
Heliyon 10 (2024) e27712

Contents lists available at ScienceDirect

Heliyon

journal homepage: www.cell.com/heliyon

Research article

Multi-attribute group decision making method for sponge iron 

factory location selection problem using multi-polar fuzzy EDAS 

approach

Chiranjibe Jana a,∗, Ibrahim M. Hezam b

a Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences (SIMATS), Chennai 602105, Tamil Nadu, India
b Department of Statistics & Operations Research, College of Sciences, King Saud University, Riyadh, Saudi Arabia

A R T I C L E I N F O A B S T R A C T

Keywords:

Multi-polar fuzzy numbers
Einstein operators
EDAS method
Multi-attribute group decision-making

This paper presents new averaging operators, such as mpF Einstein weighted averaging 
(mpFEWA), mpF Einstein ordered weighted averaging (mpFEOWA), mpF Einstein hybrid 
weighted averaging (mpFEHWA), mpF Einstein weighted geometric (mpFEWG), and mpF Einstein 
hybrid weighted geometric (mpFEHWG), as well as new Einstein operations (mpFNs) for 
handling multi-polar fuzzy numbers. We evaluate these operators for idempotency, boundedness, 
monotonicity, and commutativity, and we design them to deal with multi-polar fuzzy numbers 
(mpFNs). Furthermore, the study investigates the use of these operators in MAGDM settings, 
namely mpFEWA and mpFEWG operators, to expand on this. Additionally, it proposes a procedure 
for determining the best site for a sponge iron production plant by use of the created MAGDM 
method. The EDAS method, which stands for “Evaluation based on Distance from Average 
Solution,” verifies that the solutions are effective. Finally, the suggested model highlights the 
benefits and possible improvements provided by these creative strategies by comparing the new 
approach to conventional methods and evaluating its efficiency and practicality.

1. Introduction

In light of significant complexity, decision science suggests that real attribute values hold little relevance. In 1965, Zadeh [1]
introduced the Theory of Fuzzy Sets (FS), offering a novel mathematical logic that effectively addresses problems in multi-attribute 
decision making (MADM) and multi-attribute group decision making (MADGM). Despite its reliability, FS lacked a robust mathe-
matical foundation. Atnassov [2] sought to rectify this by introducing intuitionistic fuzzy sets (IFS) in 2012, capable of managing 
intricate fuzzy information. IFS delineates elements in the universe and articulates both membership and non-membership functions. 
This sparked scholarly interest in the information aggregation process, leading to notable advancements within the realm of IFS

Despite the high level of complexity, decision science shows that exact attribute values don’t matter much. As a solution to 
problems with MADM and MADGM, Zadeh [1] presented the Theory of Fuzzy Sets (FS). There was not a solid mathematical basis 
for FS at first, but it was nonetheless beneficial. Intuitionistic fuzzy sets (IFS), introduced by Atnassov [2], can handle complicated 
fuzzy information and fill this need. IFS defines membership and non-membership functions and classifies items in the universe. As 
a consequence, there was a surge of academic interest in information aggregation methods, which led to major advancements in IFS 
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(See [3–10]). According to researchers [11–15], among others, a number of aggregation processes are used to aggregate a set of real 
values. Many researchers have come up with more complex and brilliant methods of decision-making in recent years [16–19].

An alternate to IFS and IVIFS that Zhang [20,21] suggested was bipolar fuzzy sets (BFS), which would handle practical ambiguity 
better than the prior two. Membership degrees are assigned by BFS on a scale from −1 to 1, with 0 representing negative membership 
and 1 representing positive membership. Multiple attribute decision-making (MADM) issues based on Dombi norms within BF struc-
tures, such the ones given in Jana’s publications [22,23], which use aggregation operators, emerged as a result of this idea. A dual 
hesitant bipolar Hamacher aggregation MADM model was created by Gao et al. [25], expanding on the work of Wei et al. [24] about 
BF Hamacher operator-based MADM issues. Using a bipolar soft aggregation operator, Jana et al. [27] supported Xu and Wei’s [26]
dual hesitant bipolar multiple criteria decision-making (MCDM) method. The authors Akram and Waseem [28] looked at decision-
making issues in a bipolar fuzzy graph framework, and they remarked that projects like diesel power plants and fuel pumps require 
multipolar data. In response, they brought forward M-polar (mF) fuzzy sets, which were first suggested by Chen et al. [29] to expand 
upon BFS [30–32]. Afterwards, m-polar fuzzy sets were used in certain areas including graph theory, group theory, Lie algebras, and 
BCK/BCI algebras [33–35]. In 2018, Khameneh and Kilicman [36] created operators for m-polar fuzzy soft weighted aggregation. 
The versatile uses of m-polar fuzzy sets in different settings are asserted by Akram et al. [37,38]. Recent research has demonstrated 
an increasing interest in investigating various aggregation strategies to address MADM issues in fuzzy settings; nonetheless, there 
is currently a lack of research on Multi-Attribute Decision Making (MADM) procedures that are specifically designed for m-polar 
fuzzy structures. To aggregate mFNs data, Waseem et al. [39] used Hamacher operators; to solve Multiple Attribute Group Decision 
Making (MAGDM) issues, Akram et al. [40] presented an m-polar hesitant fuzzy TOPSIS method. In addition, using an m-polar fuzzy 
framework, Akram et al. [41] suggested a method for group decision-making that combines the PROMETHEE Approach with the 
Analytic Hierarchy Process (AHP).

Some other notable techniques include those based on MADMs that use Einstein operators. In interval-valued intuitionistic fuzzy 
structures, Liu et al. [42] studied generalised Einstein aggregation operations, and in an Intuitionistic Fuzzy Set (IFS) framework, Xia 
and Wei [43] used Einstein hybrid operators. Fuzzy Pythagorean operator [45,46], complex q-rung Orthopair fuzzy operator [47], 
and fuzzy picture Einstein operator [44] are just a few examples of the Einstein operators that have been investigated by multiple 
authors in conjunction with fuzzy concepts.

Despite some progress, there is still a lot of unanswered questions about a specific Multiple Attribute Decision Making (MADM) 
method that uses Einstein operators for m-polar fuzzy structures. This might be a great opportunity for researchers to go more into 
this area in the future. Uncertain data seen in real-world scenarios poses a difficulty that has not been adequately investigated: how 
well mFS can manage this type of data. There is a strong justification for doing this study due to the well-established difficulties 
in classical literature [13–15] and Multi-Attribute Group Decision Making (MAGDM) problems using Einstein norms [42–45,47], as 
well as practical applications such as hospital location [48] selection in different fuzzy frameworks. In order to address difficulties in 
sponge iron placement selection, we aim to include mpFNs into the mFS domain using Einstein norms and an MCDM model. The use 
of these operators in the analysis of the sponge iron mill location selection model provided the basis for this method. Using a hybrid 
Pythagorean fuzzy framework, our goal is to build a MAGDM model that draws on the TOPSIS approach used to ATM site selection 
challenges. The main objectives of this paper are:

• In relation to some m-polar fuzzy operators, a novel technique is taken into consideration.
• employ the MAGDM technique suggested strategy.
• A case study with a numerical example is given to illustrate the method.
• The effectiveness of the method is quantified.

The next section delves into the fundamental ideas that underpin both Einstein on mpFNs and mpFS, which stand for multi-polar 
fuzzy sets. Within the framework of m-polar fuzzy logic, Section 3 defines the operators ordered weighted, hybrid weighted, and 
Einstein weighted averaging in detail. Proposals for Einstein weighted geometric, ordered weighted, and hybrid weighted operators 
in the m-polar fuzzy context are made in Section 4. An technique called Multiple Attribute Group Decision Making (MAGDM) was 
developed using these operators; the specifics of which are presented in Section 5. Section 6 is a hypothetical situation that serves to 
illustrate the process of choosing an appropriate location for a sponge iron manufacturing. Conclusion and last thoughts on the study 
are included in Section 7.

2. Preliminaries

Definition 1. [39] Let a multi-polar fuzzy set be 𝑚𝑝𝐹𝑆 defined over the universe 𝑈 is represented by a function 𝜁 ∶ 𝑈 → [0, 1]𝑚. 
This function assigns membership grades to each object in 𝑈 , where the membership grade for an object 𝑢 is expressed as 𝜁(𝑢) =
(𝑝1 ∗ 𝜁(𝑢), 𝑝2 ∗ 𝜁(𝑢), … , 𝑝𝑚 ∗ 𝜁(𝑢)). Here, 𝑝𝑙 ∗ 𝜁 ∶ [0, 1]𝑚 → [0, 1] represents the l-th projection mapping, and 𝜁 = (𝑝1 ∗ 𝜁, … , 𝑝𝑚 ∗ 𝜁)
denotes the multi-polar fuzzy numbers (mpFNs), with each 𝑝𝑙 ∗ 𝜁 falling within the interval [0, 1] for 𝑙 = 1, 2, … , 𝑚.

Definition 2. [39] Let 𝑀𝑃𝑆𝐹 be a score function of an 𝑚𝑝𝐹𝑁𝑠 𝜁 = (𝑝1 ∗ 𝜁, … , 𝑝𝑚 ∗ 𝜁) is defined in Equ. (1) below:

1
(

𝑚∑ )

2

𝑀𝑃𝑆𝐹 (𝜁) =
𝑚

𝑙=1
(𝑝𝑙 ∗ 𝜁) ,Φ(𝜁) ∈ [0,1]. (1)
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Definition 3. [39] Let 𝑀𝑃𝐴𝐹 be a accuracy function of an 𝑚𝑝𝐹𝑁 𝜁 = (𝑝1 ∗ 𝜁, … , 𝑝𝑚 ∗ 𝜁) is defined as follows:

𝑀𝑃𝐴𝐹 (𝜁) = 1
𝑚

(
𝑚∑
𝑙=1

(−1)𝑙(𝑝𝑙 ∗ 𝜁 − 1)

)
,Φ(𝜁) ∈ [−1,1].

Using the definitions of the score and accuracy functions, we have created a prioritised connection between two mpFNs.

Definition 4. Let 𝜁1 = (𝑝1 ∗ 𝜁1, … , 𝑝𝑚 ∗ 𝜁1) and 𝜁2 = (𝑝1 ∗ 𝜁2, … , 𝑝𝑚 ∗ 𝜁2) be two mpFNs. Then

(i) If 𝑀𝑃𝑆𝐹 (𝜁1) <𝑀𝑃𝑆𝐹 (𝜁2), implies 𝜁1 ≺ 𝜁2
(ii) If 𝑀𝑃𝑆𝐹 (𝜁1) >𝑀𝑃𝑆𝐹 (𝜁2), implies 𝜁1 ≻ 𝜁2
(iii) If 𝑀𝑃𝑆𝐹 (𝜁1) =𝑀𝑃𝑆𝐹 (𝜁2), then

(1) If 𝑀𝑃𝐴𝐹 (𝜁1) <𝑀𝑃𝐴𝐹 (𝜁2), implies 𝜁1 ≺ 𝜁2.
(2) If 𝑀𝑃𝐴𝐹 (𝜁1) >𝑀𝑃𝐴𝐹 (𝜁2), implies 𝜁1 ≻ 𝜁2.
(3) If 𝑀𝑃𝐴𝐹 (𝜁1) =𝑀𝑃𝐴𝐹 (𝜁2), implies 𝜁1 ∼ 𝜁2.

Here, some basic operations on mpFNs are defined below:

Definition 5. [39] Let 𝜁1 = (𝑝1 ∗ 𝜁1, … , 𝑝𝑚 ∗ 𝜁1) and 𝜁2 = (𝑝1 ∗ 𝜁2, … , 𝑝𝑚 ∗ 𝜁2) be two mpFNs, and 𝜏 > 0. Then

(1) 𝜁1 ⊕ 𝜁2 =

(
𝑝1 ∗ 𝜁1 + 𝑝2 ∗ 𝜁2 − 𝑝1 ∗ 𝜁1𝑝2 ∗ 𝜁2, … , 𝑝𝑚 ∗ 𝜁1 + 𝑝𝑚 ∗ 𝜁2 − 𝑝𝑚 ∗ 𝜁1𝑝𝑚 ∗ 𝜁2

)
(2) 𝜁1 ⊗ 𝜁2 =

(
𝑝1 ∗ 𝜁1𝑝1 ∗ 𝜁2, … , 𝑝𝑚 ∗ 𝜁1𝑝𝑚 ∗ 𝜁2

)
(3) 𝜏𝜁1 =

(
1 − (1 − 𝑝1 ∗ 𝜁1)𝜏 , … , 1 − (1 − 𝑝𝑚 ∗ 𝜁1)𝜏

)
(4) (𝜁1)𝜏 =

(
(𝑝1 ∗ 𝜁1)𝜏 , … , (𝑝𝑚 ∗ 𝜁1)𝜏

)
(5) (𝜁1)𝑐 =

(
(𝑝1 ∗ 𝜁1)𝑐 , … , (𝑝𝑚 ∗ 𝜁1)𝑐

)
(6) 𝜁1 ⊆ 𝜁2 if and only if 𝑝1 ∗ 𝜁1 ≤ 𝑝1 ∗ 𝜁2, … , 𝑝𝑚 ∗ 𝜁1 ≤ 𝑝𝑚 ∗ 𝜁2

(7) 𝜁1
⋃

𝜁2 =

{
max

(
𝑝1 ∗ 𝜁1, 𝑝1 ∗ 𝜁2

)
, … , max

(
𝑝𝑚 ∗ 𝜁1, 𝑝𝑚 ∗ 𝜁2

)}
(8) 𝜁1

⋂
𝜁2 =

{
min

(
𝑝1 ∗ 𝜁1, 𝑝1 ∗ 𝜁2

)
, … , min

(
𝑝𝑚 ∗ 𝜁1, 𝑝𝑚 ∗ 𝜁2

)}
.

2.1. Einstein operations on mpFNs

Two prime examples of t-norms and t-conorms, the Einstein operations, are the Einstein product and the Einstein sum. The 
following are the definitions of each of them:

Definition 6. [43] The following are the definitions of the Einstein product 
⨂

and the Einstein sum 
⨁

between two real numbers 
𝑢 and 𝑣.

𝑢⊕𝐸 𝑣 = 𝑢+ 𝑣

1 + 𝑢 ⋅ 𝑣

𝑢⊗𝐸 𝑣 = 𝑢 ⋅ 𝑣
1 + (1 − 𝑢) ⋅ (1 − 𝑣)

where, for all (𝑢, 𝑣) ∈ [0, 1]2.

We described Einstein operations with respect to mpFNs in light of Einstein-norm and Einstein-conorms.

Definition 7. Let 𝜁1 = (𝑝1 ∗ 𝜁1, … , 𝑝𝑚 ∗ 𝜁1) and 𝜁2 = (𝑝1 ∗ 𝜁2, … , 𝑝𝑚 ∗ 𝜁2) be two mpFNs, and 𝜏 > 0. Now, we defined below Einstein 
operations on mpFNs.⟨

𝑝1∗𝜁1+𝑝1∗𝜁2 𝑝𝑚∗𝜁1+𝑝𝑚∗𝜁2

⟩

3

(1) 𝜁1 ⊕𝐸 𝜁2 = 1+𝑝1∗𝜁1 .𝑝1∗𝜁2
, … , 1+𝑝𝑚∗𝜁1 𝑝𝑚∗𝜁2
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(2) 𝜁1 ⊗𝐸 𝜁2 =

⟨
𝑝1∗𝜁1 .𝑝1∗𝜁2

1+(1−𝑝1∗𝜁1)(1−𝑝1∗𝜁2)
, … , 𝑝𝑚∗𝜁1 𝑝𝑚∗𝜁2

1+(1−𝑝𝑚∗𝜁1)(1−𝑝𝑚∗𝜁2)

⟩
(3) 𝜏. 𝜁1 =

⟨
(1+𝑝1∗𝜁1)𝜏−(1+𝑝1∗𝜁2)𝜏

(1+𝑝1∗𝜁1)𝜏+(1+𝑝1∗𝜁2)𝜏
, … , (1+𝑝𝑚∗𝜁1)

𝜏−(1+𝑝𝑚∗𝜁2)𝜏

(1+𝑝𝑚∗𝜁1)𝜏+(1+𝑝𝑚∗𝜁2)𝜏

⟩
(4) (𝜁1)𝜏1 =

⟨
2(𝑝1∗𝜁1)𝜏

(2−𝑝1∗𝜁1)𝜏+(𝑝1∗𝜁)𝜏
, … , 2(𝑝𝑚∗𝜁1)𝜏

(2−𝑝𝑚∗𝜁1)𝜏+(𝑝𝑚∗𝜁)𝜏

⟩
.

3. mpF Einstein operators

Introduced the terms mpFEWA, mpFEOWA, and mpFEHWA operators in this section, as well as established their features.

Definition 8. Let 𝜁𝑟 = (𝑝1 ∗ 𝜁𝑟, … , 𝑝𝑚 ∗ 𝜁𝑟) (𝑟 = 1, 2, … , 𝑠) be a ‘s’ mpFNs. Then an mF Einstein weighted averaging (mpFEWA) 
operator is a function 𝑚𝑝𝐹𝐸𝑊 𝐴 ∶ 𝜁𝑠 → 𝜁 such that:

𝑚𝑝𝐹𝐸𝑊 𝐴𝛿(𝜁1, 𝜁2,… , 𝜁𝑠) =
𝑠⨁

𝑟=1

(
𝛿𝑟𝜁𝑟

)
where 𝛿 = (𝛿1, 𝛿2, … , 𝛿𝑠)𝑇 a set of weight vector on 𝜁𝑟 such that 𝛿𝑟 > 0 and 

𝑠∑
𝑟=1

𝛿𝑟 = 1.

Theorem 1. Let 𝜁𝑟 = (𝑝1 ∗ 𝜁𝑟, … , 𝑝𝑚 ∗ 𝜁𝑟) (𝑟 = 1, 2, … , 𝑠) be a ‘s’ mpFNs. Then accumulated value of all mpFNs based on mpFEWA operator 
is also an mFN, which follows as

𝑚𝑝𝐹𝐸𝑊𝐴𝛿(𝜁1, 𝜁2,… , 𝜁𝑠)

=
𝑠⨁

𝑟=1

(
𝛿𝑟𝜁𝑟)

=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑠∏
𝑟=1

(1 + 𝑝1 ∗ 𝜁𝑟)𝛿𝑟 −
𝑠∏

𝑟=1
(1 − 𝑝1 ∗ 𝜁𝑟)𝛿𝑟

𝑠∏
𝑟=1

(1 + 𝑝1 ∗ 𝜁𝑟)𝛿𝑟 +
𝑠∏

𝑟=1
(1 − 𝑝1 ∗ 𝜁𝑟)𝛿𝑟

,

… ,

𝑠∏
𝑟=1

(1 + 𝑝𝑚 ∗ 𝜁𝑟)𝛿𝑟 −
𝑠∏

𝑟=1
(1 − 𝑝𝑚 ∗ 𝜁𝑟)𝛿𝑟

𝑠∏
𝑟=1

(1 + 𝑝𝑚 ∗ 𝜁𝑟)𝛿𝑟 +
𝑠∏

𝑟=1
(1 − 𝑝𝑚 ∗ 𝜁𝑟)𝛿𝑟

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
where 𝛿 = (𝛿1, 𝛿2, … , 𝛿𝑠) be weight vector of 𝜁𝑟 (𝑟 = 1, 2, … , 𝑠) such that 𝛿𝑟 > 0, and 

𝑠∑
𝑟=1

𝛿𝑟 = 1.

Now we can prove this theorem via induction in mathematics. Proof: If we take, 𝑟 = 1, then equation (6) becomes

𝑚𝑝𝐹𝐸𝑊 𝐴𝛿(𝜁1, 𝜁2,… , 𝜁𝑠) = 𝛿1𝜁1 = 𝜁1 (𝑠𝑖𝑛𝑐𝑒 𝛿1 = 1)

=

⟨
(1 + 𝑝1 ∗ 𝜁1) − (1 − 𝑝1 ∗ 𝜁1)
(1 + 𝑝1 ∗ 𝜁1) + (1 − 𝑝1 ∗ 𝜁1)

,… ,
(1 + 𝑝𝑚 ∗ 𝜁1) − (1 − 𝑝𝑚 ∗ 𝜁1)
(1 + 𝑝𝑚 ∗ 𝜁1) + (1 − 𝑝𝑚 ∗ 𝜁1)

⟩
.

Thus, above equation (6) is true for 𝑟 = 1.
Assume equation (6) is accurate for 𝑟 ≥ 𝜃, where 𝜃 ∈ℕ, which gives

𝑚𝑝𝐹𝐸𝑊𝐴𝛿(𝜁1, 𝜁2,… , 𝜁𝜃)

𝜃⨁( )

4

=
𝑟=1

𝛿𝑟𝜁𝑟
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=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝜃∏
𝑟=1

(1 + 𝑝1 ∗ 𝜁𝑟)𝛿𝑟 −
𝜃∏

𝑟=1
(1 − 𝑝1 ∗ 𝜁𝑟)𝛿𝑟

𝜃∏
𝑟=1

(1 + 𝑝1 ∗ 𝜁𝑟)𝛿𝑟 +
𝜃∏

𝑟=1
(1 − 𝑝1 ∗ 𝜁𝑟)𝛿𝑟

,

… ,

𝜃∏
𝑟=1

(1 + 𝑝𝑚 ∗ 𝜁𝑟)𝛿𝑟 −
𝜃∏

𝑟=1
(1 − 𝑝𝑚 ∗ 𝜁𝑟)𝛿𝑟

𝜃∏
𝑟=1

(1 + 𝑝𝑚 ∗ 𝜁𝑟)𝛿𝑟 +
𝜃∏

𝑟=1
(1 − 𝑝𝑚 ∗ 𝜁𝑟)𝛿𝑟

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Now for 𝑟 = 𝜃 + 1, then

𝑚𝑝𝐹𝐸𝑊𝐴𝛿(𝜁1, 𝜁2, 𝜁𝜃 … , 𝜁𝜃+1)

=
𝜃⨁

𝑟=1
(𝛿𝑟𝜁𝑟)⊕𝛿𝜃+1𝜁𝜃+1

=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝜃∏
𝑟=1

(1 + 𝑝1 ∗ 𝜁𝑟)𝛿𝑟 −
𝜃∏

𝑟=1
(1 − 𝑝1 ∗ 𝜁𝑟)𝛿𝑟

𝜃∏
𝑟=1

(1 + 𝑝1 ∗ 𝜁𝑟)𝛿𝑟 +
𝜃∏

𝑟=1
(1 − 𝑝1 ∗ 𝜁𝑟)𝛿𝑟

,… ,

𝜃∏
𝑟=1

(1 + 𝑝𝑚 ∗ 𝜁𝑟)𝛿𝑟 −
𝜃∏

𝑟=1
(1 − 𝑝𝑚 ∗ 𝜁𝑟)𝛿𝑟

𝜃∏
𝑟=1

(1 + 𝑝𝑚 ∗ 𝜁𝑟)𝛿𝑟 +
𝜃∏

𝑟=1
(1 − 𝑝𝑚 ∗ 𝜁𝑟)𝛿𝑟

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
⊕

⎛⎜⎜⎜⎜⎝
(1 + 𝑝1 ∗ 𝜁𝜃+1)𝛿𝜃+1 − (1 − 𝑝1 ∗ 𝜁𝜃+1)𝛿𝜃+1

(1 + 𝑝1 ∗ 𝜁𝜃+1)𝛿𝜃+1 + (1 − 𝑝1 ∗ 𝜁𝜃+1)𝛿𝜃+1
,

… ,
(1 + 𝑝𝑚 ∗ 𝜁𝜃+1)𝛿𝜃+1 − (1 − 𝑝𝑚 ∗ 𝜁𝜃+1)𝛿𝜃+1

(1 + 𝑝𝑚 ∗ 𝜁𝜃+1)𝛿𝜃+1 + (1 − 𝑝𝑚 ∗ 𝜁𝜃+1)𝛿𝜃+1

⎞⎟⎟⎟⎟⎠
=𝑚𝑝𝐹𝐸𝑊𝐴𝛿(𝜁1, 𝜁2,… , 𝜁𝜃+1)

=
𝜃+1⨁
𝑟=1

(
𝛿𝑟𝜁𝑟)

=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝜃+1∏
𝑟=1

(1 + 𝑝1 ∗ 𝜁𝑟)𝛿𝑟 −
𝜃+1∏
𝑟=1

(1 − 𝑝1 ∗ 𝜁𝑟)𝛿𝑟

𝜃+1∏
𝑟=1

(1 + 𝑝1 ∗ 𝜁𝑟)𝛿𝑟 +
𝜃+1∏
𝑟=1

(1 − 𝑝1 ∗ 𝜁𝑟)𝛿𝑟
,

… ,

𝜃+1∏
𝑟=1

(1 + 𝑝𝑚 ∗ 𝜁𝑟)𝛿𝑟 −
𝜃+1∏
𝑟=1

(1 − 𝑝𝑚 ∗ 𝜁𝑟)𝛿𝑟

𝜃+1∏
𝑟=1

(1 + 𝑝𝑚 ∗ 𝜁𝑟)𝛿𝑟 +
𝜃+1∏
𝑟=1

(1 − 𝑝𝑚 ∗ 𝜁𝑟)𝛿𝑟

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Hence, the Theorem 1 is true for all natural numbers.

Example 1. Let 𝜁1 = (0.4, 0.6, 0.7, 0.5), 𝜁2 = (0.3, 0.4, 0.5, 0.6), 𝜁3 = (0.5, 0.7, 0.4, 0.2) be 4pFNs with a weight vector 𝛿 = (0.3, 0.3, 0.4)
for 4pFNs. Then by Theorem 1 gives

𝑚𝑝𝐹𝐸𝑊𝐴𝛿(𝜁1, 𝜁2,… , 𝜁𝑠)

𝑠⨁(

5

=
𝑟=1

𝛿𝑟𝜁𝑟)
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=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑠∏
𝑟=1

(1 + 𝑝1 ∗ 𝜁𝑟)𝛿𝑟 −
𝑠∏

𝑟=1
(1 − 𝑝1 ∗ 𝜁𝑟)𝛿𝑟

𝑠∏
𝑟=1

(1 + 𝑝1 ∗ 𝜁𝑟)𝛿𝑟 +
𝑠∏

𝑟=1
(1 − 𝑝1 ∗ 𝜁𝑟)𝛿𝑟

,

… ,

𝑠∏
𝑟=1

(1 + 𝑝𝑚 ∗ 𝜁𝑟)𝛿𝑟 −
𝑠∏

𝑟=1
(1 − 𝑝𝑚 ∗ 𝜁𝑟)𝛿𝑟

𝑠∏
𝑟=1

(1 + 𝑝𝑚 ∗ 𝜁𝑟)𝛿𝑟 +
𝑠∏

𝑟=1
(1 − 𝑝𝑚 ∗ 𝜁𝑟)𝛿𝑟

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

(1 + 0.4)0.3(1 + 0.3)0.3(1 + 0.5)0.4 − (1 − 0.4)0.3(1 − 0.3)0.3(1 − 0.5)0.4

(1 + 0.4)0.3(1 + 0.3)0.3(1 + 0.5)0.3 + (1 − 0.4)0.3(1 − 0.3)0.3(1 − 0.5)0.4
,

(1 + 0.6)0.3(1 + 0.4)0.3(1 + 0.7)0.4 − (1 − 0.6)0.3(1 − 0.4)0.3(1 − 0.7)0.4

(1 + 0.6)0.3(1 + 0.4)0.3(1 + 0.7)0.4 + (1 − 0.6)0.3(1 − 0.4)0.3(1 − 0.7)0.4
,

(1 + 0.7)0.3(1 + 0.5)0.3(1 + 0.4)0.4 − (1 − 0.7)0.3(1 − 0.5)0.3(1 − 0.4)0.4

(1 + 0.7)0.3(1 + 0.5)0.3(1 + 0.4)0.4 + (1 − 0.7)0.3(1 − 0.5)0.3(1 − 0.4)0.4
,

(1 + 0.5)0.3(1 + 0.6)0.3(1 + 0.2)0.4 − (1 − 0.5)0.3(1 − 0.6)0.3(1 − 0.2)0.4

(1 + 0.5)0.3(1 + 0.6)0.3(1 + 0.2)0.4 + (1 − 0.5)0.3(1 − 0.6)0.3(1 − 0.2)0.4

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
=
⟨
0.4134,0.5928,0.5331,0.4251

⟩
.

The following characteristics are observed by mpFEWA operators.

Theorem 2. (Idempotency property) Let 𝜁𝑟 = (𝑝1 ∗ 𝜁𝑟, … , 𝑝𝑚 ∗ 𝜁𝑟) (𝑟 = 1, 2, … , 𝑠) be a ‘s’ mpFNs. If these all mpFNs are equal, i.e., 𝜁𝑟 = 𝜁

for all (𝑟 = 1, 2, … , 𝑠). Then

𝑚𝑝𝐹𝐸𝑊 𝐴𝛿(𝜁1, 𝜁2,… , 𝜁𝑠) = 𝜁.

Proof. Let 𝜁𝑟 = (𝑝1 ∗ 𝜁𝑏, … , 𝑝𝑚 ∗ 𝜁𝑟) (𝑟 = 1, 2, … , 𝑠) be a s mpFNs. If these all mpFNs are equal, i.e., 𝜁𝑟 = 𝜁 for all (𝑟 = 1, 2, … , 𝑠). 
Then, from equation (6), we have

𝑚𝑝𝐹𝐸𝑊𝐴𝛿(𝜁1, 𝜁2,… , 𝜁𝑠)

=
𝑠⨁

𝑟=1

(
𝛿𝑟𝜁𝑟)

=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑠∏
𝑟=1

(1 + 𝑝1 ∗ 𝜁𝑟)𝛿𝑟 −
𝑠∏

𝑟=1
(1 − 𝑝1 ∗ 𝜁𝑟)𝛿𝑟

𝑠∏
𝑟=1

(1 + 𝑝1 ∗ 𝜁𝑟)𝛿𝑟 +
𝑠∏

𝑟=1
(1 − 𝑝1 ∗ 𝜁𝑟)𝛿𝑟

,

… ,

𝑠∏
𝑟=1

(1 + 𝑝𝑚 ∗ 𝜁𝑟)𝛿𝑟 −
𝑠∏

𝑟=1
(1 − 𝑝𝑚 ∗ 𝜁𝑟)𝛿𝑟

𝑠∏
𝑟=1

(1 + 𝑝𝑚 ∗ 𝜁𝑟)𝛿𝑟 +
𝑠∏

𝑟=1
(1 − 𝑝𝑚 ∗ 𝜁𝑟)𝛿𝑟

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
=
⎛⎜⎜⎜⎝

(1 + 𝑝1 ∗ 𝜁) − (1 − 𝑝1 ∗ 𝜁)
(1 + 𝑝1 ∗ 𝜁) + (1 − 𝑝1 ∗ 𝜁)

,

… ,
(1 + 𝑝𝑚 ∗ 𝜁) − (1 − 𝑝𝑚 ∗ 𝜁)
(1 + 𝑝𝑚 ∗ 𝜁) + (1 − 𝑝𝑚 ∗ 𝜁)

⎞⎟⎟⎟⎠
=
⟨
𝑝1 ∗ 𝜁,… , 𝑝𝑚 ∗ 𝜁

⟩
= 𝜁.

Hence, the proof is completed. □

Theorem 3. (Boundedness property) Let 𝜁𝑟 = (𝑝1 ∗ 𝜁𝑟, … , 𝑝𝑚 ∗ 𝜁𝑟) (𝑟 = 1, 2, … , 𝑠) be a ‘s’ mpFNs. If 𝜁− =
𝑠⋂

𝑟=1
𝜁𝑟 and 𝜁+ =

𝑠⋃
𝑟=1

𝜁𝑟. Then,

𝜁− ≤𝑚𝑝𝐹𝐸𝑊 𝐴𝛿(𝜁1, 𝜁2,… , 𝜁𝑡) ≤ 𝜁+.

Theorem 4. (Monocity property) Let 𝜁𝑟 = (𝑝1 ∗ 𝜁𝑏, … , 𝑝𝑚 ∗ 𝜁𝑟) and 𝜁 ′
𝑟
= (𝑝′1 ∗ 𝜁 ′

𝑟
, … , 𝑝′

𝑚
∗ 𝜁 ′

𝑟
) (𝑟 = 1, 2, … , 𝑠) be two sets of ‘s’ mpFNs such 

that 𝜁𝑟 ≤ 𝜁 ′
𝑟

for all 𝑟, then
6

𝑚𝑝𝐹𝐸𝑊 𝐴𝛿(𝜁1, 𝜁2,… , 𝜁𝑠) ≤𝑚𝑝𝐹𝐸𝑊𝐴𝛿(𝜁 ′1, 𝜁
′
2,… , 𝜁 ′

𝑠
).
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Next, we introduced the definition of mFEOWA operator.

Definition 9. Let 𝜁𝑟 = (𝑝1 ∗ 𝜁𝑟, … , 𝑝𝑚 ∗ 𝜁𝑟) (𝑟 = 1, 2, … , 𝑠) be a ‘s’ mpFNs. Then an mpFNs Einstein ordered weighted averaging 
(mpFEOWA) operator is a function 𝑚𝑝𝐹𝐸𝑂𝑊𝐴 ∶ 𝜁𝑠 → 𝜁 is defined below:

𝑚𝑝𝐹𝐸𝑂𝑊𝐴𝛾 (𝜁1, 𝜁2,… , 𝜁𝑠) =
𝑠⨁

𝑟=1

(
𝛾𝑟𝜁𝜎(𝑟))

where a collection of weight vectors 𝛾 = (𝛾1, 𝛾2, … , 𝛾𝑠)𝑇 on 𝜁𝑟 such that 𝛾𝑟 > 0 and 
𝑠∑

𝑟=1
𝛾𝑟 = 1. Also, 𝜎(1), 𝜎(2), … , 𝜎(𝑠) is the permuta-

tion of (1, 2, … , 𝑠) for which 𝜁𝜎(𝑠−1) ≥ 𝜁𝜎(𝑠) for all 𝑟 = 1, 2, … , 𝑠.

Theorem 5. Let 𝜁𝑟 = (𝑝1 ∗ 𝜁𝑟, … , 𝑝𝑚 ∗ 𝜁𝑟) (𝑟 = 1, 2, … , 𝑠) be a ‘s’ mpFNs. Then accumulated value of all mpFNs based on mpFEOWA 
operator is also an mpFN, which follows as

𝑚𝑝𝐹𝐸𝑂𝑊𝐴𝛾 (𝜁1, 𝜁2,… , 𝜁𝑠)

=
𝑠⨁

𝑟=1

(
𝛾𝜎(𝑟)𝜁𝑟)

=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑠∏
𝑟=1

(1 + 𝑝1 ∗ 𝜁𝜎(𝑟))𝛾𝑟 −
𝑠∏

𝑟=1
(1 − 𝑝1 ∗ 𝜁𝜎(𝑟))𝛾𝑟

𝑠∏
𝑟=1

(1 + 𝑝1 ∗ 𝜁𝜎(𝑟))𝛾𝑟 +
𝑠∏

𝑟=1
(1 − 𝑝1 ∗ 𝜁𝜎(𝑟))𝛾𝑟

,

… ,

𝑠∏
𝑟=1

(1 + 𝑝𝑚 ∗ 𝜁𝜎(𝑟))𝛾𝑟 −
𝑠∏

𝑟=1
(1 − 𝑝𝑚 ∗ 𝜁𝜎(𝑟))𝛾𝑟

𝑠∏
𝑟=1

(1 + 𝑝𝑚 ∗ 𝜁𝜎(𝑟))𝛾𝑟 +
𝑠∏

𝑟=1
(1 − 𝑝𝑚 ∗ 𝜁𝜎(𝑟))𝛾𝑟

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
where a collection of weight vectors be 𝛾 = (𝛾1, 𝛾2, … , 𝛾𝑠)𝑇 on 𝜁𝑟. Each 𝛾𝑟 must be larger than zero, and the total of all 𝛾𝑟 must be one. If 
𝜁𝜎(𝑠−1) is larger than or equal to 𝜁𝜎(𝑠) for every 𝑟 from 1 to 𝑠, then 𝜎(1), 𝜎(2), … , 𝜎(𝑠) are permutations of (1, 2, … , 𝑠).

It is simple to demonstrate the following mpFEOWA characteristics.

Theorem 6. (Idempotency property) Let 𝜁𝑟 = (𝑝1 ∗ 𝜁𝑟, … , 𝑝𝑚 ∗ 𝜁𝑟) (𝑟 = 1, 2, … , 𝑠) be a ‘s’ mpFNs. If these all mpFNs are equal, i.e., 𝜁𝑟 = 𝜁

for all 𝑟 (𝑟 = 1, 2, … , 𝑠). Then

𝑚𝑝𝐹𝐸𝑂𝑊𝐴𝛿(𝜁1, 𝜁2,… , 𝜁𝑠) = 𝜁.

Theorem 7. (Boundedness property) Let 𝜁𝑟 = (𝑝1 ∗ 𝜁𝑟, … , 𝑝𝑚 ∗ 𝜁𝑟) (𝑟 = 1, 2, … , 𝑠) be a ‘s’ mpFNs. If 𝜁− =
𝑠⋂

𝑟=1
𝜁𝑟 and 𝜁+ =

𝑠⋃
𝑟=1

𝜁𝑟. Then,

𝜁− ≤𝑚𝑝𝐹𝐸𝑂𝑊𝐴𝛿(𝜁1, 𝜁2,… , 𝜁𝑠) ≤ 𝜁+.

Theorem 8. (Monocity property) Let 𝜁𝑟 = (𝑝1 ∗ 𝜁𝑟, … , 𝑝𝑚 ∗ 𝜁𝑟) and 𝜁 ′
𝑟
= (𝑝′1 ∗ 𝜁 ′

𝑟
, … , 𝑝′

𝑚
∗ 𝜁 ′

𝑟
) (𝑟 = 1, 2, … , 𝑠) be two sets of ‘s’ mpFNs such 

that 𝜁𝑟 ≤ 𝜁 ′
𝑟

for all 𝑟, then

𝑚𝑝𝐹𝐸𝑂𝑊𝐴𝛿(𝜁1, 𝜁2,… , 𝜁𝑠) ≤𝑚𝑝𝐹𝐸𝑂𝑊𝐴𝛿(𝜁 ′1, 𝜁
′
2,… , 𝜁 ′

𝑠
).

Theorem 9. (Commutative property) Let 𝜁𝑟 = (𝑝1 ∗ 𝜁𝑟, … , 𝑝𝑚 ∗ 𝜁𝑟) and 𝜁 ′
𝑟
= (𝑝′1 ∗ 𝜁 ′

𝑟
, … , 𝑝′

𝑚
∗ 𝜁 ′

𝑟
) (𝑟 = 1, 2, … , 𝑠) be two sets of ‘s’ mpFNs 

such that 𝜁𝑟 = 𝜁 ′
𝑟

for all 𝑟, then

𝑚𝑝𝐹𝐸𝑂𝑊𝐴𝛿(𝜁1, 𝜁2,… , 𝜁𝑠) =𝑚𝑝𝐹𝐸𝑂𝑊𝐴𝛿(𝜁 ′1, 𝜁
′
2,… , 𝜁 ′

𝑠
),

where 𝜁 ′
𝑟

is arbitrary permutation of 𝜁𝑟 for all (𝑟 = 1, 2, … , 𝑠).

The mpFEWA operator used the mpFv weights in Definitions 8 and 9. In contrast, the mpFEOWA operator’s weight does not 
represent the weights themselves but rather the ordered position of the mpFv. Therefore, we provide a new operator, the mpF 
Einstein hybrid averaging (mpFEHWA) operator, which is a qualitative combination of the mpFEWA and mpFEOWA operators.

Definition 10. Let 𝜁𝑟 = (𝑝1 ∗ 𝜁𝑟, … , 𝑝𝑚 ∗ 𝜁𝑟) (𝑟 = 1, 2, … , 𝑠) be a ‘s’ mpFNs. Then an mpFNs Einstein hybrid averaging (mpFEHWA) 
7

operator is a function 𝑚𝑝𝐹𝐸𝐻𝑊𝐴 ∶ 𝜁𝑠 → 𝜁 is defined below:
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𝑚𝑝𝐹𝐸𝐻𝑊𝐴𝛿,𝛾 (𝜁1, 𝜁2,… , 𝜁𝑠) =
𝑠⨁

𝑏=1

(
𝛾𝑟𝜁̇𝜎(𝑟)

)
Also, 𝜎(1), 𝜎(2), … , 𝜎(𝑠) be a permutation of (1, 2, … , 𝑠) and 𝜁𝜎(𝑠−1) ≥ 𝜁𝜎(𝑠) for all 𝑟 = 1, 2, … , 𝑠 for mpFNs 𝜁𝑟 and 𝛾 = (𝛾1, 𝛾2, … , 𝛾𝑠)𝑇

is the vector associated weighted of the mpFNs (𝜁1, 𝜁2, … , 𝜁𝑠) such that 𝛾𝑟 > 0 and 
𝑠∑

𝑟=1
𝛾𝑟 = 1. 𝜁̇𝑟 is biggest mpFNs, where, 𝜁̇𝑟 = (𝑠𝛿)𝜁𝑠, 

(𝑟 = 1, 2, … , 𝑠) for which 𝛿 = (𝛿1, 𝛿2, … , 𝛿𝑠)𝑇 is the vector weight such that 𝛿𝑟 > 0 and 
𝑠∑

𝑟=1
𝛿𝑟 = 1.

Theorem 10. Let 𝜁𝑟 = (𝑝1 ∗ 𝜁𝑟, … , 𝑝𝑚 ∗ 𝜁𝑟) (𝑟 = 1, 2, … , 𝑠) be a ‘s’ mpFNs. Then accumulated values of mpFNs 𝜁𝑟 using mpFEHWA operator 
is also a mFN. Further, we get

𝑚𝑝𝐹𝐸𝐻𝑊𝐴𝛾 (𝜁1, 𝜁2,… , 𝜁𝑠)

=
𝑠⨁

𝑟=1

(
𝛾𝑟𝜁̇𝜎(𝑟))

=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑠∏
𝑟=1

(1 + 𝑝1 ∗ 𝜁̇𝜎(𝑟))𝛾𝑟 −
𝑠∏

𝑟=1
(1 − 𝑝1 ∗ 𝜁̇𝜎(𝑟))𝛾𝑟

𝑠∏
𝑟=1

(1 + 𝑝1 ∗ 𝑑𝑜𝑡𝜁𝜎(𝑟))𝛾𝑟 +
𝑠∏

𝑟=1
(1 − 𝑝1 ∗ 𝜁̇𝜎(𝑟))𝛾𝑟

,

… ,

𝑠∏
𝑟=1

(1 + 𝑝𝑚 ∗ 𝜁̇𝜎(𝑟))𝛾𝑟 −
𝑠∏

𝑟=1
(1 − 𝑝𝑚 ∗ 𝜁̇𝜎(𝑟))𝛾𝑟

𝑠∏
𝑟=1

(1 + 𝑝𝑚 ∗ 𝜁̇𝜎(𝑟))𝛾𝑟 +
𝑠∏

𝑟=1
(1 − 𝑝𝑚 ∗ 𝜁̇𝜎(𝑟))𝛾𝑟

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Proof. It can be proved by mathematical induction. □

4. mmF Einstein geometric operators

Here, the definitions and properties of the mpFEWG, mpFEOWG, and mFEHWG operators were introduced.

Definition 11. Let 𝜁𝑟 = (𝑝1 ∗ 𝜁𝑟, … , 𝑝𝑚 ∗ 𝜁𝑟) (𝑟 = 1, 2, … , 𝑠) be a ‘s’ mpFNs. Then mpFNs Einstein weighted geometric (mpFEWG) 
operator is a function 𝑚𝑝𝐹𝐸𝑊𝐺 ∶ 𝜁𝑠 → 𝜁 is defined below:

𝑚𝑝𝐹𝐸𝑊𝐺𝛿(𝜁1, 𝜁2,… , 𝜁𝑠) =
𝑠⨂

𝑟=1

(
𝜁𝑟

)𝛿𝑟

where 𝛿 = (𝛿1, 𝛿2, … , 𝛿𝑠)𝑇 be a weight vector of 𝜁𝑟, and 𝛿𝑟 > 0 and 
𝑠∑

𝑟=1
𝛿𝑟 = 1.

Theorem 11. Let 𝜁𝑟 = (𝑝1 ∗ 𝜁𝑟, … , 𝑝𝑚 ∗ 𝜁𝑟) (𝑟 = 1, 2, … , 𝑠) be a ‘s’ mpFNs. Then accumulated value of all mpFNs based on mpFEWG 
operator is also a mpFN, which follows as:

𝑚𝑝𝐹𝐸𝑊𝐺𝛿(𝜁1, 𝜁2,… , 𝜁𝑠)

=
𝑠⨂

𝑟=1

(
𝜁𝑟

)𝛿𝑟

=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

2
𝑠∏

𝑟=1
(𝑝1 ∗ 𝜁𝑟)𝛿𝑟

𝑠∏
𝑟=1

(2 − 𝑝1 ∗ 𝜁𝑟)𝛿𝑟 +
𝑠∏

𝑟=1
(𝑝1 ∗ 𝜁𝑟)𝛿

,

… ,

2
𝑠∏

𝑟=1
(𝑝𝑚 ∗ 𝜁𝑟)𝛿𝑟

𝑠∏
𝑟=1

(2 − 𝑝𝑚 ∗ 𝜁𝑟)𝛿𝑟 +
𝑠∏

𝑟=1
(𝑝𝑚 ∗ 𝜁𝑟)𝛿𝑟

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
𝑠∑
8

where 𝛿 = (𝛿1, 𝛿2, … , 𝛿𝑠) be a weight vector of 𝜁𝑟 (𝑟 = 1, 2, … , 𝑠), and 𝛿𝑟 > 0, and 
𝑟=1

𝛿𝑟 = 1.
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Example 2. Let 𝜁1 = (0.4, 0.6, 0.7, 0.5), 𝜁2 = (0.3, 0.4, 0.5, 0.6), 𝜁3 = (0.5, 0.7, 0.4, 0.2) be 4pFNs with a weight vector 𝛿 = (0.3, 0.3, 0.4)
for 4pFNs. Then by Theorem 11 gives

𝑚𝑝𝐹𝐸𝑊𝐺𝛿(𝜁1, 𝜁2, 𝜁3)

=
3⨂

𝑟=1

(
𝜁𝑟)𝛿𝑟

=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

2
𝑠∏

𝑟=1
(𝑝1 ∗ 𝜁𝑟)𝛿𝑟

𝑠∏
𝑟=1

(2 − 𝑝1 ∗ 𝜁𝑟)𝛿𝑟 +
𝑠∏

𝑟=1
(𝑝1 ∗ 𝜁𝑟)𝛿

,

… ,

2
𝑠∏

𝑟=1
(𝑝𝑚 ∗ 𝜁𝑟)𝛿𝑟

𝑠∏
𝑟=1

(2 − 𝑝𝑚 ∗ 𝜁𝑟)𝛿𝑟 +
𝑠∏

𝑟=1
(𝑝𝑚 ∗ 𝜁𝑟)𝛿𝑟

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

2 × (0.4)0.3 × (0.3)0.3 × (0.5)0.4

(2 − 0.4)0.3 × (2 − 0.3)0.3 × (2 − 0.5)0.4 + (0.4)0.3 × (0.3)0.3 × (0.5)0.4
,

2 × (0.6)0.3 × (0.4)0.3 × (0.7)0.4

(2 − 0.6)0.3 × (2 − 0.4)0.3 × (2 − 0.7)0.4 + (0.6)0.3 × (0.4)0.3 × (0.7)0.4
,

2 × (0.7)0.3 × (0.5)0.3 × (0.4)0.3

(2 − 0.7)0.3 × (2 − 0.5)0.3 × (2 − 0.4)0.4 + (0.7)0.3 × (0.5)0.3 × (0.4)0.4
,

2 × (0.5)0.3 × (0.6)0.3 × (0.2)0.4

(2 − 0.5)0.3 × (2 − 0.6)0.3 × (2 − 0.2)0.4 + (0.5)0.3 × (0.6)0.3 × (0.2)0.4
,

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
=
⟨
0.4034,0.5708,0.5109,0.3761

⟩
.

It is possible to prove Theorem 11 via mathematical induction.

Proof. If 𝑟 = 1 and 𝛿 = 1, then left side of the Theorem 11 becomes 𝑚𝑝𝐹𝐸𝑊𝐺𝛿(𝜁1, 𝜁2, … , 𝜁𝑠) =
𝑠⨂

𝑟=1

(
𝜁𝑟)𝛿𝑟 = (𝜁1)𝛿1 at that point, the 

right-hand side of the Theorem 11 changes into

𝑚𝑝𝐹𝐸𝑊𝐺𝛿(𝜁1, 𝜁2,… , 𝜁𝑠)

=
𝑠⨂

𝑟=1

(
𝜁𝑟

)𝛿𝑟

=
(
𝜁1

)𝛿1
= 𝜁1

=
⎛⎜⎜⎜⎝

2(𝑝1 ∗ 𝜁1)
(2 − 𝑝1 ∗ 𝜁1) + (𝑝1 ∗ 𝜁1)

,

… ,
2(𝑝𝑚 ∗ 𝜁1)

(2 − 𝑝𝑚 ∗ 𝜁1) + (𝑝𝑚 ∗ 𝜁1)

⎞⎟⎟⎟⎠
Thus, above technique is true for 𝑟 = 1. □

Let us follows from Theorem 11 holds for 𝑟 ≥ 𝑞, where 𝑞 ∈ℕ, which gives

𝑚𝑝𝐹𝐸𝑊𝐺𝛿(𝜁1, 𝜁2,… , 𝜁𝑞)

𝑞⨂( )𝛿𝑟
9

=
𝑟=1

𝜁𝑟
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=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

2
𝑞∏

𝑟=1
(𝑝1 ∗ 𝜁𝑟)𝛿𝑟

𝑞∏
𝑟=1

(2 − 𝑝1 ∗ 𝜁𝑟)𝛿𝑟 +
𝑞∏

𝑟=1
(𝑝1 ∗ 𝜁𝑟)𝛿𝑟

,

… ,

2
𝑞∏

𝑟=1
(𝑝𝑚 ∗ 𝜁𝑟)𝛿𝑟

𝑞∏
𝑟=1

(2 − 𝑝𝑚 ∗ 𝜁𝑟)𝛿𝑟 +
𝑞∏

𝑟=1
(𝑝𝑚 ∗ 𝜁𝑟)𝛿𝑟

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
Now for 𝑟 = 𝑞 + 1, then

𝑚𝑝𝐹𝐸𝑊𝐺𝛿(𝜁1, 𝜁2, 𝜁𝑞 … , 𝜁𝑞+1)

=
𝑞⨂

𝑟=1
(𝜁𝑟)𝛿𝑟 ⊗ (𝜁𝑞+1)𝛿𝑞+1

=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

2
𝑞∏

𝑟=1
(𝑝1 ∗ 𝜁𝑟)𝛿𝑟

𝑞∏
𝑟=1

(2 − 𝑝1 ∗ 𝜁𝑟)𝛿𝑟 +
𝑞∏

𝑟=1
(𝑝1 ∗ 𝜁𝑟)𝛿

,

… ,

2
𝑞∏

𝑟=1
(𝑝𝑚 ∗ 𝜁𝑟)𝛿𝑟

𝑞∏
𝑟=1

(2 − 𝑝𝑚 ∗ 𝜁𝑟)𝛿𝑟 +
𝑞∏

𝑟=1
(𝑝𝑚 ∗ 𝜁𝑟)𝛿𝑟

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⊗

⎛⎜⎜⎜⎜⎜⎝

2(𝑝1 ∗ 𝜁𝑞+1)𝛿𝑞+1

(2 − 𝑝1 ∗ 𝜁𝑞+1)𝛿𝑞+1 + (𝑝1 ∗ 𝜁𝑞+1)𝛿𝑞+1
,

… ,
2(𝑝𝑚 ∗ 𝜁𝑞+1)𝛿𝑞+1

(2 − 𝑝𝑚 ∗ 𝜁𝑞+1)𝛿𝑞+1 + (𝑝𝑚 ∗ 𝜁𝑞+1)𝛿𝑞+1

⎞⎟⎟⎟⎟⎟⎠

=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

2
𝑞+1∏
𝑟=1

(𝑝1 ∗ 𝜁𝑟)𝛿𝑟

𝑞+1∏
𝑟=1

(2 − 𝑝1 ∗ 𝜁𝑟)𝛿𝑟 +
𝑞+1∏
𝑟=1

(𝑝1 ∗ 𝜁𝑟)𝛿
,

… ,

2
𝑞+1∏
𝑟=1

(𝑝𝑚 ∗ 𝜁𝑟)𝛿𝑟

𝑞+1∏
𝑟=1

(2 − 𝑝𝑚 ∗ 𝜁𝑟)𝛿𝑟 +
𝑞+1∏
𝑟=1

(𝑝𝑚 ∗ 𝜁𝑟)𝛿𝑟

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

As a result, for all natural numbers satisfy the Theorem 11.
The mpFEWG operators abide by the subsequent characteristics.

Theorem 12. (Idempotency property) Let 𝜁𝑟 = (𝑝1 ∗ 𝜁𝑟, … , 𝑝𝑚 ∗ 𝜁𝑟) (𝑟 = 1, 2, … , 𝑠) be a ‘s’ mpFNs. If there all mpFNs are equal, i.e., 𝜁𝑟 = 𝜁

for all 𝑟 (𝑟 = 1, 2, … , 𝑠). Then

𝑚𝑝𝐹𝐸𝑊𝐺𝛿(𝜁1, 𝜁2,… , 𝜁𝑠) = 𝜁.

Proof. Let 𝜁𝑟 = (𝑝1 ∗ 𝜁𝑟, … , 𝑝𝑚 ∗ 𝜁𝑟) (𝑟 = 1, 2, … , 𝑠) be a ‘s’ mpFNs. If there all mpFNs are equal, i.e., 𝜁𝑟 = 𝜁 for all 𝑟 (𝑟 = 1, 2, … , 𝑠). 
Then, from equation (6), we have

𝑚𝑝𝐹𝐸𝑊𝐺𝛿(𝜁1, 𝜁2,… , 𝜁𝑠)

𝑠⨂( )𝛿𝑟
10

=
𝑟=1

𝜁𝑟
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=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

2
𝑠∏

𝑟=1
(𝑝1 ∗ 𝜁𝑟)𝛿𝑟

𝑠∏
𝑟=1

(2 − 𝑝1 ∗ 𝜁𝑟)𝛿𝑟 +
𝑠∏

𝑟=1
(𝑝1 ∗ 𝜁𝑟)𝛿

,

… ,

2
𝑠∏

𝑟=1
(𝑝𝑚 ∗ 𝜁𝑟)𝛿𝑟

𝑠∏
𝑟=1

(2 − 𝑝𝑚 ∗ 𝜁𝑟)𝛿𝑟 +
𝑠∏

𝑟=1
(𝑝𝑚 ∗ 𝜁𝑟)𝛿𝑟

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

⟨
2(𝑝1 ∗ 𝜁)

(2 − 𝑝1 ∗ 𝜁) + (𝑝1 ∗ 𝜁)
,… ,

2(𝑝𝑚 ∗ 𝜁)
(2 − 𝑝𝑚 ∗ 𝜁) + (𝑝𝑚 ∗ 𝜁)

⟩
=
⟨
𝑝1 ∗ 𝜁,… , 𝑝𝑚 ∗ 𝜁

⟩
= 𝜁.

Therefore, the theorem’s proof is finished. □

Theorem 13. (Boundedness property) Let 𝜁𝑟 = (𝑝1 ∗ 𝜁𝑟, … , 𝑝𝑚 ∗ 𝜁𝑟) (𝑟 = 1, 2, … , 𝑡) be a ‘s’ mpFNs. If 𝜁− =
𝑠⋂

𝑟=1
𝜁𝑟 and 𝜁+ =

𝑠⋃
𝑟=1

𝜁𝑟. Then,

𝜁− ≤𝑚𝑝𝐹𝐸𝑊𝐺𝛿(𝜁1, 𝜁2,… , 𝜁𝑠) ≤ 𝜁+.

Theorem 14. (Monocity property) Let 𝜁𝑟 = (𝑝1 ∗ 𝜁𝑟, … , 𝑝𝑚 ∗ 𝜁𝑟) and 𝜁 ′
𝑟
= (𝑝′1 ∗ 𝜁 ′

𝑟
, … , 𝑝′

𝑚
∗ 𝜁 ′

𝑟
) (𝑟 = 1, 2, … , 𝑠) be two sets of ‘s’ mpFNs 

such that 𝜁𝑟 ≤ 𝜁 ′
𝑟

for all 𝑟, then

𝑚𝑝𝐹𝐸𝑊𝐺𝛿(𝜁1, 𝜁2,… , 𝜁𝑠) ≤𝑚𝑝𝐹𝐸𝑊𝐺𝛿(𝜁 ′1, 𝜁
′
2,… , 𝜁 ′

𝑠
).

The mpFEOWG operator will now be defined.

Definition 12. Let mpFNs Einstein ordered weighted geometric (mpFEOWG) operator be a function 𝑚𝑝𝐹𝐸𝑂𝑊𝐺 ∶ 𝜁𝑠 → 𝜁 , where 
𝜁𝑟 = (𝑝1 ∗ 𝜁𝑟, … , 𝑝𝑚 ∗ 𝜁𝑟) for 𝑟 = 1, 2, … , 𝑠, such that

𝑚𝑝𝐹𝐸𝑂𝑊𝐺𝛿(𝜁𝜎(1), 𝜁𝜎(2),… , 𝜁𝜎 (𝑠)) =
𝑠⨂

𝑟=1

(
𝜁𝜎(𝑟)

)𝛾𝑟

where 𝛾 = (𝛾1, 𝛾2, … , 𝛾𝑠)𝑇 a set of weight vector on 𝜁𝑟 such that 𝛾𝑟 > 0 and 
𝑠∑

𝑟=1
𝛾𝑟 = 1. Also, 𝜎(1), 𝜎(2), … , 𝜎(𝑠) is the permutation of 

(1, 2, … , 𝑠) for which 𝜁𝜎(𝑠−1) ≥ 𝜁𝜎(𝑠) for all 𝑟 = 1, 2, … , 𝑠.

Theorem 15. Let 𝜁𝑟 = (𝑝1 ∗ 𝜁𝑟, … , 𝑝𝑚 ∗ 𝜁𝑟) (𝑟 = 1, 2, … , 𝑠) be a ‘s’ mpFNs. Then accumulated value of all mpFNs based on mpFEOWG 
operator is also a mpFN, which further follows as:

𝑚𝑝𝐹𝐸𝑂𝑊𝐺𝛿(𝜁𝜎(1), 𝜁𝜎(2),… , 𝜁𝜎 (𝑠))

=
𝑠⨂

𝑟=1

(
𝜁𝜎(𝑟)

)𝛾𝑟

=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

2
𝑠∏

𝑟=1
(𝑝1 ∗ 𝜁𝜎(𝑟))𝛾𝑟

𝑠∏
𝑟=1

(2 − 𝑝1 ∗ 𝜁𝜎(𝑟))𝛾𝑟 +
𝑠∏

𝑟=1
(𝑝1 ∗ 𝜁𝜎(𝑟))𝛾

,

… ,

2
𝑠∏

𝑟=1
(𝑝𝑚 ∗ 𝜁𝜎(𝑟))𝛾𝑟

𝑠∏
𝑟=1

(2 − 𝑝𝑚 ∗ 𝜁𝜎(𝑟))𝛾𝑟 +
𝑠∏

𝑟=1
(𝑝𝑚 ∗ 𝜁𝜎(𝑟))𝛾𝑟

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
where a collection of weight vectors be 𝛾 = (𝛾1, 𝛾2, … , 𝛾𝑠)𝑇 on 𝜁𝑟. Each 𝛾𝑟 must be larger than zero, and the total of all 𝛾𝑟 must be one. If 
𝜁𝜎(𝑠−1) is larger than or equal to 𝜁𝜎(𝑠) for every 𝑟 from 1 to 𝑠, then 𝜎(1), 𝜎(2), … , 𝜎(𝑠) are permutations of (1, 2, … , 𝑠).

The following properties of mpFEOWG can be proved easily.

Theorem 16. (Idempotency property) Let 𝜁𝑟 = (𝑝1 ∗ 𝜁𝑟, … , 𝑝𝑚 ∗ 𝜁𝑟) (𝑟 = 1, 2, … , 𝑠) be a ‘s’ mpFNs. If these all mpFNs are equal, i.e., 𝜁𝑟 = 𝜁
11

for all 𝑟 (𝑟 = 1, 2, … , 𝑠). Then
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𝑚𝑝𝐹𝐸𝑂𝑊𝐺𝛿(𝜁1, 𝜁2,… , 𝜁𝑠) = 𝜁.

Theorem 17. (Boundedness property) Let 𝜁𝑟 = (𝑝1 ∗ 𝜁𝑟, … , 𝑝𝑚 ∗ 𝜁𝑟) (𝑟 = 1, 2, … , 𝑠) be a ‘s’ mpFNs. If 𝜁− =
𝑠⋂

𝑟=1
𝜁𝑟 and 𝜁+ =

𝑠⋃
𝑟=1

𝜁𝑟. Then,

𝜁− ≤𝑚𝑝𝐹𝐸𝑂𝑊𝐺𝛿(𝜁1, 𝜁2,… , 𝜁𝑠) ≤ 𝜁+.

Theorem 18. (Monocity property) Let 𝜁𝑟 = (𝑝1 ∗ 𝜁𝑟, … , 𝑝𝑚 ∗ 𝜁𝑟) and 𝜁 ′
𝑟
= (𝑝′1 ∗ 𝜁 ′

𝑟
, … , 𝑝′

𝑚
∗ 𝜁 ′

𝑟
) (𝑟 = 1, 2, … , 𝑠) be two sets of ‘s’ mpFNs 

such that 𝜁𝑟 ≤ 𝜁 ′
𝑟

for all 𝑟, then

𝑚𝑝𝐹𝐸𝑂𝑊𝐺𝛿(𝜁1, 𝜁2,… , 𝜁𝑠) ≤𝑚𝑝𝐹𝐸𝑂𝑊𝐺𝛿(𝜁 ′1, 𝜁
′
2,… , 𝜁 ′

𝑠
),

where 𝜁 ′
𝑟

is any permutation of 𝜁𝑟 (𝑟 = 1, 2, … , 𝑠).

Theorem 19. (Commutative property) Let 𝜁𝑟 = (𝑝1 ∗ 𝜁𝑟, … , 𝑝𝑚 ∗ 𝜁𝑟) and 𝜁 ′
𝑟
= (𝑝′1 ∗ 𝜁 ′

𝑟
, … , 𝑝′

𝑚
∗ 𝜁 ′

𝑟
) (𝑟 = 1, 2, … , 𝑠) be two sets of mpFNs 

such that 𝜁𝑟 = 𝜁 ′
𝑟

for all 𝑟, then

𝑚𝑝𝐹𝐸𝑂𝑊𝐺𝛿(𝜁1, 𝜁2,… , 𝜁𝑠) =𝑚𝑝𝐹𝐸𝑂𝑊𝐺𝛿(𝜁 ′1, 𝜁
′
2,… , 𝜁 ′

𝑠
),

where 𝜁 ′
𝑟

is arbitrary permutation of 𝜁𝑟 for all (𝑟 = 1, 2, … , 𝑠).

In Definitions 11 and 12, the mpFEOWG operator’s weight now shows the ordered position of the mpFv rather than the weights 
themselves, whereas in the past the mpFEWG operator used the weights from the mFv. The mpF Einstein hybrid geometric (mpFE-
HWG) operator is a new operator that takes use of the mpFEWG and mFEOWG operations’ qualitative features.

Definition 13. Let 𝜁𝑟 = (𝑝1 ∗ 𝜁𝑟, … , 𝑝𝑚 ∗ 𝜁𝑟) (𝑟 = 1, 2, … , 𝑠) be a ‘s’ mpFNs. Then mpF Einstein hybrid weighted geometric (mpFEHWG) 
operator is a function 𝑚𝑝𝐹𝐸𝐻𝑊𝐺 ∶ 𝜁𝑠 → 𝜁 is defined below:

𝑚𝑝𝐹𝐸𝐻𝑊𝐺𝛿,𝛾 (𝜁1, 𝜁2,… , 𝜁𝑠) =
𝑠⨂

𝑏=1

(
𝜁̇𝜎(𝑟)

)𝛾𝑟

Also, 𝜎(1), 𝜎(2), … , 𝜎(𝑠) is the permutation of (1, 2, … , 𝑠) for which 𝜁𝜎(𝑠−1) ≥ 𝜁𝜎(𝑠) for all 𝑟 = 1, 2, … , 𝑠 for mpFNs 𝜁𝑟 and 𝛾 =

(𝛾1, 𝛾2, … , 𝛾𝑠)𝑇 is the associated weighted vector of the mpFNs (𝜁1, 𝜁2, … , 𝜁𝑠) such that 𝛾𝑟 > 0 and 
𝑠∑

𝑟=1
𝛾𝑟 = 1. 𝜁̇𝑟 is biggest mpFNs, 

where, 𝜁̇𝑟 = (𝑠𝛿)𝜁𝑠, (𝑟 = 1, 2, … , 𝑠) for which 𝛿 = (𝛿1, 𝛿2, … , 𝛿𝑠)𝑇 is the weight vector such that 𝛿𝑟 > 0 and 
𝑠∑

𝑟=1
𝛿𝑟 = 1.

Theorem 20. Let 𝜁𝑟 = (𝑝1 ∗ 𝜁𝑟, … , 𝑝𝑚 ∗ 𝜁𝑟) (𝑟 = 1, 2, … , 𝑠) be a ‘s’ mpFNs. Then accumulated values of mpFNs 𝜁𝑟 using mpFEHWG operator 
is also a mpFN. Further, we get

𝑚𝑝𝐹𝐸𝐻𝑊𝐺𝛿(𝜁𝜎(1), 𝜁𝜎(2),… , 𝜁𝜎 (𝑠))

=
𝑠⨂

𝑟=1

(
𝜁̇𝜎(𝑟)

)𝛾𝑟

=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

2
𝑠∏

𝑟=1
(𝑝1 ∗ 𝜁̇𝜎(𝑟))𝛾𝑟

𝑠∏
𝑟=1

(2 − 𝑝1 ∗ 𝜁̇𝜎(𝑟))𝛾𝑟 +
𝑠∏

𝑟=1
(𝑝1 ∗ 𝜁̇𝜎(𝑟))𝛾

,

… ,

2
𝑠∏

𝑟=1
(𝑝𝑚 ∗ 𝜁̇𝜎(𝑟))𝛾𝑟

𝑠∏
𝑟=1

(2 − 𝑝𝑚 ∗ 𝜁̇𝜎(𝑟))𝛾𝑟 +
𝑠∏

𝑟=1
(𝑝𝑚 ∗ 𝜁̇𝜎(𝑟))𝛾𝑟

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
Proof. By induction method it can be proved. □

5. MAGDM method based on multi-polar fuzzy sets

In this part, we build a MAGDM method with real attribute weights and mpFN values utilising mF Einstein aggregation procedures. 
Let 𝐴 = {𝐴1, 𝐴2, … , 𝐴𝑠} be a set of alternatives and a set of attributes be 𝐺 = {𝐺1, 𝐺2, … , 𝐺𝑟}, and 𝐸 = {𝑒1, 𝑒2, … , 𝑒𝑠} be a group 
12

of 𝑠 experts. Let 𝛿 = (𝛿1, 𝛿2, … , 𝛿𝑟) be a group of weighting vector of 𝐺𝑞 (𝑞 = 1, 2, … , 𝑣) are assigned by DMs such that 𝛿𝑞 > 0 and 
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𝑣∑
𝑞=1

𝛿𝑞 = 1. Let 𝑅 represent an m-polar fuzzy decision matrix denoted by 𝛾𝑘𝑣𝑠, where 𝛾𝑘𝑣𝑠 is a multi-polar fuzzy number specified by 

the experts 𝑒𝑘 ∈𝐸. In this context, 𝛾𝑘𝑣𝑠 is composed of elements (𝑝1 ∗ 𝜁𝑘𝑞𝑟, … , 𝑝𝑚 ∗ 𝜁𝑘𝑞𝑟)𝑣 × 𝑠, where 𝑝𝑗 ∗𝐴𝑞𝑟 (𝑗 = 1, 2, … , 𝑠) ∈ [0, 1]
indicates the membership degree for the alternatives 𝐴𝑞 satisfying the attribute 𝐺𝑟.

In the accompanying algorithm, we suggest employing the mpFEWA and mpFEWG operators to solve the MAGDM issue using the 
mpFNs data.

Step 1. Make a decision matrix-based arrangement of the mpFN data for each option 𝑅(𝑘) as:

𝑅(𝑘) =

𝐴1 𝐴2 ⋯ 𝐴𝑠

𝐺1
𝐺2
⋮
𝐺𝑟

⎡⎢⎢⎢⎢⎣
𝛾
(𝑘)
11 𝛾

(𝑘)
12 … 𝛾

(𝑘)
1𝑟

𝛾
(𝑘)
21 𝛾

(𝑘)
22 … 𝛾

(𝑘)
2𝑟

⋮ ⋮ ⋱ ⋮
𝛾
(𝑘)
𝑠1 𝛾

(𝑘)
𝑠2 … 𝛾

(𝑘)
𝑠𝑟

⎤⎥⎥⎥⎥⎦
Step 2: Normalize decision matrices, if required, cost type attribute change to benefit type by the following equations

𝛾̃ =
{

(𝑝1 ∗ 𝜁1),… , (𝑝𝑚 ∗ 𝜁1), If 𝐶𝑞 𝑎𝑟𝑒 𝑏𝑒𝑛𝑒𝑓𝑖𝑡 𝑡𝑦𝑝𝑒

(𝑝1 ∗ 𝜁1)𝑐 ,… , (𝑝𝑚 ∗ 𝜁1)𝑐 , If 𝐶𝑞 𝑎𝑟𝑒 𝑐𝑜𝑠𝑡 𝑡𝑦𝑝𝑒.

Step 2. Using operator mpFEWA to calculate expert information using expert weights Υ𝑘
𝑞
= 𝑚𝑝𝐹𝐸𝑊 𝐴𝜔(𝜁𝑘𝑞1, 𝜁

𝑘
𝑞2, … , 𝜁𝑘

𝑞𝑠
) =

𝑠⨁
𝑟=1

(
𝜔𝑘
𝑟
𝜁𝑘
𝑟
)

=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑠∏
𝑟=1

(1 + 𝑝1 ∗ 𝜁𝑘
𝑟
)𝜔𝑘

𝑟 −
𝑠∏

𝑟=1
(1 − 𝑝1 ∗ 𝜁𝑘

𝑟
)𝜔𝑘

𝑟

𝑠∏
𝑟=1

(1 + 𝑝1 ∗ 𝜁𝑘
𝑟
)𝜔𝑘

𝑟 +
𝑠∏

𝑟=1
(1 − 𝑝1 ∗ 𝜁𝑘

𝑟
)𝜔𝑘

𝑟

,

… ,

𝑠∏
𝑟=1

(1 + 𝑝𝑚 ∗ 𝜁𝑘
𝑟
)𝜔𝑘

𝑟 −
𝑠∏

𝑟=1
(1 − 𝑝𝑚 ∗ 𝜁𝑘

𝑟
)𝜔𝑘

𝑟

𝑠∏
𝑟=1

(1 + 𝑝𝑚 ∗ 𝜁𝑘
𝑟
)𝜔𝑘

𝑟 +
𝑠∏

𝑟=1
(1 − 𝑝𝑚 ∗ 𝜁𝑘

𝑟
)𝜔𝑘

𝑟

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
or Υ𝑘

𝑞
=𝑚𝑝𝐹𝐸𝑊𝐺𝜔(𝜁𝑘𝑞1, 𝜁

𝑘
𝑞2, … , 𝜁𝑘

𝑞𝑠
) =

𝑠⨂
𝑟=1

(
𝜁𝑘
𝑟
)𝜔𝑘

𝑟

=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

2
𝑠∏

𝑟=1
(𝑝1 ∗ 𝜁𝑘

𝑟
)𝜔𝑘

𝑟

𝑠∏
𝑟=1

(2 − 𝑝1 ∗ 𝜁𝑘
𝑟
)𝜔𝑘

𝑟 +
𝑠∏

𝑟=1
(𝑝1 ∗ 𝜁𝑘

𝑟
)𝜔𝑘

,

… ,

2
𝑠∏

𝑟=1
(𝑝𝑚 ∗ 𝜁𝑘

𝑟
)𝜔𝑘

𝑟

𝑠∏
𝑟=1

(2 − 𝑝𝑚 ∗ 𝜁𝑘
𝑟
)𝜔𝑘

𝑟 +
𝑠∏

𝑟=1
(𝑝𝑚 ∗ 𝜁𝑘

𝑟
)𝜔𝑘

𝑟

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
to compute accumulated values Ψ𝑞 (𝑞 = 1, 2, … , 𝑣) of the alternatives 𝐴𝑣.

Step 3. Now employ the criteria weighted decision data stated in matrix 𝑅, and the operator mpFEWA Υ𝑞 =𝑚𝑝𝐹𝐸𝑊𝐴𝛿(𝜁𝑞1, 𝜁𝑞2,

… , 𝜁𝑞𝑠) =
𝑠⨁

𝑟=1

(
𝛿𝑟𝜁𝑟)

=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑠∏
𝑟=1

(1 + 𝑝1 ∗ 𝜁𝑟)𝛿𝑟 −
𝑠∏

𝑟=1
(1 − 𝑝1 ∗ 𝜁𝑟)𝛿𝑟

𝑠∏
𝑟=1

(1 + 𝑝1 ∗ 𝜁𝑟)𝛿𝑟 +
𝑠∏

𝑟=1
(1 − 𝑝1 ∗ 𝜁𝑟)𝛿𝑟

,

… ,

𝑠∏
𝑟=1

(1 + 𝑝𝑚 ∗ 𝜁𝑟)𝛿𝑟 −
𝑠∏

𝑟=1
(1 − 𝑝𝑚 ∗ 𝜁𝑟)𝛿𝑟

𝑠∏
𝑟=1

(1 + 𝑝𝑚 ∗ 𝜁𝑟)𝛿𝑟 +
𝑠∏

𝑟=1
(1 − 𝑝𝑚 ∗ 𝜁𝑟)𝛿𝑟

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
𝑠⨂(

𝛿

13

or Υ𝑞 =𝑚𝑝𝐹𝐸𝑊𝐺𝛿(𝜁𝑞1, 𝜁𝑞2, … , 𝜁𝑞𝑠) =
𝑟=1

𝜁𝑟) 𝑟
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Table 1

3-polar fuzzy decision matrix.

𝐴1 𝐴2 𝐴3 𝐴4 𝐴5

𝐺1 (.5,.7,.5) (.6,.7,.8) (.4,.5,.6) (.5,.7,.4) (.8,.7,.9)
𝐺2 (.6,.8,.4) (.4,.3,.6) (.7,.9,.3) (.3,.6,.4) (.7,.6,.4)
𝐺3 (.5,.6,.7) (.7,.4,.5) (.6,.3,.5) (.5,.7,.8) (.8,.5,.3)
𝐺4 (.8,.5,.5) (.7,.8,.9) (.6,.5,.5) (.4,.6,.8) (.6,.5,.8)

=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

2
𝑠∏

𝑟=1
(𝑝1 ∗ 𝜁𝑟)𝛿𝑟

𝑠∏
𝑟=1

(2 − 𝑝1 ∗ 𝜁𝑟)𝛿𝑟 +
𝑠∏

𝑟=1
(𝑝1 ∗ 𝜁𝑟)𝛿

,

… ,

2
𝑠∏

𝑟=1
(𝑝𝑚 ∗ 𝜁𝑟)𝛿𝑟

𝑠∏
𝑟=1

(2 − 𝑝𝑚 ∗ 𝜁𝑟)𝛿𝑟 +
𝑠∏

𝑟=1
(𝑝𝑚 ∗ 𝜁𝑟)𝛿𝑟

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
to compute accumulated values Ψ𝑞 (𝑞 = 1, 2, … , 𝑣) of the alternatives 𝐴𝑣.

Step 3. Use the aggregated information from the mpFNs data Υ𝑞 to get the scoring function, 𝑀𝑃𝑆𝐹 (Υ𝑞), for each 𝐴𝑞 alterna-
tive (𝑞 = 1, 2, … , 𝑣). In order to find the best option, this scoring method will help rate all of the possibilities. In situations when 
there is no difference between the score functions Φ(Υ𝑞) and 𝑀𝑃𝑆𝐹 (Υ𝑟), the evaluation of the accuracy degrees of 𝑀𝑃𝐴𝐹 (Υ𝑞)
and 𝑀𝑃𝐴𝐹 (Υ𝑟) is carried out. For the purpose of determining the degrees of accuracy of the scoring functions 𝑀𝑃𝑆𝐹 (Υ𝑞) and 
𝑀𝑃𝑆𝐹 (Υ𝑟), this assessment makes use of all accessible mpFNs data. Then, the degrees of accuracy of their respective scoring 
functions, 𝑀𝑃𝑆𝐹 (Υ𝑞), are used to rank the alternatives 𝐴𝑞 .

Step 4. To choose the best option(s), rank all of the alternatives 𝐴𝑞 (𝑞 = 1, 2, … , 𝑣) according to Φ(Υ𝑞) (𝑞 = 1, 2, … , 𝑣).
Step 5. Stop.

6. Numerical example

We employ the suggested method to address an MAGDM issue.

6.1. Location selection for sponge iron factory

Because of the serious risks they pose to human health and the environment, sponge iron plants are considered “red category” 
enterprises. During production, these plants release silica, smoke, extremely high temperatures, and unburned carbon particles. 
Although electrostatic precipitators (ESPS) are required by the majority of states to reduce emissions, the extent to which they 
effectively decrease dust is still up for debate. Careful management is also required for the disposal of contaminants such as carbon 
dust, iron dust, and coal char that are collected from ESPS. A team of three specialists is appointed by a company to investigate five 
possible sites for a sponge iron factory. To choose the best site among alternatives 𝐴1, 𝐴2, 𝐴3, 𝐴4, and 𝐴5, the expert team takes 
into account the intermediate evaluations given by decision makers (DMs) and uses a weight vector of (0.5, 0.23, 0.27)𝑇 to aggregate 
their judgements.

𝐺1 : Infrastructures
𝐺2 : Environmental conditions
𝐺3 : Social impact
𝐺4 : Governmental policies.

Each criterion was then broken down into three sub-criteria in order to construct a 3-polar fuzzy set. The accessibility of transit, 
water, and coal are crucial to the infrastructure. Temperature, humidity, and wind speed are three environmental factors. The 
influence on society is dictated by institutions like hospitals, schools, and clinics. Among the many facets of government policy are 
licencing, subsidies, and institutional financing. The decision-makers need to weed out five possible locations because none of these 
matters more than the others. Locations are represented as 𝐴𝑞 (𝑞 = 1, 2, … , 4, 5) in the decision matrices that are given in Tables 1, 
2, and 3. Those in charge of making decisions give each characteristic a weight of (0.4, 0.3, 0.2, 0.1)𝑇 , respectively.

Step 1: In this case, experts have rated five different places, 𝐴1, 𝐴2, 𝐴3, 𝐴4, and 𝐴5, using four different criteria, 𝐺1, 𝐺2, 𝐺3, 
and 𝐺4. Here, we welcome three decision-makers, represented by 𝑒 = (𝑒1, 𝑒2, 𝑒3), whose tastes are encapsulated in the weight vector 
𝑤 = (0.5, 0.23, 0.27)𝑇 . Their mission is to find the best spot to set up a sponge iron manufacturing. Tables 1, 2, and 3 present the 
decision-makers’ rankings of the sites, correspondingly.

Step 2: Since each characteristic represents a sort of benefit, standardisation is unnecessary.
Step 3: Utilizing the mpFEWA operator, we combine the insights provided by three experts, as outlined in Table 4, employing a 
14

weighting vector of (.5, .23, .27)𝑇 .



Heliyon 10 (2024) e27712C. Jana and I.M. Hezam

Table 2

3-polar fuzzy decision matrix.

𝐴1 𝐴2 𝐴3 𝐴4 𝐴5

𝐺1 (.6,.8,.4) (.5,.6,.5) (.3,.3,.2) (.4,.3,.2) (.7,.6,.8)
𝐺2 (.3,.5,.5) (.6,.4,.7) (.4,.6,.5) (.5,.6,.6) (.6,.5,.5)
𝐺3 (.4,.5,.6) (.8,.5,.2) (.5,.6,.7) (.4,.7,.3) (.7,.6,.4)
𝐺4 (.6,.4,.7) (.2,.4,.6) (.7,.8,.9) (.6,.4,.9) (.5,.6,.7)

Table 3

3-polar fuzzy decision matrix.

𝐴1 𝐴2 𝐴3 𝐴4 𝐴5

𝐺1 (.5,.7,.5) (.4,.5,.6) (.6,.2,.6) (.5,.4,.4) (.4,.5,.6)
𝐺2 (.4,.6,.4) (.6,.5,.8) (.3,.5,.9) (.3,.5,.6) (.7,.6,.8)
𝐺3 (.5,.4,.5) (.7,.6,.4) (.6,.4,.5) (.5,.6,.7) (.6,.5,.5)
𝐺4 (.7,.6,.7) (.4,.3,.5) (.8,.6,.7) (.8,.4,.3) (.4,.3,.6)

Table 4

Aggregated values for the decision-makers.

𝐴1 𝐴2 𝐴3 𝐴4 𝐴5

𝐺1 (.5244,.7261,.4780) (.5280,.6300,.6977) (.4383,.3804,.5229) (.4780,.5506,.3565) (.6979,.6300,.8262)
𝐺2 (.4870,.6977,.4240) (.5068,.3084,.6872) (.5474,.7794,.5906) (.3493,.5746,.5068) (.6790,.5784,.5613)
𝐺3 (.4780,.5280,.6300) (.7261,.4818,.4100) (.5784,.4041,.5528) (.4780,.6752,.6935) (.7333,.5244,.3804)
𝐺4 (.7366,.5074,.6097) (.5322,.6233,.7794) (.6872,.6135,.6897) (.5836,.5068,.7494) (.5280,.4759,.7333)

Table 5

Aggregated values for the decision-makers.

𝐴1 𝐴2 𝐴3 𝐴4 𝐴5

𝐺1 (.5220,.7225,.4756) (.5182,.6196,.6707) (.4213,.3526,.4781) (.4756,.5060,.3436) (.6550,.6196,.7919)
𝐺2 (.4641,.6707,.4216) (.4932,.3700,.6745) (.5007,.7124,.4722) (.3392,.5719,.4932) (.6763,.5760,.5164)
𝐺3 (.4756,.5182,.6196) (.7255,.4720,.3865) (.5760,.3842,.5425) (.4756,.6722,.6335) (.7207,.5220,.3700)
𝐺4 (.7249,.5006,.5952) (.4688,.5419,.7124) (.6749,.5900,.6362) (.5389,.4932,.6560) (.5182,.4585,.7207)

Employing the mpFEWA operator to ascertain aggregated data, we may select an appropriate place 𝐴𝑚 (𝑚 = 1, 2, … , 𝑢):

• Step 4. Here, using the mpFEWA operator to accumulated preference values Ω𝑚 of 𝐴𝑚 (𝑚 = 1, 2, … , 5) are Ω1 =
(.5306, .6643, .5102), Ω2 = (.5689, .5156, .6581), Ω3 = (.5290, .5584, .5682), Ω4 = (.4530, .5809, .5261), Ω5 = (.6855, .5801, .6829)

• Step 5. Score values of Φ(Ω𝑚) (𝑚 = 1, 2, … , 5) using Equation (1) are as follows: Φ(Ω1) = .5684, Φ(Ω2) = .5807, Φ(Ω3) = .5519, 
Φ(Ω4) = .5200, Φ(Ω5) = .6495

• Step 6. Ranking results of 𝐴𝑚 (𝑚 = 1, 2, … , 5) in accordance with the score values of Φ(Ω𝑚) (𝑚 = 1, 2, … , 5) of the overall mpFNs 
as 𝐴5 ≻𝐴2 ≻𝐴1 ≻𝐴3 ≻𝐴4.

• Step 6. 𝐴5 is suggested as most favourable location.

If the operator mpFEWG is employed instead, the issue can be resolved in a similar fashion.
Step 1: As previous from Step 1-2.
Step 3: To apply the mpFEWG operator with the weighting vector (.5, .23, .27)𝑇 for aggregating information from the three experts 

listed in Table 5.

• Step 4. Using mpFEWG operator to obtain the overall accumulated values of 𝑄𝑎 (𝑎 = 1, 2, … , 5)Ω1 = (.5182, .6403, .4965), Ω2 =
(.5433, .4998, .6110), Ω3 = (.4973, .4742, .5035), Ω4 = (.4368, .5556, .4666), Ω5 = (.6596, .5694, .6033)

• Step 5. Compute score values Φ(Ω𝑚) (𝑚 = 1, 2, … , 5) of Ω𝑚 (𝑚 = 1, 2, … , 5) as: Φ(Ω1) = .5517, Φ(Ω2) = .5514, Φ(Ω3) = .4917, 
Φ(Ω4) = .4863, Φ(Ω5) = .6108

• Step 6. Ranking all 𝐴𝑚 (𝑚 = 1, 2, … , 5) in the value of score functions Φ(Ω𝑎) (𝑎 = 1, 2, … , 5) of the overall mpFNs as 𝐴5 ≻ 𝐴1 ≻
𝐴2 ≻𝐴3 ≻𝐴4.

• Step 4. Return 𝐴5 is selected as suitable location.

According to the previous study, location 𝐴5 is often favoured when the mpFEWA and mpFEWG operators are used.
15

What follows is a comparison of the suggested study’s efficiency and efficacy to other current approaches.
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Table 6

The values 𝐴𝑉𝑞 of alternatives for mpFEWA operator.

Alternatives 𝐺1 𝐺2 𝐺3 𝐺4

𝐴1 .5762 .5362 .5453 .6179
𝐴2 .6186 .5008 .5393 .6449
𝐴3 .4472 .6391 .5118 .6635
𝐴4 .4617 .4769 .6156 .6133
𝐴5 .7180 .6062 .5460 .5791
𝐴𝑉 .5807 .5638 .5618 .6288

Table 7

The values of 𝑃𝐷𝐴𝑞 under mpFEWA.

Alternatives 𝐺1 𝐺2 𝐺3 𝐺4

𝐴1 .0000 .0000 .0000 .0000

𝐴2 .0653 .0000 .0000 .0256
𝐴3 .0000 .1336 .0000 .0552
𝐴4 .0000 .0000 .0958 .0000
𝐴5 .2364 .0755 .0000 .0000

Table 8

The values of 𝑁𝐷𝐴𝑞 under mpFEWA.

Alternatives 𝐺1 𝐺2 𝐺3 𝐺4

𝐴1 .0078 .0490 .0294 .0173
𝐴2 .000 .1117 .0400 .0000
𝐴3 .2299 .0000 .0889 .0000
𝐴4 .2049 .1541 .0000 .0623
𝐴5 .0000 .0000 .0281 .0790

7. Verification by EDAS method

We use an EDAS approach to verify the outcomes of the suggested mpFEWA or mpFEWG procedure. Tables 4 and 5 display the 
combined assessments of all decision makers using the m-polar fuzzy weighted Einstein geometric operator or the m-polar fuzzy 
weighted Einstein averaging operator. Here, we use the criterion weight vector 𝜔 = (0.4, 0.3, 0.2, 0.1)𝑇 . The data from Table 4 is used 
to use the EDAS approach. The steps listed below are what we use to resolve this issue.
Step 1-3: It is same as the previous Algorithm.
Step 4: Table 6 lists the score values for the options, and this is where we compute the average solution (AV).

𝐴𝑉 =
[
𝐴𝑉𝑟

]
=
[ 𝑣∑
𝑞=1

𝐴𝑞𝑟

𝑣

]
1×𝑠

=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑣∏
𝑞=1

(1 + 𝑝1 ∗ 𝜁𝑟)1∕𝑣 −
𝑣∏

𝑞=1
(1 − 𝑝1 ∗ 𝜁𝑟)1∕𝑣

𝑣∏
𝑞=1

(1 + 𝑝1 ∗ 𝜁𝑟)1∕𝑣 +
𝑣∏

𝑞=1
(1 − 𝑝1 ∗ 𝜁𝑟)1∕𝑣

,

… ,

𝑣∏
𝑞=1

(1 + 𝑝𝑚 ∗ 𝜁𝑟)1∕𝑣 −
𝑣∏

𝑞=1
(1 − 𝑝𝑚 ∗ 𝜁𝑟)1∕𝑣

𝑣∏
𝑞=1

(1 + 𝑝𝑚 ∗ 𝜁𝑟)1∕𝑣 +
𝑣∏

𝑞=1
(1 − 𝑝𝑚 ∗ 𝜁𝑟)1∕𝑣

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
or

=
For convenience, we get the modified form of PDA and NDA based on score function for the operator mpFEWA are given in 

Table 7 and Table 8 by the formulas Equations (2) and (3) as follows:

𝑃𝐷𝐴 =
[
𝑃𝑞𝑟

]
𝑣×𝑠

=
max

(
0,
(
Φ(𝐴𝑞𝑟) − Φ(𝐴𝑉𝑞)

))
Φ(𝐴𝑉𝑞)

(2)

𝑁𝐷𝐴 =
[
𝑁𝑞𝑟

]
𝑣×𝑠

=
max

(
0,
(
Φ(𝐴𝑉𝑞) − Φ(𝐴𝑞𝑟))

)
Φ(𝐴𝑉𝑟)

(3)

Step 5: The weighted sums of PDA and NDA using attribute’s weight denoted as 𝑆𝑃𝑟 and 𝑁𝑃𝑟 are obtained in the following 
16

formulas given in equation (4):
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Table 9

Aggregated values using mFHWA (mFHWG) operators on 3FNs.

Alternative 𝑚𝐹𝐻𝑊𝐴 𝑚𝐹𝐻𝑊𝐺

𝐴1 (.5699, .7014, .5192) (.5562, .6866, .5036)
𝐴2 (.5814, .5611, .7185) (.5616, .5048, .6832)
𝐴3 (.5633, .6517, .4891) (.5401, .5552, .4669)
𝐴4 (.4340, .6627, .5554) (.4222, .6590, .5025)
𝐴5 (.7568, .6167, .7103) (.7486, .6067, .5849)

Table 10

Score of the alternatives using mFHWA and mFHWG operators.

Methods 𝐴1 𝐴2 𝐴3 𝐴4 𝐴5

𝑚𝐹𝐻𝑊𝐴 .5968 .6203 .5680 .5507 .6946
𝑚𝐹𝐻𝑊𝐺 .5821 .5832 .5207 .5279 .6467

Table 11

Comparison of Methods.

Operators Ranking orders

Waseem et al. [39] mpFHWA 𝐴5 ≻𝐴2 ≻𝐴1 ≻𝐴3 ≻𝐴4
Waseem et al. [39] mpFHWG 𝐴5 ≻𝐴2 ≻𝐴1 ≻𝐴4 ≻𝐴3
Proposed mpFEWA 𝐴5 ≻𝐴2 ≻𝐴1 ≻𝐴3 ≻𝐴4
Proposed mpFEWG 𝐴5 ≻𝐴2 ≻𝐴1 ≻𝐴4 ≻𝐴3.

𝑆𝑃𝑞 =
𝑠∑

𝑟=1
𝛿𝑟𝑃𝐷𝐴𝑞𝑟, 𝑁𝑃𝑞 =

𝑠∑
𝑟=1

𝛿𝑟𝑁𝐷𝐴𝑞𝑟. (4)

The obtained results are: 𝑆𝑃1 = .0000, 𝑆𝑃2 = .0287, 𝑆𝑃3 = .0456, 𝑆𝑃4 = .0192, 𝑆𝑃5 = .1172𝑁𝑃1 = .0254, 𝑁𝑃2 = .0415, 𝑁𝑃3 = .1097, 
𝑁𝑃4 = .1344, 𝑆𝑃5 = .0135

Step 6: The normalized results of equation (5) can be obtained based on equation (4):

𝑁𝑆𝑃𝑞 =
𝑆𝑃𝑞

max
𝑞

(
𝑆𝑃𝑞

) , 𝑁𝑆𝑁𝑞 = 1 −
𝑁𝑃𝑞

max
𝑞

(
𝑁𝑃𝑞

) . (5)

Here, the results are as follows: 𝑁𝑆𝑃1 = .0000, 𝑁𝑆𝑃2 = .2449, 𝑁𝑆𝑃3 = .3891, 𝑆𝑃4 = .1638, 𝑆𝑃5 = 1.0000𝑁𝑆𝑁1 = .8110, 
𝑁𝑆𝑁2 = .6912, 𝑁𝑆𝑁3 = .1838, 𝑁𝑆𝑁4 = .0000, 𝑁𝑆𝑁5 = .8996.
Step 7: The appraisal score (AS) based on each alternatives values 𝑁𝑆𝑃𝑞 and 𝑁𝑆𝑁𝑞 as per equation (6) below:

𝐴𝑆𝑝 =
1
2

(
𝑁𝑆𝑃𝑞 +𝑁𝑆𝑁𝑞

)
. (6)

are 𝐴𝑆1 = .4055, 𝐴𝑆2 = .4681, 𝐴𝑆3 = .2865, 𝐴𝑆4 = .0819 and 𝐴𝑆5 = .9498.
Step 8:The order of alternatives as per 𝐴𝑆𝑝 values is 𝐴5 ≻𝐴2 ≻𝐴1 ≻𝐴3 ≻𝐴4. Hence, the favourable location is 𝐴5.

7.1. Comparative results

In an effort to provide the groundwork for comparing their study to current challenges, Waseem and colleagues [39] were 
pioneers in introducing the m-polar fuzzy environment. To conduct their study, they utilised two operators: the m-polar fuzzy 
Hamacher weighted geometric (mFHWG) operator and the m-polar fuzzy Hamacher weighted average (mFHWA). Table 9 displays 
the assessment matrix that was used for this comparative analysis. It was created from Tables 4 and 5. Afterwards, Table 10 displays 
the computed score values, which are defined in Equation 2.

Table 11 shows the state-of-the-art approach using m-polar fuzzy Hamacher aggregation operators compared to the suggested 
model [39]. The table shows that the ranking order 𝐴5 ≻ 𝐴2 ≻ 𝐴1 ≻ 𝐴3 ≻ 𝐴4 is reached when the present mFHWA operator is used, 
which is the same order as when the proposed mpFEWA operator is used. Likewise, the ranking order 𝐴5 ≻ 𝐴2 ≻ 𝐴1 ≻ 𝐴4 ≻ 𝐴3
is maintained when the mFHWG operator is used, matching the ranking that was achieved with the suggested mpFEWG operator. 
The recommended choice is 𝐴5, as highlighted by all operator selections. Therefore, the proposed method is trustworthy, providing 
decision-makers with a new and flexible way to tackle m-polar fuzzy MADM problems.

8. Conclusion

In that article, the weighted geometric operator, the order weighted geometric operator, and the hybrid weighted operator under 
17

Einstein triangular norms are among the novel operators introduced in this study that are designed for m-polar fuzzy environments. 
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It delves into the basic characteristics of these operators, such as their idempotency, monotonicity, boundedness, and commutativity. 
The study proposes using m-polar Einstein weighted geometric and Einstein weighted averaging operations to address Multiple 
Attribute Group Decision Making (MAGDM). The success of this technique is illustrated by a practical case and comparative analysis. 
To provide decision-makers with more alternatives for optimising parameters, parameter sensitivity analysis is also performed. So, 
the suggested model is able to reliably process complicated data and produce accurate computational results, complicated bipolar 
fuzzy sets, m-polar hesitant fuzzy systems, and other types of complicated fuzzy sets are all under its purview. It also works in settings 
with operators that may go in both directions, such as the Bonferroni Mean, Heronian Mean, Interactive, and Einstein operators. In 
addition, group decision-making using TOPSIS is useful for ATM site selection [49], developing the Weighted Spearman’s correlation 
coefficient [50] or WS rank similarity coefficient [51], Enhancing Industry 4.0 Adoption [52], Energy-Product Systems Modelling 
[53], distributive risk assessment [54], sustainable strategies [55], and city supply chain management [56]. Economic models, 
intelligent diagnostics, business and management, and three-way decision-making all feature potentially unpredictable contexts.
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[54] V. Pajić, M. Andrejić, M. Sternad, FMEA-QFD approach for effective risk assessment in distribution processes, J. Intell. Manag. Decis. 2 (2) (2023) 46–56, https://

doi .org /10 .56578 /jimd020201.
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