Fig. 3 a).

The molecular replacement procedure begins with an initial model generated by

AlphaFold2. Due to the random pose assignment of the predicted model, the starting

Rfree is extremely poor (0.659), as shown in Fig. 3 b, as is the Root-Mean-Square

Deviation (R.M.S.D.) between the initial pose and any of the four ground-truth poses,

ranging from 17.0 to 24.9 Å (Fig. 3c).

To find an approximate pose, we then employed a hierarchical grid search in decou-

pled rotation and translation spaces. This search identified a poses similar to one of

the ground-truth poses (specifically, the pink copy), resulting in an R.M.S.D. of 1.12

Å and Rfree of 0.509 (Fig. 3d). Subsequent gradient descent, relying on autodifferen-

tiation enabled by SFCalculator, strongly improves R.M.S.D., to 0.51Å, and Rfree, to
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0.416, as shown in Fig. 3e. It is remarkable that, even after multiple rounds of hierar-

chical grid search—–with the final round featuring a 0.95 degree step for rotation and

0.75 Å step for translation, gradient descent can still achieve such large improvements

just by improving pose. This observation highlights a key limitation of hierarchical

grid search: sensitivity to the initial candidates. If the initial base grid is not suffi-

ciently fine, the search is prone to converging on local minima. As the computational

cost of increased grid resolution scales cubically in step size, finer grids are impractical,

underscoring the value of the final gradient descent step.

SFCalculator Enables Structure Refinement Using Generative

Models

Initial structural models of a protein for an experimental condition of interest are

often fraught with inaccuracies–—errors that can obscure critical details of molecular

mechanisms. Structure refinement addresses this by optimizing structural parameters

such as atomic positions and atomic displacement factors (e.g., B factors). Structure

refinement using experimental data generally faces two fundamental obstacles. First,

experimental data rarely suffice to yield physically accurate models without the use of

additional stereochemical information on, e.g. bond lengths, angles, and preferred side

chain orientations, during model building. Second, the energy landscapes of proteins

are extremely high-dimensional and ’rugged’, with many local minima separated by

barriers.

Current approaches to structure refinement typically address the need to include

stereochemical information by combining a data term with explicit restraint terms

in the overall objective function to be minimized. These restraints can be derived

from high-resolution protein and small-molecule crystal structures[25], quantum

calculations[38], or molecular mechanics forcefields [27][9][44]. Efficient navigation of
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conformational landscapes is typically achieved through a heuristic combination of

different sampling and gradient-descent steps using several model representations [3].

We reasoned that conformational generative models could help address both major

obstacles by enabling alternative approaches to protein structure refinement. Gener-

ative models are often trained to transform coordinates from internal ”latent-space”

representations with relatively simple properties (e.g., following a Gaussian distribu-

tion) to complex real-world representations (e.g., protein atomic structures). As such,

their latent spaces might be more readily traversed during structure refinement than

traditional coordinate representation spaces, while their coordinate transforms may

have learned to account for protein physics, enabling optimization of model fit to

experimental data (a likelihood function) without the use of explicit constraints or

restraints on conformations.

SFCalculator makes it possible to test this idea by providing a fully

(auto)differentiable link between models and experimental likelihood evaluations. To

do so, we adopted the normalizing flow architecture[15, 50] as the foundational frame-

work for our model, building on the Boltzmann Generator approach pioneered by Noé

and colleagues[47]. In this approach, we learn a transformation x = Tθ(z), from latent

variable z to protein coordinates x. z follows a smooth, easily sampled distribution,

such as a Gaussian (z ∼ µ(z) = N (0, I)). Under the change of variables formula, the

induced distribution in x-space can then be expressed as

qθ(x) = µz(z) |Rxz(z, θ)|−1
(1)

where Rzx represents the determinant of the Jacobian matrix of the transforma-

tion Tθ(z). The objective is to learn model parameters θ such that the variational

distribution qθ(x) approximates the true Boltzmann distribution of protein conforma-

tions. A key advantage of the normalizing flow framework is its inherently invertible

transformation design, which ensures compatibility with any initial structure model,
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allowing seamless integration without introducing deviations. The schematic architec-

ture is composed of several key blocks, which we describe with detail in Appendix

B.4.

We reimplemented the Boltzmann Generator of Noé et al., as depicted in

Fig. 4a, employing two complementary training objectives based on correspondence

with molecular dynamics (MD) snapshots and physical energy calculations for self-

generated snapshots, as described in Methods. We illustrate the results with the same

PcCel45A dataset used to illustrate Molecular Replacement. As intended, the gener-

ated samples displayed reasonable energies (Fig. 4c). We then froze the parameters θ

of the Boltzmann Generator.

Next, we examined whether the latent space of this generative model would

allow for efficient refinement of protein structure by unconstrained stochastic gradi-

ent optimization of the experimental data likelihood (see Methods) given the model,

as illustrated in Fig. 4b. Importantly, the differentiability of SFCalculator enables

gradient information to flow back, guiding the search in the latent space z.

The optimization trajectory is shown in Fig. 4d. Our method achieved a data fit,

measured by Rfree , similar to the model refined by PHENIX, while the molecular

mechanics energy from our refinement ( −4, 105 kT ) was significantly more reasonable

than that of the PHENIX-refined model (+6, 584 kT ). This difference primarily arises

from PHENIX’s use of a limited set of geometric restraints [25]. While effective, these

restraints do not accurately account for features such as atomic clashes, and hydrogen

bonding and electrostatic interactions.

In Fig 4e, we visualize the structural improvements achieved through our refine-

ment process, on both the protein backbone and side chains. These results validate

the utility of SFCalculator and demonstrate the potential of using deep generative

models for structural refinement.
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SFCalculator Enables Ensemble Refinement by Generative

Modeling

In the above example, we first trained a generative model and then used its latent

space as a search space to find a conformation that best accounted for the experimen-

tal data. SFCalculator also makes it possible to directly include crystallographic data

during training of generative models. Notably, of course, many conformational gener-

ative models, including AlphaFold [30], have been trained on atomic models derived

from crystallographic data, but none have been trained on the crystallographic data

themselves. As a first example of doing so, we include crystallographic data during

the training of a Boltzmann Generator in order to obtain conformational ensembles

consistent with crystallographic data. Training a generative model this way serves as

a form of ensemble refinement[10], yielding a variational approximation [55] of the

true posterior distribution of conformations of a protein consistent with physical prior

information and the crystallographic data.

As illustrated in Fig. 5a, the target distribution follows the unnormalized posterior

distribution:

p∗(x) ∝ p(x) · p (Fo | x, σF )

where p(x) represents the physical prior Boltzmann distribution, and p (Fo, | x, σF )

corresponds to the experimental likelihood of the observed structure factor amplitudes

Fo given the protein coordinates x, and measurement uncertainty σF . Once the nor-

malizing flow is trained, the model itself serves as an approximation of the posterior

distribution. Consequently, samples generated from the model can be interpreted as

effective results of ensemble refinement.

We evaluated this ensemble refinement approach on two systems: the hydrolase

PcCel45A used above, and the proline isomerase Cyclophilin A (CypA, PDB ID:
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3K0N). The results demonstrate the advantages of approximating the posterior dis-

tribution with flow-based generative models to achieve physically meaningful and

experimentally consistent conformational ensembles.

For the hydrolase, as shown in Fig. 5c, the flow ensemble models strikes a balance

between consistency with the data (Rwork/Rfree =0.278 / 0.301) and a more reason-

able MM energy E = -7,020 ± 177 kT . Further analysis of key residues highlights the

structural improvements achieved by flow-based ensemble refinement, as illustrated by

Fig. 5d for residues ALA29, GLY91, GLU117, and LYS124. When overlaid with elec-

tron density maps, the models refined by the flow ensemble show corrected backbone

and side chain conformations, providing good agreement with the experimental data.

We further tested the refinement method on Cyclophilin A (CypA, PDB ID:

3K0N), a system known for exhibiting an important network of alternative conforma-

tions of residues along its central beta sheet [20], including PHE113. The flow ensemble

successfully captures both conformational states of PHE113, as shown by the overlay

with the electron density map in Fig. 5e. Additionally, the torsion angle distribution

plot for χ1 and χ2 of PHE113 reveals the broader conformational diversity achieved

by the flow ensemble compared to other models. This demonstrates the ability of the

flow ensemble to capture diverse and physically meaningful conformational states.

3 Discussion

A defining strength of SFCalculator is its differentiability, which seamlessly connects

crystallographic data with machine learning models for protein structure generation.

This capability enables gradient-based optimization, allowing crystallographic observ-

ables to be integrated into end-to-end machine learning pipelines for joint refinement,

structural validation, and iterative model improvement. Its scalability ensures compat-

ibility with large datasets and high-throughput workflows, positioning SFCalculator
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as a critical bridge between traditional crystallographic methods and emerging com-

putational approaches. This integration accelerates advancements in protein structure

prediction and generation, which are addressing long-standing challenges in struc-

tural biology and opening new avenues for understanding molecular function and

interactions.

Despite advances in modern refinement algorithms, significant challenges remain,

particularly in automation. The rugged, non-convex optimization landscape of macro-

molecular refinement often leads algorithms to local minima. Overcoming this requires

careful initialization and iterative strategies, such as simulated annealing, to navi-

gate toward globally optimal solutions. However, automated methods still struggle

to replicate the nuanced, context-dependent decisions made during expert manual

inspection. Tasks like identifying alternative conformations or resolving ambiguities in

poorly defined regions often rely on visual intuition and expertise[11, 17]. This reliance

on manual intervention creates bottlenecks, limiting scalability for high-throughput

datasets and underscoring the need for more adaptive and automated algorithms.

The complexity of the optimization landscape is closely tied to its representation.

Transformations between coordinate systems, such as Cartesian and dihedral angles,

can affect landscape navigability without eliminating inherent barriers. Generative

modeling approaches in machine learning are designed to identify and exploit such

transformations[7, 15, 47], facilitating the principled incorporation of diverse prior

constraints. This makes the integration of generative models into refinement workflows

particularly promising.

Leveraging the differentiability of SFCalculator, we demonstrate proof-of-concept

applications that enhance the interpretation of crystallographic data within gener-

ative models of protein structure. By incorporating physical priors from molecular

mechanics force fields–—rather than relying solely on geometric constraints derived

from small-molecule statistics—–we establish a more physically grounded refinement
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framework. The combination of SFCalculator with deep generative models also enables

rigorous variational inference, producing conformational ensembles that not only

fit the experimental data but also maintain favorable physical energies. This syn-

ergy underscores the potential of integrating machine learning with crystallographic

refinement to drive progress in structural biology.

Refinement of atomic displacement parameters

While the present work focuses on conformational refinement, two critical aspects

of structural refinement remain unaddressed: the refinement of atomic displacement

parameters (ADPs) and the placement of ordered solvent molecules, both of which are

known to significantly impact model quality[3].

For ADP refinement in the guided search approach, we adopted a straightforward

strategy: the ADPs from the PHENIX-refined model were copied and kept unchanged

throughout the search. This ensures a fair comparison of Rfree metrics between the

methods. In the ensemble refinement approach, all ADPs were uniformly set to a

small value of 5.0 Å2, encouraging conformational exploration without biasing the

refinement toward any particular set of displacement parameters. While gradient-

based optimization of B-factors is straightforward to implement using SFCalculator,

preliminary trials showed that refining ADPs led to negligible improvements in the

final metrics. This suggests that further investigation and more comprehensive testing

are required to better understand and optimize ADP refinement within this framework.

A better differentiable solvent model

The performed benchmarks revealed differences between the differentiable solvent

mask implemented in SFCalculator and the Probe-Shrink method, particularly in the

boundary regions. The Probe-Shrink method employs a non-differentiable ”shrink”

step which appears to better account for the hydration layer surrounding the macro-

molecule. This adjustment is essential, as solvent molecules within the hydration layer
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are often ordered and cannot be adequately modeled using a flat solvent approxi-

mation. As a result, SFCalculator yielded slightly higher Rfree values compared to

PHENIX in scenarios where solvent contributions were prominent, especially at lower

resolution. Importantly, as well, our comparisons with PHENIX were based on mod-

els without explicitly modeled solvent molecules because the generative models used

here do not generate ordered solvent molecules.

These observations emphasize the necessity for a more advanced differentiable

solvent model. Potential avenues for improvement include the development of differen-

tiable morphological operations or the integration of a data-driven pre-trained masking

approach, both of which could leverage the inherent differentiability of SFCalculator

framework to enhance accuracy and performance.

The placement of ordered solvent molecules presents a further challenge, par-

ticularly when MD-based generative models, due to the stringent requirements of

molecular topology. However, the differentiable nature of SFCalculator offers a promis-

ing avenue for addressing this issue as well. It could enable the development of a

solvent placement model conditioned on both the structural model and experimental

observables. Such a predictive approach would represent a desirable solution to the

problem, leveraging gradient information to integrate solvent modeling seamlessly into

the refinement process.

Sensitivity to training scheme and mode collapse

The training process for current normalizing flow models can be particularly chal-

lenging, especially when incorporating objectives which involve the reverse Kullback-

Leibler (KL) divergence. While forward KL-divergence encourages the learned

distribution to be mass-covering, reverse KL-divergence drives the model to be mode-

seeking. This tendency towards mode-seeking often results in mode collapse, where
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the learned distribution focuses on a narrow subset of the target distribution, neglect-

ing other regions. To mitigate this issue, we used careful scheduling of the weights

between these two objectives to balance mass-covering and mode-seeking behaviors,

complicating the training process and limiting scalability. We emphasize that SFCal-

culator can be combined with any differentiable generative model and anticipate that

these limitations will be overcome by the next generation of generative models.
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4 Methods

Structure factor from protein molecules, Fprotein

We adopt the direct summation method for the macromolecular part contribution.

As the Fourier transform is linear, the overall contribution from the whole molecule

equals to the summation of all atoms[57]:

Fprotein (⃗h) =
∑
G

∑
j

Oj · fh⃗,j ·DWF(⃗h) · exp
[
2πi⃗h ·

(
RGx⃗j + T⃗G

)]
(2)

where G is the index of symmetry operations (appearing as rotation matrix R⃗G

and translation vector T⃗G given the space group; j is the atom index, Oj is occupancy

and x⃗j is the fractional coordinates of atom j; h⃗ is the Miller index, fh⃗,j is the atomic

scattering factor for the atom type of atom j, and DWF(⃗h) is the Debye-Waller factor.

The atomic scattering functions are approximated with the nine-parameter Gaus-

sian summation[12], which is used in nearly all protein crystallography programs to

compute the wavelength-independent atomic scattering factor (or atomic form factor)

fS as a function of the scattering angle θ :

fS =

4∑
i=1

ai exp
(
−bi|S|2/4

)
+ c =

4∑
i=1

ai exp
(
−bi(sin θ/λ)2

)
+ c

Here, ai, bi, and c are the Cromer-Mann coefficients. These coefficients are tab-

ulated in the International Tables for Crystallography[53] In SFCalculator, atomic

structure factor coefficients are accessed through GEMMI[67]. Additionally, to han-

dle cryo-EM datasets, SFCalculator supports a ”cryoem” mode in which the atomic

structure factors are calculated using electron scattering factors parameterized as five

Gaussians[53].

The Debye-Waller factor accounts for atomic displacement caused by thermal

vibrations or structural disorder which results in slight positional variations of atoms

within each unit cell, leading to additional phase differences. In crystallography, this
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effect is commonly parameterized as the B-factor. In isotropic case, the DWF becomes

a standard Gaussian B-factor exponential:

DWFiso (⃗h) = exp
[
−Biso (sin θ/λ)2

]
In the anisotropic case, the displacement is usually parameterized with a symmetric

matrix Uw, transforming the DWF into:

DWFaniso (⃗h) = exp
(
−2π2h⃗TU∗h⃗

)
, U∗ = O−1Uw

(
O−1

)T
where O−1 is the deorthogoniazation matrix of the unit cell. SFCalculator is able

to handle both isotropic and anisotropic parametrizations.

Differentiable bulk solvent contribution Fsolvent

Calculating the solvent mask in a differentiable manner is a non-trivial task. The

widely used probe-shrink method generates the solvent mask in a semi-localized

way[28], utilizing van der Waals atomic radii r along with two parameters, rprobe

and rshrink . While this approach achieves good agreement with experimental data,

it involves non-differentiable operations such as rounding for discretization. Here, we

propose an algorithm to approximate the solvent mask in a differentiable manner, as

illustrated in Fig. 2a.

Algorithm 1 Differentiable solvent mask approximation

Require: Fprotein

FP1 ← expand to P1(Fprotein, dmin) ▷ Apply symmetry operations and low pass
filter
G← reciprocal grid(FP1, grid size) ▷ Assign value to reciprocal grid
g ← real(fft3d(G)) ▷ Fourier transform for real space grid with density
g∗ ← (g −mean(g))/std(g) ▷ Normalize the density
δ ← quantile(g∗, solvent percentage) ▷ Get the solvent density cutoff
gs ← sigmoid((δ − g∗) ∗ scale) ▷ Get solvent mask density grid
Gs ← ifft3d(gs) ▷ Get reciprocal grid for solvent mask
Fsolvent ← assign value(Gs, d

′
min) ▷ Apply low pass filter
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The complex protein structure Fprotein, calculated as described earlier, is first

subjected to a Fourier transform to generate a protein density map. Subsequently,

a sigmoid operation is applied after subtracting the density cutoff to produce a

binary-like solvent mask map. This map is then processed through an inverse Fourier

transform to calculate the structure factors contributed by the bulk solvent. It is

important to note that two low-pass filters are applied in conjunction with the Fourier

and inverse Fourier transforms to suppress high-frequency noise in the solvent mask

map. Resolution cutoff d′min in the inverse Fourier transform is set as 3Å to be con-

sistent with PHENIX default. This operation is conceptually aligned with the solvent

flatness constraints previously proposed[59].

The algorithm incorporates three key hyperparameters: the low-pass filter cutoff

dmin, the solvent percentage, and the sigmoid scale. The methodology for determining

these hyperparameters and the impact of their adjustments on the performance of

SFCalculator are included in Appendix B.2.

Scaling

After obtaining the two contributing components, Fprotein and Fsolvent , additional

parameters are introduced to scale the bulk-solvent model and align it with the experi-

mental observables for accurate target function calculation. The scaling parameters in

SFCalculator are initialized following the strategies outlined in [2], with enhancements

achieved through gradient descent-based optimization.

The total model structure factor is defined as:

F(s)
c = k

(s)
iso · exp(−2πS

TU
(s)
anisoS) · (Fprotein + k

(s)
mask · Fsolvent ) (3)

where the k
(s)
iso, U

(s)
aniso and k

(s)
mask are scaling parameters in each resolution bin. The

purpose of binning is to group data with common features, enabling each group to be

characterized by a shared set of parameters. In this context, the primary parameter is

19

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted January 19, 2025. ; https://doi.org/10.1101/2025.01.12.632630doi: bioRxiv preprint 

https://doi.org/10.1101/2025.01.12.632630
http://creativecommons.org/licenses/by-nc-nd/4.0/


the resolution d of reflections. SFCalculator employs a binning scheme that divides the

resolution range uniformly on a logarithmic scale, ln(d) [65]. This approach ensures

that higher-resolution bins contain more reflections than lower-resolution bins, while

allowing for finer binning at low resolution without increasing the total number of bins.

As highlighted in [2], the dependence of scale factors on resolution is approximately

exponential. By using logarithmic binning, the variation of scale factors between bins

is rendered more uniform, enhancing the algorithm’s effectiveness.

The scaling parameters are ideally determined by minimizing the following least-

square residues:

LS =
∑

(Fobs − |Fc|)2 , (4)

To achieve fast and reliable convergence, we employ the root-finding and linear

system-solving methods proposed in [2] to initialize the scaling parameters. Details

of these algorithms are provided in the Appendix B.3. Following this initialization,

we leverage the autodifferentiation back-end of our SFCalculator implementation to

perform a few steps of gradient descent-based optimization, using either the ADAM

optimizer[32] or L-BFGS[37]. This process minimizes the target function (Equation 4)

to compute the final scaling parameters.

Molecular Replacement

The goal of molecular replacement is to determine the optimal rotation and trans-

lation of a molecule to best align with the experimental observables. Performing a

full six-dimensional search, however, is computationally prohibitive. By decomposing

the rotation and translation searches, the number of evaluations can be significantly

reduced. Hierarchical grid search[68, 69] allows for additional efficiency gains.

Our molecular replacement method begins with a rapid packing score (see

Appendix B.1) search performed on a coarse grid of center-of-mass (COM) positions
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within the asymmetric unit, using a random initial pose. This step identifies a can-

didate COM with the lowest clash score. The selected COM, in combination with

the initial random rotation, is then used to construct an initial model and determine

the scale factors. The identified COM is subsequently carried forward to the rota-

tion search phase. It is important to note that the following hierarchical grid search

remains indispensable despite the availability of a fully differentiable backend capable

of gradient-based optimization. This necessity arises from the highly rugged landscape

of the target function, which limits the radius of convergence for gradient descent.

Therefore, identifying a suboptimal candidate through the hierarchical search is a crit-

ical prerequisite. The next phase involves a rotation search on a hierarchical SO(3)

grid, leveraging Patterson functions to determine a suboptimal rotation matrix. This

matrix is then utilized in a hierarchical translation search, which identifies a subop-

timal translation vector. The pipeline culminates in a gradient descent optimization

step, refining the pose to achieve the final solution.

Hierarchical rotation search

The decomposition of the rotation and translation search is achieved using Patterson

functions [56]. The Patterson function is defined as the autocorrelation of the electron

density, effectively representing a map of interatomic distance vectors:

P (u) =

∫
R

ρ(r)ρ(r+ u)dr

Leveraging the convolution theorem, the Patterson map can be expressed as the

Fourier transform of the squared magnitudes of the structure factors, which are derived

directly from experimental data:

P (u, v, w) =
2

V

+∞∑
h=0

+∞∑
k=−∞

+∞∑
l=−∞

F 2
h cos 2π(hu+ kv + lw) (5)
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Algorithm 2 Hierarchical Rotation Search

procedure OPTΦ(P o
u , X) ▷ Find the suboptimal rotation given a model

Nround ← 5, Ncandi ← 40
Φ← SO(3)× R2 grid at base resolution
for iter = 1 . . . Nround do

for ϕi ∈ Φ do
Fc(ϕi)← SFCalculator(X, ϕi)
Srot(ϕi)← PearsonR(P o

u , Pu(Fc(ϕi))
end for
Sort Φ by Srot(ϕi) in descending order
Φtop ← {ϕ1, ϕ2, . . . , ϕNcandi

} ▷ Select top N candidates based on Srot(ϕi)
ϕ∗ ← argmax(Srot(ϕi))
Φnew ← {}
for ϕi ∈ Φtop do

Φnew ← Φnew ∪ SUBDIVIDE(ϕi)
end for
Φ← Φnew

end for
return ϕ∗

end procedure

As the autocorrelation of the electron density, the Patterson map inherently

captures the interatomic features of the system. Specifically, by focusing on an appro-

priate range of Patterson vectors that primarily represent intramolecular pairwise

distance features, the map becomes relatively insensitive to translational changes.

Consequently, using the Patterson function as the target allows for the decomposition

of the rotational and translational searches, significantly simplifying the molecular

replacement process.

In practice, we use the following correlation function as the scoring function for

hierarchical rotation search:

Srot = PearsonR(Po
u,P

c
u) (6)

where P o
u is the Patterson function calculated using experimental structure factor

amplitudes [57], while P c
u is the Patterson function calculated using the structure

factor amplitudes of candidate models.
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For the hierarchical grid search, we adopted the uniform multiresolution grids on

SO(3) as described in[68], utilizing the Healpix [21] grid for the sphere and the Hopf

fibration to uniformly lift the grid to SO(3). This approach is consistent with the

method used in cryoDRGN[69]. The base grid on SO(3) consists of 576 orientations,

with a spacing of 30◦. In each iteration, the 40 grids with the highest Srot-scores are

selected and further subdivided into higher-resolution neighboring grids, with each grid

generating 8 neighbors. Typically, five rounds of refinement are performed, culminating

in a final orientation resolution of 0.92 degrees. This hierarchical approach requires

a total of 1,856 evaluations, significantly fewer than the brute-force search involving

36,864 rotations at a spacing of 7.5◦, while achieving a much finer rotation spacing.

Hierarchical translation search

The concept of the hierarchical translation search mirrors that of the hierarchical

rotation search, with the primary difference being that the subdivision of grids is per-

formed in fractional coordinates using interpolation. At each level, each grid point

generates 33− 1 = 26 neighboring grids in the next level. Additionally, since a subop-

timal rotation matrix has already been determined from the preceding search, there is

no need to rely on a Patterson function-based scoring method. Instead, we utilize the

correlation of structure factor magnitudes, which reduces the computational cost by

avoiding the calculation of the Patterson function. The correlation is quantified using

the Pearson correlation coefficient between observed structure factor amplitudes, Fobs,

and structure factor amplitudes calculated from the model, Fc:

Strans = PearsonR (Fobs , Fc)

The translation search can still be computationally expensive, even with a hierar-

chical strategy, due to the size of the unit cell. However, one advantageous property of

crystallographic symmetry can significantly reduce the computational effort: the polar
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axis. The polar axis, present in specific space groups, is an axis along which transla-

tion operations do not affect the structure factor magnitudes. This means that any

point along the polar axis can be arbitrarily chosen as the origin, eliminating the need

to perform a search along that axis. SFCalculator implementation fully supports this

functionality, allowing for more efficient translation searches.

Gradient-Descent Rigid Body Refinement

Once the suboptimal rotation ϕ0 and translation v0 have been determined, we assume

that they lie within the radius of convergence for gradient descent. Gradient-based

optimization is then performed using the following target function:

ϕ′, v′ = argmin
ϕ′,v′

(Fobs − Fc (X,ϕ0 + ϕ′, v0 + v′))
2

σ2
Fobs

The optimal pose is subsequently defined as:

ϕ∗ = ϕ0 + ϕ′, v∗ = v0 + v′

For this optimization, rotations are parameterized as quaternions to facilitate

unconstrained optimization.

Crystallographic R factors

R factors are statistical metrics used in crystallography to assess the quality of a

structural model, calculated by comparing the model-predicted structure factors to

crystallographic data, with lower values indicating better agreement.

R =

∑
h |Fobs (h)− Fc (h)|∑

h |Fobs (h)|

Where h indicates triplets of so-called Miller indices that indicate the spatial fre-

quencies of the corresponding Fourier components. Typically, two separate R factors

are calculated during structure refinement: Rwork is calculated over Miller indices
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included in refinement, while Rfree is a cross-validation metric calculated using a

reserved subset of experimental data not used during refinement. A smaller gap

between Rwork and Rfree indicates less overfitting.

Training for physical prior embedded model

The physical prior is represented by the Boltzmann distribution, p(x) = e−E(x)/RT /Z

at temperature T , with R the universal gas constant; Z is the partition function. To

approximate the target distribution using our normalizing flow model, we utilize two

training objectives:

Lforward = KL [µX∥qX ] = −Ex∼µX
[logµZ (Txz(x, θ)) + logRxz(x, θ)]

≈ −Ex∼ρX
[logµZ (Txz(x; θ)) + logRxz(x, θ)]

Lreverse = KL [µZ∥qZ ] = −Ez∼µZ
[logµX (Tzx(z, θ)) + logRzx(z, θ)]

= Ez∼µZ
[Emm (Tzx(z, θ)) /kβT − logRzx(z, θ)]

(7)

Here:

• Lforward corresponds to the negative log-likelihood of the training dataset, as in most

generative models. Training samples are typically prepared by running molecular

dynamics simulations for 100 ns using an implicit solvent model. µZ represents the

prior density distribution in the latent space, which is Gaussian in this case; µX rep-

resents the ground truth distribution of protein conformations, and we approximate

it with ρX , the observed density of MD samples.

• Lreverse is the energy-based term specific to cases where the (normalized) density

function of the target distribution is known. It ensures that sampled conformations

from the latent space exhibit physically reasonable energies. Emm represents the

molecular mechanics energy. It is important to note that most molecular mechanics
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force fields can be easily wrapped as differentiable energy functions, since the (neg-

ative) gradient of the energy with respect to the coordinates corresponds directly

to the force. In the work, we employed OpenMM[16].

The training process begins by optimizing Lforward alone to initialize the network.

At this stage, generated samples resemble those in the molecular dynamics trajectories

but often contain steric clashes or other nonphysical details, leading to high energies.

Subsequently, the weight of Lreverse is gradually increased to regularize the latent

space, incorporating physical energy constraints and ensuring sampled conformations

align with the Boltzmann-distributed target.

Experimental data likelihood

The differentiability of SFCalculator enables a differentiable calculation of model struc-

ture factors Fc, thus the likelihood target. We employ the following two objective

likelihood functions:

1. Least Squares Loss:

Llse =
∑ (|EC | − EO)

2

2σ2
EO

(8)

2. Negative Log-Likelihood from Rice distribution:

Lrice = −

[∑
h∈a

log pa (EO;EC) +
∑
h∈c

log pc (EO;EC)

]
(9)

where, according to [54], the likelihoods pa (EO;EC) for acentric reflections and

pc (EO;EC) for centric reflections are defined as:
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pa (EO;EC) =
2EO

1− σ2
A + 2σ2

EO

exp

[
−E2

O + (σAEC)
2

1− σ2
A + 2σ2

EO

]
× I0

(
2σAEOEC

1− σ2
A + 2σ2

EO

)
,

pc (EO;EC) =

[
2

π
(
1− σ2

A + σ2
EO

)]1/2

exp

[
− E2

O + (σAEC)
2

2
(
1− σ2

A + σ2
EO

)]

× cosh

(
σAEOEC

1− σ2
A + σ2

EO

)
.

(10)

Here, EO, EC , and σEO
represent the normalized Fo, Fc (such that

〈
E2

〉
= 1), and

σF , respectively. σA describes the correlation between model and data, as defined in

[54, 63].

During the guided search approach, gradient descent is performed with respect to

a linear combination of Llse and Lrice. The weights of this combination are chosen

empirically and depend on the specific system under consideration.

Training for posterior approximation

The training objective for the normalizing flow model approximating the posterior is

to minimize the following reverse Kullback–Leibler divergence:

Lposterior = DKL[q(x; θ)∥p (x | Fo, σF )]

= E
z∼µz(z)

[logµz(z)− logRzx(z, θ)]− E
z∼µz(z)

[log p (x | Fo, σF )]

= − E
z∼µz(z)

[logRzx(z, θ)]− E
z∼µz(z)

[log p (Fo, σF | Tzx(z, θ)) + log p(Tzx(z, θ))− logC]

(11)

which is equivalent to maximizing the Evidence Lower Bound (ELBO) as defined

in [55]. logC is the normalization constant.

27

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted January 19, 2025. ; https://doi.org/10.1101/2025.01.12.632630doi: bioRxiv preprint 

https://doi.org/10.1101/2025.01.12.632630
http://creativecommons.org/licenses/by-nc-nd/4.0/


By using the Boltzmann distribution as the physical prior, the energy term is

incorporated, with the normalizing constant (partition function) absorbed into the

constant term:

log p (Tzx(z, θ)) = −Emm (Tzx(z, θ)) /kBT

Thus, the objective Lposterior is equivalent to Lreverse as defined in

Equation 7, with the addition of the negative experimental log-likelihood term

− log p (Fo, σF | Tzx(z, θ)).

The training process begins by optimizing Lforward alone to initialize the network.

Once the initial training is complete, the weight of Lposterior is gradually increased to

regularize the latent space. This step incorporates both physical energy and experi-

mental likelihood constraints, ensuring that the sampled conformations align with the

posterior target.

In greater detail, during the training phase involving Lposterior , the negative log-

likelihood term initially uses the least squares term Llse as defined in Equation 8. Over

time, this is gradually transitioned to Lrice, as defined in Equation 9. This approach

is adopted because, during the early stages of Lposterior training, the energy term

is often very large due to the presence of non-physical details in the conformations.

Under these conditions, the least squares term Llse is more suitable for matching the

scale of the other terms in the loss function. Transitioning to Lrice later in the process

ensures a more accurate incorporation of the experimental likelihood once the system

has been sufficiently regularized.

Code availability

SFCalculator has been implemented with PyTorch[52], JAX[8], and TensorFlow[1]

backends to accommodate a broader range of users. The codebase is open-sourced and

available at: https://github.com/Hekstra-Lab/SFcalculator.
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Code related to molecular replacement, normalizing flow construction, training and

refinement is maintained in a separate repository, deeprefine, which can be accessed

at: https://github.com/minhuanli/deeprefine.
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Fig. 1 SFCalculator as an interface. SFCalculator provides a differentiable forward function that calculates
from molecular models, along with space group and unit cell information, expected values of experimental
observables. This enables the computation of a differentiable likelihood or scoring function (a), facilitating
downstream tasks such as molecular replacement (b), and structure refinement (c) within a unified framework.
The red spheres in panel (b) represent atoms that clash with neighboring atoms.
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Fig. 2 Algorithms and benchmark of SFCalculator. (a) Algorithms of SFCalculator: The protein con-
tribution is computed through direct summation, generating Fprotein . The differentiable bulk solvent mask
algorithm is then applied to compute the solvent contribution, Fsolvent . These contributions are combined by
determining parameterized scale factors to produce the final model structure factor Fc. (b-g) Accuracy and
performance benchmarking of SFCalculator compared to the commonly used software PHENIX. (b) Slice view
of the solvent mask generated using the Probe-Shrink method (default in PHENIX) compared to our differ-
entiable solvent mask in (a). (c) Correlation statistics of protein structure factors between SFCalculator and
PHENIX, showing perfect agreement. (d) Correlation statistics of solvent structure factors between SFCalculator
and PHENIX. (e) Comparison of Rfree calculations between SFCalculator and PHENIX. SFCalculator achieves
high consistency overall, with discrepancies appearing for high-Rfree datasets. (f) Performance benchmarking
of SFCalculator’s forward and backward computations compared to PHENIX’s phenix.fmodel. SFCalculator is
50-200 times faster due to GPU utilization, while PHENIX runs solely on CPUs. Hardware details: PHENIX
was tested on an Intel(R) Xeon(R) CPU @ 2.20 GHz , and SFCalculator was tested on an Nvidia A100 GPU.
(g) Memory benchmarking of SFCalculator, demonstrating the ability to handle proteins with up to ∼1,000
residues at -2 Å resolution (PDB id: 4PKF) on a single Nvidia A100 80GB GPU.
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Fig. 3 Molecular Replacement using SFCalculator. (a) Visualization of the PcCel45A unit cell (PDB id:
3X2I), which contains four copies of the asymmetric unit, providing four ground-truth poses for the pose search.
(b) Visualization of the AlphaFold-predicted structure for the enzyme system. The random initial pose assigned
by the predictive model yields a poor Rfree value ( 0.659 ), indicating a significant mismatch. (c) The initial
pose exhibits a large R.M.S.D. (Root-Mean-Square Deviation) relative to each of the four ground-truth poses,
with values ranging from 17.0 Å to 24.9 Å. (d) The hierarchical grid search identifies an approximate pose,
closely resembling the pink ground-truth pose, with an improved R.M.S.D. of 1.12 Å and an Rfree of 0.509. (e)
Subsequent gradient descent refinement further improves the R.M.S.D. to 0.51 Å and reduces Rfree to 0.416,
underscoring the importance of the gradient descent step in achieving accurate pose refinement.
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Fig. 4 Guided search in the latent space of a generative model encoding a physical prior. (a)
The physical prior, represented by the Boltzmann distribution

(
p∗(x) = e−E(x)/RT /Z

)
at temperature T for

conformations x with energy E(x), is approximated using a normalizing flow model. This framework embeds
the latent space z with the physical prior, where z ∼ N (0, I), and the transformation x = Tθ(z) maps the latent
space to the target space x to approximate the target distribution p∗(x). (b) After training, the refinement
process is performed through guided search in the latent space. Gradient descent is applied to minimize the data
likelihood loss, L (Fc (Tθ(z)) , Fo, σF ), using SFCalculator to compute structure factors (Fc). (c-e) Refinement
of the PcCel45A structure (PDB id: 3X2I) in a Latent Space with Embedded Physical Priors. (c) Energy
distribution of samples generated by the trained normalizing flow, compared to samples from molecular dynamics
(MD). The generated samples exhibit energies within a reasonable scale, consistent with physical expectations.
(d) Refinement trace in the latent space. (e) Visualization of the improvements achieved through refinement
in the latent space. The method effectively corrects both backbone and side chain conformations, showcasing
structural improvements over the initial models.
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Fig. 5 Ensemble refinement using a generative model approximating the posterior distribution.
(a) The target distribution of the normalizing flow is the posterior combining the physical prior p(x) and
the experimental likelihood. The transformation x = Tθ(z) is trained to approximate this posterior. (b) By
including both the experimental likelihood and the molecular mechanics (MM) energy in the training objective,
the parameters θ are optimized via gradient descent. This ensures that the samples from the normalizing flow
align with the posterior distribution. SFCalculator computes structure factors (Fc), while the MM energy term
( EMM ) incorporates physical constraints, refining the ensemble to balance data fit and physical plausibility.
(c) Comparison of models for PcCel45A (PDB ID: 3X2I). The AlphaFold2 model after molecular replacement
exhibits a high Rwork/Rfree = (0.413 / 0.428) but a good molecular mechanics (MM) energy -8112 RT. The
Phenix-refined model achieves better Rwork/Rfree =(0.258 / 0.289) but has an unphysically high MM energy
7235.4 RT. The flow ensemble model strikes a balance with Rwork/Rfree =(0.278 / 0.301) and a more reasonable
MM energy E=-7020 ± 177 RT. (d) Visualization of key residues (ALA29, GLY91, GLU117, and LYS124)
of PcCel45A. The AlphaFold2, Phenix, and flow ensemble models are overlaid with electron density maps,
showcasing the structural improvements achieved by the flow ensemble refinement. Both backbone and side chain
conformations are corrected, providing better agreement with the experimental data. (e) Refinement results
for residue PHE113 in the isomerase Cyclophilin A (CypA, PDB ID: 3K0N). The 3k0n dataset, collected at
room temperature, is known to exhibit alternative conformations for many residues, including PHE113. The
flow ensemble successfully captured both conformational states. The torsion angle distribution plot for χ1 and
χ2 highlights the broader conformational diversity achieved by the flow ensemble.
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Appendix A Supplementary Figures

Fig. A1 Statistics of PDB entries used as benchmark datasets. Benchmarking was conducted across
868 PDB entries, encompassing data resolutions ranging from 0.8 Å to 3.0 Å (a), diverse molecular size (b),
various number of reflections (c), and various space groups (d).
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Fig. A2 Sweep of hyperparameters used in the differentiable solvent mask, with results based on
statistics from 300 PDB entries. The final Rfree value is used as the primary evaluation metric, with lower values
indicating better performance. a. Effect of the low-pass filter cutoff. The optimal range is found to be 4-6 Å,
with 5 Å selected as the default for its balance of accuracy and generality. b. The normalized voxel density
distribution is passed through a sharp sigmoid function with inflection point dependent on the estimated solvent
fraction (see Algorithm 1). Here we swept an offset, ∆ between the sigmoid midpoint and estimated solvent
fraction as well as the exponent of the sigmoid function. The results demonstrate that the solvent percentage
algorithm is robust, with minimal sensitivity to changes as ∆ within the range of −5% to +2%. Similarly, the
exponent of the sigmoid function is not important as long as it remains sufficiently large. A higher exponent
ensures a more binary solvent mask. The default value of 10 was chosen for its consistency across tests.
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Fig. A3 Architecture of the normalizing flow model. a. Schematic representation of the model pipeline
(see section B.4 for implementation details). Cartesian coordinates are first converted into internal coordinates
using the ICConverter, followed by the FeatureFreezer, which locks features with low variability, such as bond
lengths. Next, the Whitener normalizes the features and removes the six degrees of freedom associated with
global rigid-body transformations. Finally, the data is processed through a stack of trainable RealNVP blocks. b.
Each RealNVP block consists of two coupling layers that apply invertible transformation with channels swapped,
combining scaling and the addition of a constant offset to one subset of the input vector (z2), conditioned on
the remaining subset (z1). c. The inverse transformation of the coupling layer, illustrating the reversibility of
the model. Panel b and c are adapted from reference[15].
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Fig. A4 Statistics of R4 comparisons between SFCalculator, PHENIX, and the case with no
solvent mask applied. R factors were calculated over reflections at resolutions ≥ 4 Å comparing observed
structure factors against ones calculated from the 868 corresponding deposited models using SFCalculator or
PHENIX with solvent mask, or using just the protein structure factors. Results were binned across datasets
by their resolution, with error bars indicating standard deviations. The results clearly demonstrate that the
differentiable solvent mask used in SFCalculator outperforms the absence of a mask across all ranges. However,
due to its handling of the hydration layer, the Probe-Shrink method, the default in PHENIX, achieves better
accuracy than SFCalculator.
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Appendix B Detailed methodologies

B.1 Fast voxel rendering for solvent fraction calculations

The concept of fast solvent percentage calculation involves estimating the occupancy of protein

molecules on a coarse unit cell grid, typically with a spacing of z = 4.5 Å. For this purpose, we

adopt the occupancy function proposed in PyUUL[48]:

V i
a (d, ra) =

1

1 + es(d−ra)

Here, V i
a represents the fraction of volume i occupied by an atom a with radius ra at a

distance d from its center. The parameter s controls the steepness of the decay. The total volume

occupancy for each grid point is calculated as:

V i =
∑
a

V i
a

If V i > c, where c is the cutoff fraction, the volume is classified as ”occupied.” The solvent

percentage is then computed as:

Solvent Percentage = 1− Number of occupied volumes

Total number of unit cell volumes

For the steepness parameter s, we adopt an empirical formula:

s = ln

(
1

c
− 1

)
/
(z
2
− r

)
This ensures that any atom center within z/2 of the volume center will occupy the volume.

By default, we set c = 10−3, resulting in a large s value to ensure rapid density decay. This

ensures that a volume is considered occupied only when it is significantly filled by an atom,

rather than being the result of a cumulative effect from multiple atoms contributing low-density

values.

The same algorithm is employed for calculating packing scores and clash scores in the

molecular replacement pipeline. The packing score is defined as the fraction of occupied volumes,

while the clash score is defined as the fraction of volumes occupied by two or more atoms.

B.2 Hyperparameters in solvent mask calculation

To evaluate the impact of hyperparameters in the solvent model, we conducted a systematic

sweep using 300 PDB entries, with the final Rfree value serving as the primary evaluation metric

(lower values indicate better performance), as shown in Fig. A2. The analysis of the low-pass

filter cutoff revealed that the optimal range is between 4 and 6 Å, with 5 Å selected as the

default for its balance between accuracy and generality. Additionally, we examined the effects
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of (1) applying an offset to the solvent fraction estimate calculated above for use in the solvent

mask calculation (see Algorithm 1) and (2) varying the exponent in the sigmoid function.

The solvent fraction algorithm proved robust, exhibiting minimal sensitivity to deviations in

the solvent percentage offset within the range of −5% to +2%. Similarly, the exponent in the

sigmoid function was found to be effective as long as it remained sufficiently large to ensure a

more binary solvent mask. A default exponent value of 10 was chosen based on its consistency

across the tests.

B.3 Robust initialization of scaling parameters

We initialize the kiso, kmask and Uaniso in a fast and robust way following the reference[2], with

necessary modifications.

First, we initialize kmask and kiso by solving the following overdetermined minimization

problem for each resolution bin s:

LSs (K, kmask ) =
∑
h

(
|Fprotein + kmask Fsolvent |2 −KF 2

obs

)2

where K = k−2
iso, and in each resolution bin kiso and kmask are fixed for each reflection

h. Minimizing the above equation lead to initializing kmask by root finding of the following

equation:

k3mask + ak2mask + bkmask + c = 0

where:

a = (C3Y2 − C2B2 − C2Y3) /
(
D3Y2 − C2

2

)
b = (B3Y2 − C2A2 − Y3B2) /

(
D3Y2 − C2

2

)
c = (A3Y2 − Y3A2) /

(
D3Y2 − C2

2

)

and:

A2 =
∑
s

usIs

B2 = 2
∑
s

vsIs

C2 =
∑
s

wsIs

Y2 =
∑
s

I2s
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A3 =
∑
s

usvs

B3 =
∑
s

(2v2s + usws)

C3 = 3
∑
s

wsvs

D3 =
∑
s

w2
s

Y3 =
∑
s

Isvs

where w = |Fsolvent |2, v = (Fprotein,Fsolvent ), u = |Fprotein|2, and I = F 2
obs

If no positive root exists, kmask is assigned a zero value, which implies the absence of a bulk-

solvent contribution. If several roots with kmask ≥ 0 exist then the one that gives the smallest

value of LSs (K, kmask ) is selected. Once kmask is determined, kiso is calculated with:

K =
(
k2mask C2 + kmask B2 +A2

)
/Y2, kiso = 1/

√
K

Once we have initialized kmask and kiso, the remaining Uaniso is determined by solving a

linear system:

Uaniso = M−1b

where M =
∑

s V ⊗ V,V =
(
h2, k2, l2, 2hk, 2hl, 2kl

)t
, b = −

∑
s ZV, and Z =[

1/
(
2π2

)]
ln
[
Fobs (kiso |Fprotein + ksolvent Fmask |)−1

]
B.4 Architecture of the Normalizing Flow model

The schematic architecture, illustrated in Fig. A3a, is composed of several key blocks, which

we describe in detail below:

ICConverter

We adopt the mixed coordinate transformation layer described in [47]. In this approach, the

Cartesian coordinates of macromolecules are partitioned into backbone atoms (N , Cα, C for

each residue) and auxiliary atoms. The backbone atoms are retained as Cartesian coordinates

(xC), while the auxiliary atoms are converted into internal coordinates (xI) as follows: for each

auxiliary atom i, three ”parent” particles j, k, and l are defined. The Cartesian coordinates

of particles i, j, k, and l are then transformed into distance, angle, and dihedral coordinates

(dij , αijk, ϕijkl). Consequently, the Cartesian coordinates x are transformed into a combination

of Cartesian and internal coordinates, expressed as x→ [xC , xI ].

42

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted January 19, 2025. ; https://doi.org/10.1101/2025.01.12.632630doi: bioRxiv preprint 

https://doi.org/10.1101/2025.01.12.632630
http://creativecommons.org/licenses/by-nc-nd/4.0/


The inverse transformation is straightforward. Auxiliary atoms are positioned sequentially:

first, those whose parent particles are entirely within the Cartesian set, followed by particles

whose parents have just been placed, and so on. The conversion from internal coordinates to

Cartesian coordinates is performed using the NeRF algorithm [51].

FeatureFreezer

The FeatureFreezer module is newly introduced to lock features with low variability, thereby

reducing the dimensionality of the problem. This is achieved through the following steps:

1. Identify the features to be frozen based on statistical analysis of the training set.

2. Exclude these features during the forward pass.

3. Reintroduce them in the inverse pass using their statistical mean values.

The selection of frozen features is governed by the following rules:

1. Cartesian signals are never frozen.

2. Distance signals (covalent bonds’ lengths) are frozen if the ratio of standard deviation to the

mean (std/mean) is less than 0.05.

3. Angle signals, represented as vi = [sin(θ), cos(θ)], are frozen if the circular concentration

coefficient c = |
∑

vi| /
∑
|vi| exceeds 0.996 , corresponding to a standard deviation of

approximately 5 degrees.

Whitener

The Whitener layer employs Principal Component Analysis (PCA) to normalize feature scales

and remove their means. Two separate PCA operations are applied:

1. For Cartesian signals (xC), PCA performs whitening and removes the six degrees of

freedom associated with global rigid-body transformations.

2. For internal coordinates, PCA is applied independently to normalize these features.

The whitening and inverse whitening matrices are stored, enabling efficient application during

both the forward and inverse passes.

RealNVP block

The RealNVP block incorporates trainable parameters to define and shape the transformation.

Each RealNVP block consists of two stacked coupling layers, with channels swapped between

the layers to ensure that both channels are transformed [15, 47]. A schematic representation of

a single coupling layer is shown in Fig. A3b and c. The forward transformation is defined as:

fxx (x1,x2) :

 z1 = x1

z2 = x2 ⊙ exp (S (x1, θ)) + T (x1, θ)
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where ⊙ is element-wise multiplication, and the log-determinant of the Jacobian given by:

logRxz =
∑

Si (x1, θ)

The inverse transformation operates as follows:

fx= (z1, z2) :

 x1 = z1

x2 = (z2 − T (x1, θ))⊙ exp (−S (z1, θ))

with the corresponding log-determinant:

logRxx = −
∑
i

Si (z1, θ)

This setup ensures that the transformation remains invertible while allowing fast computa-

tion of the log-determinant for both forward and inverse passes.
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