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Abstract: The aim of this study was to investigate the load to fracture and fracture pattern of
prosthetic frameworks for tooth-supported fixed partial dentures (FPDs) fabricated with different
subtractive computer-aided design and computer-aided manufacturing (CAD-CAM) materials.
Materials and Methods: Thirty standardized specimens with two abutments were fabricated to
receive three-unit posterior FDP frameworks with an intermediate pontic. Specimens were randomly
divided into three groups (n = 10 each) according to the material: group 1 (MM)—milled metal;
group 2 (L)—zirconia; and group 3 (P)—Polyetheretherketone (PEEK). The specimens were thermo-
cycled and subjected to a three-point bending test until fracture using a universal testing machine
(cross-head speed: 1 mm/min). Axial compressive loads were applied at the central fossa of the
pontics. Data analysis was made using one-way analysis of variance, Tamhane post hoc test, and
Weibull statistics (α = 0.05). Results: Significant differences were observed among the groups for the
fracture load (p < 0.0001). MM frameworks showed the highest fracture load values. The PEEK group
registered higher fracture load values than zirconia samples. The Weibull statistics corroborated
these results. The fracture pattern was different among the groups. Conclusions: Milled metal
provided the highest fracture load values, followed by PEEK, and zirconia. However, all tested
groups demonstrated clinically acceptable fracture load values higher than 1000 N. PEEK might be
considered a promising alternative for posterior FPDs.

Keywords: zirconia; PEEK; CAD-CAM; fracture load; fixed partial dentures

1. Introduction

In the last few decades, developments in materials and technologies had supposed
an advance in the fabrication of fixed dental prostheses (FDPs) [1,2]. Computer-aided
design and computer-aided manufacturing (CAD-CAM) technology allows for superior
results to be obtained, with more time efficiency, an improvement in cost/effectiveness,
and higher-precision prostheses compared to conventional manufacturing techniques [3].
CAD-CAM techniques involve additive, or layer-by-layer, and subtractive manufacturing
processes [2,3]. Subtractive technology is based on processes in which machines with
motorized tools, such as saws, lathes, milling machines, and drills, are used to mechanically
cut solid blocks and achieve the desired geometry as controlled by a software program.
The main advantage of subtractive technology is the ability to create complex geometries
with no imperfections [4]. However, its main drawbacks are the expensive machinery, the
working time, the wear suffered by the equipment, and the large amount of residual and
non-recoverable material. Most dental materials are available for machining, which is an
additional advantage compared to other CAD-CAM technologies [5].

Despite the advances of CAD-CAM technology, the success of the restorations is deter-
mined by three main factors: marginal fit, fracture resistance, and esthetics [6]. Moreover,
mechanical properties and load to fracture are important factors to determinate the use of
a restorative material that should support chewing forces and protect the tooth structure.
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In addition, in the oral cavity, temperature variations occur constantly that can produce
important alterations in the material’s strength. Therefore, artificial aging is recommended
during in vitro studies to simulate the oral environment conditions [7–9].

To date, cobalt–chromium (Co-Cr) alloys are widely used for the fabrication of pros-
thetic frameworks [2,3]. When processed by CAD-CAM technology it allows for obtaining
more homogeneous and refined microstructures, assuming an additional improvement
in their mechanical properties [10]. However, the main material’s goal is to achieve an
improvement in esthetic, without decreasing resistance. High-strength ceramics such as
zirconia fabricated with CAD-CAM technologies were developed to eliminate metal frame-
works [11]. Zirconia offers high toughness, fracture strength, and reliability, acquiring a
major role in the manufacture of frameworks for crowns and fixed partial dentures (FPDs),
even in the posterior regions [12]. However, it is a very opaque material that must be cov-
ered with feldspathic ceramic to improve the esthetic results [11,13]. However, the interface
between the two ceramics is one of the weakest aspects, and delamination and chipping
of the veneering ceramic is the main failure mode of bilayer zirconia restorations [11–14].
A recent study evaluated the zirconia–veneer interface and reported new insights that
explain the high chipping rates observed [15]. Successive generations of zirconia have been
developed to solve the chipping problem of the first-generation zirconia and to improve its
translucency [11,14].

Currently, new polymeric materials have been developed to fabricate dental frame-
works. These materials have different matrix composition and several percentages of
ceramic or resin [16]. Polymeric materials are available in monolithic blocks for CAD-CAM
technology, presenting better properties than manually processed polymeric materials [16].

Polyetheretherketone (PEEK) is the most used polymer in the dental area, and has
a low modulus of elasticity (3–4 MPa), similar to human cortical bone. In addition, it is
characterized by its biocompatibility, dimensional stability, and higher fracture strength
than other plastic materials used in dentistry, even when subjected to temperature varia-
tions [17]. However, it is not esthetic enough due to its greyish-brown color, and veneering
is essential [18]. Nevertheless, veneering with light-curing composites makes the chipping
clinically repairable and prevents the wear of opposing teeth [19,20]. PEEK is a relatively
new material that is becoming widespread in clinical practice, although few studies are
available on CAD-CAM FPDs [21].

Therefore, the aim of this study was to evaluate and compare the fracture load and
fracture patterns of metal, zirconia, and PEEK 3-unit posterior CAD-CAM milled FPD
frameworks. The null hypotheses tested were that no differences would be found in load
to fracture among the materials, and that the fracture patterns would not differ among
the materials.

2. Materials and Methods
2.1. Preparation of Specimens

Thirty standardized specimens with two abutments and a base were machined in
stainless steel 316L Alloy (UNS S3 1603) rods in the Mechanical Workshop of the Physical
Science Faculty (University Complutense of Madrid, Madrid, Spain). The abutments’
configuration was 5 mm in height, 6◦ angle of convergence, 1 mm width chamfer, and
rounded angles to simulate clinical conditions. The bases were designed as follows: 30 mm
in length, 4.5 mm in height, 17 mm in width, and with 2 centered perforations separated by
7 mm [1,6,8,13,22]. The features of the specimens were introduced in the design program
(AutoCAD 2011; Autodesk, San Rafael, CA, USA). The specimens were manufactured using
the EMCO Turn 343 numerical control lathe (EMCO Group; Hallein, Austria) governed by
a software (SINUMERIK; Siemens AG; Munich, Germany) [23]. The dies were randomly
screwed onto the metallic base to receive posterior 3-unit FPDs with an intermediate
pontic, so that one of them simulated a first mandibular premolar and the other a first
mandibular molar.
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Three types of commercially available CAD-CAM milled materials were used. The
specimens were randomly assigned to three groups (n = 10 each according to the re-
sults of power analysis) categorized according to the materials used to fabricate the FPD
frameworks: MM—milled Co-Cr (Starbond CoS Disc basic; Scheftner, Mainz, Germany);
L—zirconia (Lava Zirconia; 3M-ESPE, Seefeld, Germany) and P—milled PEEK (Bio-P;
DEGOS Dental, Regenstauf, Germany).

To fabricate the MM frameworks the specimens were scanned and digitized (D750
scanner; 3Shape, Copenhagen, Denmark) and the data were entered into specific design
software (CAD Molder Builder; 3Shape) [24]. The frameworks were designed with a
thickness of 0.5 mm, a rounded connector of 9 mm2 (3 mm × 3 mm), and an internal space
of 50 µm for the luting agent. These parameters were programmed with the aforemen-
tioned software. The frameworks were milled from sintered Co-Cr discs in the milling
unit (Ultrasonic 10 linear; SAUER-DMG Mori, Stipshausen, Germany) according to the
manufacturer´s instructions. The alloy composition was as follows: Co—59%; Cr—25%;
W—9.5%; Mo—3.5%; Si—1%; C, Fe, Mn, and N—≤1.5%. After milling, the specimens
were cleaned with water steam and sandblasted with 150 µm alumina particles for 10 s at a
pressure of 2 bar to remove the surface contaminants.

Zirconia frameworks (first-generation zirconia) were digitized (Lava Scan ST; 3M ESPE,
Seefeld, Germany) and designed (Lava Design Software; 3M ESPE). The same parameters
as in the metal group were programmed into the software. The design was enlarged by
20% to offset post-sintering shrinkage [8,13,22,23]. Manufacturing was performed from
pre-sintered zirconia blocks using the milling unit (Lava Form; 3M ESPE), and sintered
after milling in a specific furnace (Lava Therm; 3M ESPE) at 1500 ◦C for 4 h [13,22,23].

PEEK frameworks were scanned (Lava Scan ST; 3M ESPE) and designed with specific
CAD software (DWOS Lava Edition; Dental Wings, Montreal, QC, Canada). The following
parameters were programmed: internal space of 50 µm for the cement, wall thickness of
the copings of 0.7 mm, and rounded connectors of 16 mm2 (4 mm × 4 mm), following the
manufacturer´s instructions [25]. The frameworks were milled from PEEK discs in the
milling unit (Yenadent D43; Yenadent, Istanbul, Turkey).

A specialist technician calibrated each milling unit before milling. After milling, the
thickness of each framework was verified by taking measures at different locations with a
digital micrometer (Mitutoyo Co; Tokyo, Japan) with an accuracy of 0.01 mm [13,22].

All frameworks were luted with glass ionomer cement (Ketac-Cem EasyMix; 3M-ESPE)
in standard fashion to their corresponding master dies by the same operator at room tem-
perature (18 to 24 ◦C) and 50 ± 10% relative humidity [1,8,13,22]. A constant seating load
of 10 N was applied for 10 minutes with a torque wrench (Ziacom, Madrid, Spain) fitted to
a customized device (Mechanical Workshop of Physical Science, University Complutense
of Madrid) [13,22].

2.2. Mechanical Test

After 48 h of water storage, each group was subjected to thermal cycling in a climatic
chamber (CCK0/81; Dycometal, Viladecans, Spain) controlled with Eurotherm iTools
software (Eurotherm, Worthing, UK). The thermo-cycling was performed in Fusayama-
Meyer artificial saliva (LCTech, Obertaufkirchen, Germany). Each specimen underwent
6000 thermal cycles at 5 ◦C and at 55 ◦C. All frameworks were then further subjected to a
three-point bending test until fracture (National Center for Metallurgical Research-CENIM;
CSIC, Madrid, Spain) using a universal testing machine at a crosshead speed of 1 mm/min
(ME 405/10; SERVOSIS, Pinto, Spain) [1,8]. Axial compressive loads were applied at the
central fossa of the pontics until the fracture initiation of the restorations, defined by a sharp
fall in the loading curve, together with the visible fracture of the framework [1,8,13,22].
Data on the load to fracture were automatically recorded in Newtons (N) using a software
program (PCD2K; SERVOSIS) that allowed force (N)–displacement (mm) curves to be
created [1,8,13,22].
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2.3. Statistical Analysis

Means and standard deviations (SD) were calculated for each group. The Shapiro–
Wilk test confirmed that the data were normally distributed. One-way analysis of variance
and a Tamhane test were performed for comparisons of the load to fracture among the
groups. In addition, the Weibull characteristic fracture load (0) and the Weibull modulus
(m) were also analyzed [8,13,25]. Statistical analysis was performed with statistical software
(IBM SPSS Statistics, v22.0; IBM Corp, Armonk, NY, USA). Statistical significance was set
at α = 0.05.

3. Results

Table 1 and Figure 1 display the mean load to fracture values for the experimental
groups. All materials tested recorded load to fracture values higher than 1000 N. ANOVA
revealed significant differences among the groups (p < 0.0001; f = 1941.86). Tamhane’s post
hoc test indicated that the load to fracture of the MM group was significantly higher than the
other groups (p < 0.0001) (Table 2). These data were corroborated by the Weibull distribution
parameters (Figure 2). No significant differences were found in the shape parameter (m),
and this means that the behavior of the data is more predictable and that the sample is
not very variable. However, significant differences were observed in the scale parameter
(σ0) for all tested groups. The MM group presented the highest σ0 values (11,398.64 N).
This means that 63.2% of the samples will fracture at 11,398.64 N, achieving the highest
probability of survival. The zirconia group presented the lowest values (1917.04 N).

Table 1. Means, standard deviations (SD), maximum and minimum fracture load values (N) of
all materials.

Group N Mean SD Min Max

Milled Metal 10 11,156.61 530.69 10,430.14 11,860.94
Zirconia 10 1859.95 128.53 1687.68 2016.84

PEEK 10 3132.27 307.15 2730.28 3729.88
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Figure 1. Graph of fracture load values among the groups (MM: milled metal; L: zirconia; P: PEEK).

The fracture pattern was different for each of the materials. The MM group showed
a ductile failure starting at the gingival surface of the connectors in all frameworks [22]
(Figure 3). In the zirconia group the fracture mainly occurred (80%) at the loading point
through one or both connectors. The fracture started at the cervical area of the connectors
and spread diagonally toward the occlusal surface of the pontic [1,22] (Figure 4). In the
remaining 20% of the frameworks the fracture arose at the axial surface of one of the
retainers. The PEEK group showed a ductile fracture. The cracks began in the upper
zone of the connectors in all frameworks. Plastic deformation was observed without total
fracture (Figure 5).
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Table 2. Tamhane post hoc test. (MM: milled metal; Z: zirconia; P: PEEK).

(I)
Group

(J)
Group

Mean Difference
(I-J) Deviation Error Sig. Superior Limit Inferior Limit

Tamhane MM Z 9296.66 172.67 0.000 8803.28 9790.03
P 8024.33 193.90 0.000 7501.07 8547.59

Z MM −9296.66 172.67 0.000 −9790.03 −8803.28
P −1272.32 105.29 0.000 −1563.79 −980.85

P MM −8024.33 193.90 0.000 −8547.59 −7501.07
Z 1272.32 172.67 0.000 980.85 1563.79
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4. Discussion

This in vitro study evaluated and compared the load to fracture and the fracture
pattern of three different materials manufactured by the CAD-CAM milled technique to
fabricate posterior FPD frameworks. The results obtained in the study support the rejection
of the null hypotheses, because significant differences were observed among the materials
analyzed.

The mechanical properties of the materials are important criteria for selecting the
restorative materials in fixed prostheses, even more so when they involve the posterior
regions, since their resistance will be directly related to long-term success. The intensity of
the masticatory forces greatly varies depending on several factors, including the presence
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of parafunctions. Parafunctional forces can reach 1000 N and this limit should be taken as
a reference to ensure the resistance of the restorative materials [22,26]. In the study, all of
the materials tested showed load to fracture values higher than 1000 N, thus being able to
withstand clinical chewing loads.

The authors are unaware of previous studies comparing the fracture resistance of
metallic, ceramic, and polymer FPD frameworks. In the present study, the MM group
showed the highest load to fracture values compared to zirconia and PEEK groups, exceed-
ing 10,000 N. The results obtained were higher than those of previous studies on Co-Cr
frameworks [1,8,22]. The reasons for such differences could be the different manufacturing
process [10,27], and the connector area employed (9 mm2).

Zirconia is the most suitable ceramic for manufacturing FPDs in the posterior regions
due to its high strength [11,14]. However, in the study the zirconia group obtained the
lowest load to fracture values (1859 N). The results were consistent with those of previous
studies that reported similar values on FPDs with the same zirconia system [1,8,12,22,28,29].
Nevertheless, different values were reported for crowns. Choi et al. [30] found values above
4000 N, Yildiz et al. [31] obtained values slightly higher than 2000 N, and Silva et al. [32]
reported values of 1134 N. Most of these studies compared Lava Zirconia with other zirconia
systems, without agreeing on the zirconia system that had higher fracture resistance.
Several studies found differences between different zirconia systems [13,26,29]. Conversely,
other studies did not demonstrate the difference between them [31,33–38].

The PEEK group obtained fracture load values of 3132 N. Few studies have evaluated
the fracture resistance of milled PEEK, reporting lower values than in the present study.
Addullah et al. [39] reported values of 802 N in milled PEEK crowns without aging.
Stawarczyck et al. [40] reported values of 1383 N on uncemented three-unit milled PEEK
FPDs. In a posterior study, Stawarczyck et al. [25] reported higher fracture loads (2354 N)
for milled compared to pressed PEEK. Despite the few investigations, it can be stated
that milled PEEK presents good mechanical properties, even above zirconia, to be used in
posterior FPDs [17,25,40].

Differences in the size of the connector, the design of the structure and the methodology
used can justify the discrepancies among the different studies using the same materials.
Furthermore, in the study, the load value at which the fracture initiated was registered.

The present study was conducted in vitro. In vitro studies allow for evaluating the
mechanical properties of the materials under standardized conditions. However, the
conditions of the studies should be established since they can influence the results. Some
studies used resin dies because their elasticity modulus is similar to dentin [37,41], while
others used metallic dies, as in the present study [1,6,8,13,22,25,38,42], which provide for
the standardization of the shape and dimensions of the specimens [6,42], and also avoid
possible premature destruction when testing metallic alloys compared to natural or resin
teeth [43,44]. In the study, real frameworks were used instead of bar-shaped, cylinder,
or disc specimens [29,45], and the thickness was also standardized to simulate clinical
conditions [37,44,46–48]. Therefore, this standardization allowed for comparison with
groups under the same conditions.

The inclusion of artificial aging is a controversial topic. Several authors used only
static load in their studies, suggesting that compressive forces are adequate for eval-
uating the fracture resistance of crowns or FPDs [13,26,31,37,38]. However, other au-
thors included artificial aging in their research to reproduce the conditions in the oral
environment [8,22,28,33,35,47,49–53]. The results comparing both tests are controversial, since
some authors found no influence of aging on the frameworks’ resistance [8,9,34,46,54,55], while
others reported a decrease in fracture resistance after artificial aging [53]. Niem et al. [56]
concluded that the mechanical properties of ceramic CAD-CAM materials and polymer-
based materials were not affected by thermocycling in terms of their flexural strength and
modulus of elasticity. Conversely, most hybrid composite materials showed significant
degradation [21,56]. In addition, there are great differences among the studies in the test
conditions, and no standardization exists regarding the number of cycles, the load applied,
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the temperatures, or the solution used (distilled water or saliva) [8,9,18,28,32,35,43,44,49,
51,52,54,57]. In the present study, the specimens were subjected to 6000 thermal cycles
simulating 5 years in mouth [58].

Knowing the fracture pattern is an important aspect of understanding the behavior of
materials subjected to load. When there are bending forces on the structure, compression
forces are produced on the side where the force is applied, and traction forces are produced
on the opposite side. Cracks usually occur on the tensile side, and propagate to the
compression side, causing fracture [59].

All metal frameworks showed the highest plastic deformation prior to fracture as
evidenced by the force–displacement curves. No separation of the fragments was observed.
According to previous studies [22,60,61], this was translated into ductile failure that was
initiated in all frameworks at the gingival surface of the connector. Consistent with the
present study, previous studies have reported that the connector area withstands the highest
tensile and shear forces [13,33,38]. The minimal dimensions for this type of connector are
6.25 mm2 [61]. In order to compare the MM group with the other experimental groups,
9 mm2 connectors were made, which may explain the high load to fracture values obtained.

Conversely, the zirconia frameworks showed a brittle fracture in which the fragments
perfectly fitted to each other along the fracture line [22]. The breakage mainly (80%)
occurred at the connector’s level, demonstrating that this area supported the highest
stresses [13,22,33,38,62]. The force–displacement curves showed that fracture presented a
fast propagation without a previous deformation. The fracture was initiated in the gingival
area of connector and propagated obliquely to the occlusal area of the pontic [1,12,13,38,44].
Likewise, a previous study reported that this pattern of fracture is independent of the
loading point [12]. In the study, the connector area for zirconia frameworks was 9 mm2,
as recommended by several authors [8,22,32,38,54,62]. This design is very important to
reduce the tension and the fracture risk [12,62]. In addition, the greater the number of units,
the larger the connector area should be.

Regarding PEEK frameworks, a different fracture pattern was observed. The fracture
did not initiate at the connector. A plastic deformation of the pontic was observed until
there were cracks on both sides in the upper area of the connectors. No separation of the
fragments was observed in any of the specimens. This resulted in a ductile failure. This
behavior was previously reported in PEEK frameworks manufactured by pressing [25] and
milling techniques [40]. The size of the connectors used was 16 mm2, following the man-
ufacturer’s recommendations. The same dimension was used by Stawarczyck et al. [25],
although other studies used smaller connector areas [18,40]. Dal Piva et al. [63] reported a
low elastic modulus (4 GPa) on PEEK crowns compared to Co-Cr alloys (220 GPa), gold
alloys (91 GPa), zirconia (220 GPa), alumina (314 GPa), lithium disilicate (95 GPa), zirconia-
reinforced lithium silicate (70 GPa), and feldspathic porcelain (48.7 GPa) [63]. Thanks to its
low elastic modulus, PEEK allows the absorption of stresses derived from the function and
absorbs the loads on the abutment teeth [19,20].

Limitations of the present study included its in vitro design, which may not reproduce
the clinical environment. However, import aspects of clinical conditions were simulated.
Furthermore, the study only analyzed the frameworks without veneering porcelain. In
addition, each group required a different milling unit, and complete standardization was
not possible. Considering this, the findings of the study suggest that CAD-CAM milling
can be considered a suitable method for fabricating Co-Cr posterior FPD frameworks, and
can be used as an alternative to the conventional casting process in terms of fracture load.
Furthermore, milled PEEK may be considered a promising alternative for metalceramic or
zirconia restorations in the posterior regions. However, there are not enough statements
about complications, biofilm formation on PEEK surface, and its resistance to compres-
sion [64]. In addition, clinical studies are necessary to validate the results of the studied
CAD-CAM systems.
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5. Conclusions

Within the limitations of this in vitro study, the following conclusions were drawn:

1. All tested CAD-CAM milled materials demonstrated clinically acceptable fracture
load values;

2. The type of material influenced the load to fracture;
3. Milled metal exhibited the highest load to facture values, followed by PEEK, and zirconia;
4. Milled PEEK could be an alternative to metal or ceramic restorations in posterior regions;
5. Different fracture patterns were observed for the analyzed materials.
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