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Astrocytes—The Ultimate Effectors
of Long-Range Neuromodulatory
Networks?
Anthony G. Pacholko†, Caitlin A. Wotton† and Lane K. Bekar*

Department of Anatomy, Physiology, and Pharmacology, University of Saskatchewan, Saskatoon, SK, Canada

It was long thought that astrocytes, given their lack of electrical signaling, were not
involved in communication with neurons. However, we now know that one astrocyte
on average maintains and regulates the extracellular neurotransmitter and potassium
levels of more than 140,000 synapses, both excitatory and inhibitory, within their
individual domains, and form a syncytium that can propagate calcium waves to affect
distant cells via release of “gliotransmitters” such as glutamate, ATP, or adenosine.
Neuromodulators can affect signal-to-noise and frequency transmission within cortical
circuits by effects on inhibition, allowing for the filtering of relevant vs. irrelevant stimuli.
Moreover, synchronized “resting” and desynchronized “activated” brain states are gated
by short bursts of high-frequency neuromodulatory activity, highlighting the need for
neuromodulation that is robust, rapid, and far-reaching. As many neuromodulators
are released in a volume manner where degradation/uptake and the confines of the
complex CNS limit diffusion distance, we ask the question—are astrocytes responsible
for rapidly extending neuromodulator actions to every synapse? Neuromodulators
are known to influence transitions between brain states, leading to control over plasticity,
responses to salient stimuli, wakefulness, and sleep. These rapid and wide-spread
state transitions demand that neuromodulators can simultaneously influence large and
diverse regions in a manner that should be impossible given the limitations of simple
diffusion. Intriguingly, astrocytes are ideally situated to amplify/extend neuromodulator
effects over large populations of synapses given that each astrocyte can: (1) ensheath
a large number of synapses; (2) release gliotransmitters (glutamate/ATP/adenosine)
known to affect inhibition; (3) regulate extracellular potassium that can affect excitability
and excitation/inhibition balance; and (4) express receptors for all neuromodulators.
In this review article, we explore the hypothesis that astrocytes extend and amplify
neuromodulatory influences on neuronal networks via alterations in calcium dynamics,
the release of gliotransmitters, and potassium homeostasis. Given that neuromodulatory
networks are at the core of our sleep-wake cycle and behavioral states, and determine
how we interact with our environment, this review article highlights the importance of
basic astrocyte function in homeostasis, general cognition, and psychiatric disorders.

Keywords: neuromodulator, gliotransmitter, brain-state, Na+/K+-ATPase, potassium homeostasis in brain, inward
rectifier (channel), cortical oscillations and functional connectivity
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INTRODUCTION

Acetylcholine (ACh) from the basal forebrain, dopamine (DA)
from the ventral tegmental area/substantia nigra, histamine
(HA) from the tuberomammillary nucleus, norepinephrine (NE)
from the locus coeruleus, and serotonin (5HT) from the raphe
nuclei can all be released in a volume transmission fashion
to exert their neuromodulatory influence over large areas of
the brain simultaneously (Zoli and Agnati, 1996; Zoli et al.,
1998; Fuxe et al., 2010). It is estimated that less than 20% of
these neuromodulatory system varicosities form conventional
synapses (Séguéla et al., 1990; Cohen et al., 1997; Descarries
and Mechawar, 2000; Mechawar et al., 2000; Descarries et al.,
2004), with the remainder releasing neuromodulators in a
volume fashion to exert effects on axons, dendrites, astrocytes,
microglia, and blood vessels. It is even postulated that astrocytes
and astrocyte function are a major target of this volume
transmission (Hirase et al., 2014; Fuxe et al., 2015). Given
the known ability for neuromodulators to rapidly regulate
transitions in brain state/behavior (Lee and Dan, 2012) and
that diffusion of neuromodulators is limited by inefficiencies
imposed by the confines of the extracellular space, reuptake
transporters, enzymatic breakdown, and astrocyte processes
(Syková and Nicholson, 2008; Syková and Vargová, 2008),
a simple question remains: How do neuromodulators affect
such rapid, wide-spread changes in brain-state and behavior?
Given the discovery of the increasingly complex role astrocytes
play in synaptic function, this review article explores the
potential that astrocytes serve to extend and possibly amplify
neuromodulatory actions.

ASTROCYTES ARE IDEALLY SUITED TO
MODULATE EVERY SYNAPSE AND
SYNCHRONIZE NETWORK ACTIVITY

Astrocytes are believed to outnumber neurons in the
mammalian cortex (Khakh and Sofroniew, 2015) and, under
normal conditions, are spaced such that processes do not
overlap (Bushong et al., 2002, 2004; Oberheim et al., 2006;
Nimmerjahn and Bergles, 2015). The larger glial fibrillary
acidic protein (GFAP)-positive processes easily observed
by immunohistochemical methods only label 10–20% of
the astrocyte volume. Eighty to ninety percent of astrocyte
membrane volume is made up of ultrathin processes and
protrusions (Bushong et al., 2002). Thus, astrocytes are less of
a ‘‘star’’ shape, as their name suggests based on original GFAP
immunochemistry, and more like a sponge forming part of the
matrix within which blood vessels, neurons, axons, and synapses
are embedded (Figure 1A). Interestingly, in addition to their
well-established homeostatic roles, the ultrathin perisynaptic
astrocytic processes physically interact with synapses in a
dynamic fashion (Reichenbach et al., 2010; Ghézali et al.,
2016) that is dependent on activity-induced plasticity signals;
supporting a role for astrocytes in physical synapse stabilization
(Bernardinelli et al., 2014; Ghézali et al., 2016). It has been
proposed that all synapses within an individual astrocytes’

FIGURE 1 | Astrocytes are ideally situated to extend neuromodulators’
influence over cortical inhibition to multiple synapses. (A) Traditional glial
fibrillary acidic protein (GFAP) immunolabeling in the rat cortex (left image)
only outlines major processes giving them their star-like shape. In contrast,
cytosolic enhanced green fluorescence protein expression in astrocytes
reveals their highly complex and delicate morphology in situ (right image).
Astrocytes consist of numerous fine processes that form a matrix-like
substrate (inset) that is in close apposition to axons, dendrites, synapses, and
cell bodies. Images adapted from Simard and Nedergaard (2004) with
permission. (B,C) Conceptual representation of a single locus coeruleus
norepinephrine neuron, projecting from the corpus callosum through to the
surface of the cortex, illustrating how volume release can affect individual
astrocyte regulated synaptic islands for rapid and wide-spread effect.

domain (>140,000) are controlled by the homeostatic features
and gliotransmitter milieu of that single astrocyte, forming units
that a single astrocyte can modulate and synchronize termed a
‘‘Synaptic Island’’ (Halassa et al., 2007). Thus, the different brain
regions can be divided into these equally spaced synaptic islands
that are shaped by individual astrocyte morphologies.

In addition to physically parsing the brain into functional
synaptic islands, astrocytes are characterized by their highly
negative resting membrane potentials (near the K+ equilibrium
potential), high K+ permeability, and extensive gap junctional
coupling. The high baseline K+ conductance and extensive
gap junctional coupling minimize activity-induced astrocyte
membrane potential fluctuations, giving the connected astrocyte
syncytium ‘‘isopotentiality’’ (Ma et al., 2016; Kiyoshi et al.,
2018). Coupling of any given astrocyte to between seven and
nine nearest neighbors with coupling resistance lower than
membrane input resistance, allows rapid short-circuiting of
any activity-induced changes in astrocyte membrane potential
(Ma et al., 2016; Kiyoshi et al., 2018). This gives the astrocyte
syncytium the ideal characteristics for uptake and redistribution
of extracellular K+ and—when these characteristics are
modulated—ultimate control of neural excitability (discussed in
detail below). Additionally, in contrast to individual astrocyte
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modulation and potential synchronization of their individual
synaptic islands through local gliotransmission, the astrocyte
syncytium controls extracellular K+ on the much larger multi-
‘‘island’’ scale for potential synchronization across whole
networks and entire brain regions (Kiyoshi et al., 2018); ideally
suited for modulating brain state.

Accumulating evidence suggests astrocytes are intimately
involved in brain state transitions. It is believed that astrocytes
do this via the release of gliotransmitters (Poskanzer and
Yuste, 2011, 2016; Deemyad et al., 2018) and/or regulation
of extracellular potassium (Wang et al., 2012a,b; Ding et al.,
2016; Rasmussen et al., 2019). Many types of neurons including
cortical pyramidal neurons are known to possess intrinsic ion
channel properties that enable neuron cycling between twomajor
states termed ‘‘UP’’-state (or activated state) and ‘‘DOWN’’-
state (or resting state) that are associated with membrane
depolarization and hyperpolarization, respectively. Influencing
which membrane state the neurons are in governs which
neurons are actively engaged within vast neural networks
that can span the whole brain. Spontaneous or stimulated
astrocyte calcium events in acutely isolated brain slices increase
synchronized neuron UP states (Poskanzer and Yuste, 2011;
Pirttimaki et al., 2017) that may represent astrocyte-induced
neocortical slow oscillations seen under similar conditions in vivo
(Poskanzer and Yuste, 2016). The shift in the neuronal state
was dependent on extracellular glutamate accumulation/release
and involved a shift in ATP/adenosine signal balance. Although
glutamatergic and purinergic signaling was involved, the effects
of changes in extracellular potassium were not experimentally
ruled out (Poskanzer and Yuste, 2011, 2016). Studies in
cerebellar Purkinje neurons, also known to cycle between UP
and DOWN states (bistability), demonstrate that astrocyte
calcium responses mediate uptake of extracellular K+ to
affect bistability, resulting in an enhanced output of Purkinje
neurons in the UP state (Wang et al., 2012a). Such a
mechanism would also fit experimental findings in the cortex
ascribed to glutamate and purines (Poskanzer and Yuste, 2011,
2016) and, although a recent study showed that changes in
extracellular K+ parallel brain state transitions (Rasmussen et al.,
2019), indirectly implicating astrocytes, this still needs to be
addressed directly.

Given that each astrocyte ensheathes and maintains over
140,000 synapses within its individual domain (Bushong et al.,
2002) and can sense single synaptic events (Di Castro et al.,
2011; Panatier et al., 2011), astrocytes are perfectly positioned
to communicate with many excitatory and inhibitory synapses
rapidly. Add to this the fact that astrocytes are known to
possess receptors for the different neuromodulators (Porter and
McCarthy, 1997) that are involved in regulating brain state
(Lee and Dan, 2012), it can be reasoned that astrocytes are
in the perfect position to rapidly affect excitability and extend
neuromodulator effects across large networks. A single locus
coeruleus norepinephrine axon extending from corpus callosum
through to the cortical surface with multiple varicosity release
sites can theoretically recruit many astrocyte-controlled synaptic
islands to affect millions of synapses and excitation/inhibition
balance (Figures 1B,C).

EXTRACELLULAR K+ CAN DYNAMICALLY
IMPACT NETWORK ACTIVITY

Astrocytes are well-known for maintaining the concentration of
extracellular potassium ([K+]e) via both passive and active uptake
and redistribution. This process primarily involves inward
rectifying K+ channels (Kir4.1 specifically; Chever et al., 2010;
Sibille et al., 2015) and the Na+/K+ ATPase (Larsen et al., 2014,
2016a; Stoica et al., 2017). Although redistribution to regions of
lower [K+]e may not necessitate coupling within the astrocyte
syncytium, the extensive coupling in conjunction with high K+

conductance enables astrocytes to maintain a highly negative
resting membrane potential and minimize potential changes
in the face of local changes in [K+]e. Thus, as local activity-
induced [K+]e increases—shifting the K+ equilibrium potential
(EK) more positive than the astrocyte syncytium isopotential
(Em)—K+ flows into astrocytes locally through the Kir4.1 channel
(EK > EM). At more distant sites, the mild depolarization of the
astrocyte syncytium membrane isopotential without any change
in EK results in K+ efflux (EK < EM), completing the activity-
induced redistribution of K+ from areas of high to areas of
low [K+]e. In addition to this passive movement of K+, active
uptake via the Na+/K+ ATPase can occur under conditions
of high-frequency synaptic activity (reviewed in Larsen et al.,
2016a) and/or evoked astrocyte calcium responses that drive
Na+/K+ ATPase activity via increased intracellular Na+ by way
of the Na+/Ca2+ exchanger (Wang et al., 2012b). As both
Kir4.1 and Na+/K+ ATPase are known to be regulated by various
intracellular messengers, any neuromodulator that regulates
Kir4.1 or Na+/K+ ATPase activitymay result in altered [K+]e with
direct influence on network behavior.

Neuronal excitability is under the direct influence of
[K+]e-mediated effects on resting membrane potential that
influence excitation/inhibition balance and gain modulation.
Small decreases in extracellular potassium (<1 mM; increased
driving force for K+ to leave the cell) leads to mild
hyperpolarization of neurons with a resulting suppression of
miniature and spontaneous excitatory postsynaptic potentials
(mEPSPs/sEPSPs) with no effect on evoked EPSPs (eEPSPs)
or miniature inhibitory postsynaptic potentials (mIPSPs; Wang
et al., 2012b). The hyperpolarization is thought to decrease the
probability of glutamate release and the negative shift in EK
reduces the amplitude/duration of AMPA receptor (permeable
to Na+ and K+)-mediated depolarizations. The result is an
associated increase in signal-to-noise (no change in eEPSPs,
a decrease in sEPSPs, and no effect on mIPSPs; Wang et al.,
2012b). Interestingly, a similar shift in excitation/inhibition
balance (also favoring inhibition) is observed when extracellular
K+ is mildly increased (1–2 mM from ∼3.5 to 5.5 mM; well
below typical ceiling level of 10–12 mM in the cortex). The K+-
mediated depolarization increases the frequency of spontaneous
excitatory activity, but reduces action potential amplitude,
via slowing of sodium channel recovery from inactivation
(Meeks and Mennerick, 2004), impacting both spontaneous and
evoked excitatory amplitudes. Increased [K+]e was also found
to depolarize interneurons increasing their spontaneous activity

Frontiers in Cellular Neuroscience | www.frontiersin.org 3 September 2020 | Volume 14 | Article 581075

https://www.frontiersin.org/journals/cellular-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/cellular-neuroscience#articles


Pacholko et al. Astrocyte-Mediated Long-Range Neuromodulation

(Shin et al., 2010). While increased [K+]e affects both excitatory
and inhibitory neuronal activity, the faster firing frequency of
interneurons, due to the expression of Kv3 channels (Boddum
et al., 2017; Ferguson and Gao, 2018), shifts the balance toward
inhibition as [K+]e rises. Thus, as [K+]e decreases, some aspects of
excitation decrease while inhibition remains unchanged resulting
in an increase in signal-to-noise whereas, as [K+]e increases,
amplitudes of EPSPs decrease and frequency of inhibitory activity
increase for a general suppression of activity. Interestingly,
elevated [K+]e and resulting cortical depolarization has recently
been shown in vivo to be associated with the onset of locomotion
(change in brain state) with an accompanying increase in visual
gain modulation (Rasmussen et al., 2019). Thus, both excitation-
inhibition balance and gain of network activity appears to be
under tight influence of [K+]e.

In addition to effects on excitation-inhibition balance and
gain modulation, [K+]e affects frequency transmission and brain
state. In our most recent study, we found that decreasing
perfusate [K+] reduced somatosensory adaptation similar to
5HT and NE (Wotton et al., 2020). During the repetitive
firing of action potentials, [K+]e increases at the synapse with
each subsequent stimulation (Figure 2A). The most likely
scenario to account for the reduction in EPSP amplitude
would be that the depolarization of the pre-synaptic terminal,
as the [K+]e rises, and slowing of sodium channel recovery
from inactivation (Meeks and Mennerick, 2004) leads to a
reduction in action potential amplitude, decrease in voltage-
gated calcium channel opening and reduced neurotransmitter
release (Figure 2B). Accordingly, in the low [K+]e perfusate,
K+ does not accumulate to the same extent and less frequency
adaptation is evident mimicking 5HT- and NE-mediated effects
on K+ clearance (Wotton et al., 2020). In light of this, the
regulation of activity-dependent [K+]e increases via both passive
and active astrocyte uptake mechanisms enables rapid and
precise control over somatosensory frequency transmission.
Potassium accumulation can also have a broader impact than
frequency transmission within a single synapse. A recent
study using the pharmacological disruption of astrocyte inward
rectifiers or gap junction coupling demonstrated an important
role for astrocyte K+ regulation in cortical oscillations (Bellot-
Saez et al., 2018). By disrupting K+ uptake or astrocyte coupling
they showed an increase in [K+]e that was associated with an
increase in power of multiple high frequency oscillations. This
is consistent with another recent study showing that elevation
in [K+]e in the cortex in vivo increases the power of high
frequency oscillations as well as increases gain in the visual cortex
(Rasmussen et al., 2019).

GLIOTRANSMITTERS AFFECT BOTH
EXCITATION AND INHIBITION

Similar to how controlling [K+]e can influence synaptic activity,
astrocytes can also release the gliotransmitters glutamate and
D-serine to affect synaptic function. Computational modeling
suggests astrocytic glutamate release disrupts the occurrence
of high-frequency post-synaptic firing (Flanagan et al., 2018)
and both short- and long-term plasticity (De Pittà and

FIGURE 2 | Perisynaptic K+ buildup can decrease neurotransmitter release.
(A) 50 Hz stimulation trains lead to the accumulation of extracellular K+ that
theoretically depolarizes membranes reducing presynaptic action potentials
with a subsequent reduction in neurotransmitter release as evident by
post-synaptic fEPSPs. (B) A hypothesized reduction in action potential
amplitude means less Ca2+ entry through voltage-gated calcium channels for
less vesicular neurotransmitter release. fEPSPs, field excitatory postsynaptic
potentials; Glu, glutamate; VDCC, voltage-gated calcium channel.

Brunel, 2016). Extra synaptic activation of glutamate receptors
in the pre-synapse by astrocyte-originating glutamate can
either increase or decrease the probability of release for
neurotransmitters (Santello and Volterra, 2009; De Pittà and
Brunel, 2016). This glutamate-dependent effect influences
synaptic activity (Fiacco and McCarthy, 2004; Jourdain et al.,
2007) at both excitatory and inhibitory synapses (Liu et al.,
2004; Jourdain et al., 2007; Perea and Araque, 2007; Benedetti
et al., 2011). Alternatively, D-serine released in a Ca2+-dependent
manner from astrocytes is also associated with synaptic function;
namely plasticity (Henneberger et al., 2010). It has also been
associated with inhibition of GABAergic excitability (Wu et al.,
2017). Although D-serine-mediated gliotransmission was called
into question by data that suggested neurons were the primary
source of D—serine production and release (Wolosker et al.,
2016), this was subsequently clarified (Papouin et al., 2017).
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Glutamate and D-serine have the potential to be participants in
the astrocyte-mediated extension of neuromodulatory effects.

In addition to glutamate and D-serine, the purines ATP
and adenosine are gliotransmitters that can also extend
neuromodulator effects. Both ATP and adenosine can modulate
excitation through their respective receptors. P2Y receptors,
for ATP, are more physiological than their P2X counterparts
(Khakh, 2001) and are predominantly associated with a reduction
of excitatory activity and are involved in heterosynaptic
depression (Koizumi et al., 2003; Zhang et al., 2003; Pascual
et al., 2005; Hussl and Boehm, 2006). This occurs through
the inhibition of calcium channels or increased activation of
outward K+ currents (Hussl and Boehm, 2006). Generally,
adenosine decreases or increases excitatory activity through
A1 and A2A receptors, respectively (Newman, 2003; Fontanez
and Porter, 2006; Fredholm et al., 2007; Rebola et al., 2008;
Panatier et al., 2011). Both ATP and adenosine are also intricately
associated with effects on inhibition. The P2Y1 receptor
is demonstrated to be particularly important in increasing
interneuron activity. For example, it was shown that astrocytic
ATP activation of P2Y1 receptors on hippocampal interneurons
increased cation currents and simultaneously decreased K+

currents; increasing the activity of interneurons and release of
GABA which inhibited the downstream neurons (Bowser and
Khakh, 2004). Additionally, P2Y1 activation on interneurons
led to both short- and long-term increases in spontaneous
and evoked inhibitory GABAA currents in the cerebellum
(Saitow et al., 2005). More specifically, sIPSC amplitude and
frequency were both increased rapidly, while a stimulus-
evoked IPSC increase was observed ∼20 min following the
P2Y1 activation. Adenosine, too, is implicated in modulating
inhibitory synapses. Similar to A1 effects on excitatory neurons,
there is evidence that A1 receptors decrease the activity of the
inhibitory synapses in the thalamocortical pathway (Fontanez
and Porter, 2006). A2A receptor activation, however, in the
hippocampus is associated with increased activity of select
GABAergic interneurons (Rombo et al., 2015), and in the
tuberomammillary nucleus, A2A activation was associated with
GABA release and induction of sleep (Hong et al., 2005). In brief,
purinergic gliotransmitters are important modulators of synaptic
excitation and inhibition; much like the neuromodulators we
hypothesize act through astrocytes.

NEUROMODULATORS GATE SHIFTS IN
BRAIN STATE FOR OPTIMAL
PERFORMANCE

Sleep, wakefulness, and focused attention represent distinct
brain patterns characterized by unique neuromodulator activity
profiles and differing states of brain wave synchronization,
frequency, and amplitude. During periods of focused attention
(high alertness), brain electroencephalogram (EEG) recordings
show desynchronized, high-frequency, low-amplitude
patterns characterized by bursts of excitatory and inhibitory
synaptic events across diverse brain areas. In contrast, EEG
recordings during sleep display synchronized, low-frequency,

high-amplitude oscillations (<1 Hz) as a result of alternation
between firing and inactivity of large neuronal populations
within brain regions (Lee and Dan, 2012). Neuromodulators
play critical roles in modulating these brain states by effects
largely on local interneuronal networks (Lei et al., 2007; Deng
and Lei, 2008; Xiao et al., 2009; Salgado et al., 2012, 2016).
NE from the locus coeruleus, 5HT from the raphe nuclei, HA
from the tuberomammillary nucleus, and ACh from tegmental
nuclei and basal forebrain are known to be involved in the
regulation of sleep-wake states and have been implicated in
the promotion of wakefulness, alterations in brain activity in
response to stimuli (i.e., arousal, attention, etc.), and regulation
of non-rapid-eye-movement (NREM) and rapid-eye-movement
(REM) sleep (Eban-Rothschild et al., 2018; Figure 3).

NE, 5HT, and HA neurons are active during wakefulness,
quiet during NREM, and silent during REM sleep (Boucetta et al.,
2014; Yokoi et al., 2019). Locus coeruleus-NE neurons rapidly
switch from tonic firing (1–3 Hz) during quiet wakefulness
(Aston-Jones and Bloom, 1981b) to phasic burst firing (8–10 Hz)
in response to salient stimuli (Aston-Jones and Bloom, 1981a)
to enhance signal-to-noise and modulate frequency transmission
(Aston-Jones and Bloom, 1981a,b; Bouret and Sara, 2005). NE
neurons excite the reticular activating system while inhibiting
neurons within sleep-active regions during wakefulness and/or
in response to important stimuli (Brown et al., 2012). While
HA neurons display similar arousal-state dependent activity to
NE neurons (Takahashi et al., 2006), they primarily serve to
maintain highly vigilant states (Fujita et al., 2017), whereas NE
appears to play a larger role in the process of rapidly waking
from sleep (Mitchell and Weinshenker, 2010) and responding
to important/threatening stimuli. Tuberomamillary HA neurons
are excited by 5HT (Eriksson et al., 2001) and NE (Brown et al.,

FIGURE 3 | Schematic illustration of putative neuromodulator roles in the
regulation of sleep-wake states. Norepinephrine (NE)-, histamine (HA)-, and
serotonin (5HT)-associated neurons are quiet-to-quiescent during sleep and
tonically active during wakefulness. NE appears to be chiefly involved in
rousing from sleep and/or promoting attention (active wakefulness) in
response to important stimuli, HA in sustaining general vigilance, and 5HT in
maintaining quiet (non-attentive) wakefulness. While acetylcholine (ACh) does
promote wakefulness, it appears to primarily function in mediating the
sustained attention observed during “top-down” learning. The role of
dopamine (DA) in sleep-wake state regulation is less clear, though DA
neurons are known to engage in burst firing in response to rewarding and/or
aversive stimuli, which promotes attention.
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2012), and in turn display excitatory effects on most elements of
the reticular activating system (Brown et al., 2001; Haas et al.,
2008). Similar to NE and HA neurons, 5HT neurons are also
wake-active, and exhibit slow, tonic firing patterns across the
wakeful states, with subpopulations demonstrating burst firing
capabilities (Hajós et al., 2007). Unlike NE andHAneurons, most
dorsal raphe-5HT neurons do not fire spontaneously and require
afferent input from NE neurons to maintain their tonic output
(Vandermaelen and Aghajanian, 1983). Also in contrast to NE
and HA, 5HT neurons primarily promote quiet waking states
(Jacobs and Fornal, 1991).

ACh and DA neuron activity is distinct from the
monoaminergic members of the reticular activating system.
While tegmental ACh neurons fire at high rates during
wakefulness, via NE, 5HT, and HA neurons, they are also
highly active during REM sleep (Lee and Dan, 2012), which is
paradoxically characterized by a desynchronized EEG pattern,
similar to the awake state. ACh projections from the basal
forebrain are also involved in the regulation of brain activity
states demonstrating similar firing patterns to tegmental nuclei
but project primarily to the cortex (Brown et al., 2012) as
opposed to the thalamus. Forebrain ACh neuronal output is
believed to play a critical role in the mediation of sustained-
attention, particularly within the context of knowledge-driven
‘‘top-down’’ learning (Sarter et al., 2001; Villano et al., 2017),
and maybe attributable to improvements in the signal-to-noise
ratio in cortical areas (Sarter et al., 2001; Picciotto et al., 2012).
The role of DA in the regulation of brain activity states is less
clear. DA neurons are well situated to contribute to wakefulness,
as they display extensive reciprocal coupling with the wake-sleep
regulatory network (Lu et al., 2006). Overall, DA neurons
tend to maintain constant and stable firing patterns across
various states (Steinfels et al., 1983), though ventral tegmental
area-DA neurons engage in burst firing in the presence of salient
rewarding and/or aversive stimuli (Brischoux et al., 2009; Cohen
et al., 2012), highlighting their role in attention and arousal.

The gating of brain activity state switching by
neuromodulators may serve as a mechanism to conserve energy,
maintain homeostasis, and affect circuit gain, particularly in
sensory areas. When increased attention is required following
exposure to important stimuli, neuromodulators engage in
transient phasic burst firing that allows for rapid behavioral
adaptation to changing environmental parameters (Aston-
Jones and Bloom, 1981a; Takahashi et al., 2006; Ranade and
Mainen, 2009). NE has been shown to suppress horizontal
inputs in the visual cortex (Kobayashi et al., 2000), effectively
enhancing the gain of extracortical visually-evoked inputs
(Bouret and Sara, 2005). In the absence of such stimuli,
slower, synchronized brain waves predominate. Sleep or
synchronized states have been found to result in increased
interstitial space fluid volume and metabolite clearance (Xie
et al., 2013). Thus, the balance of tonic vs. phasic firing may
allow neuromodulators to serve a homeostatic role, where
less-metabolically demanding wakefulness is maintained during
tonic firing, more metabolically demanding desynchronized
activity states are gated behind phasic neuromodulatory bursts,
and low neuromodulator output during sleep (synchronized

FIGURE 4 | Neuromodulator-mediated gating of brain activity states may
serve a homeostatic role. The balance of tonic vs. phasic firing may allow for
the appropriate matching of environmental demands to the degree of
attention. Less-metabolically demanding wakefulness is maintained during
tonic firing with more metabolically demanding, desynchronized activity states
gated behind phasic neuromodulatory bursts that trigger in response to
salient stimuli. Decreased neuromodulatory tone during sleep (synchronized
activity states) allows for clearance of metabolites that have accumulated
during wakefulness.

activity states) allows clearance of accumulated metabolites
(Figure 4). This system would allow an animal to respond
quickly to important stimuli, preserve energy in the absence
of threat/event, and clear accumulated toxins and metabolic
waste products from the CNS during periods of slower, highly
synchronized brain activity (quiet wakefulness and sleep).
Overall, neuromodulators work synergistically to gate shifts in
brain activity states for the accomplishment of differing tasks.
NE, DA, and ACh are crucial for triggering desynchronized,
high-activity states in response to various environmental stimuli
(focus/attention and plasticity), while 5HT and HA primarily
function in the general maintenance of wakefulness (Figure 3).

NEUROMODULATORS SHAPE
ASTROCYTE CALCIUM DYNAMICS

Astrocytic calcium waves govern the communication between
neuroglial networks. Recently, it has been suggested that
neuromodulators affect astrocytic calcium transients and thereby
modulate their output. 5HT is consistently demonstrated to
increase fast, transient Ca2+ waves (Jalonen et al., 1997; Sanden
et al., 2000; Schipke et al., 2011), while also inducing a
secondary, longer-lasting oscillatory effect (Jalonen et al., 1997).
Studies suggest that 5HT2 receptors appear to mediate these
5HT effects on astrocyte calcium (Jalonen et al., 1997; Sanden
et al., 2000), potentially through PLC and IP3-mediated release
of intracellular calcium stores (Jalonen et al., 1997). More
specifically, in astrocyte-neuron co-cultures, 5HT was shown to
increase astrocyte Ca2+ wave velocity while also decreasing the
area of the wave (Blomstrand et al., 1999). NE, via α-1 adrenergic
receptors, was also shown to stimulate calcium responses in
astrocytes (Bekar et al., 2008; Ding et al., 2013; Paukert et al.,
2014), most notably following direct locus coeruleus stimulation
or startle in vivo (Bekar et al., 2008; Ding et al., 2013). It has
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also recently been demonstrated that NE primes astrocyte Ca2+

responses, lowering the threshold for subsequent responses toNE
(Nuriya et al., 2017) as well as changing dynamics in response to
synaptic glutamate (Muyderman et al., 2001; Paukert et al., 2014).
ACh is suggested to act through both muscarinic and nicotinic
receptors on astrocytes to induce calcium responses (Sharma and
Vijayaraghavan, 2001; Takata et al., 2011). Evidence also exists
for a DA-mediated increase in PLC-dependent Ca2+ mobilization
in cultured astrocytes via D1 activation (Liu et al., 2009).
Additionally, HA acts on H1 receptors to increase intracellular
Ca2+ in astrocytes in situ (Shelton and McCarthy, 2000). Given
the substantial evidence that neuromodulators impact astrocyte
calcium dynamics, it follows that vast neuronal networks could
be rapidly modulated in response to neuromodulator action
on astrocytes.

Although most neuromodulators affect astrocyte calcium
dynamics in some fashion, they do not all result in the
same effect. There are two main anticipated outcomes
of neuromodulator-mediated changes in astrocytic Ca2+:
(1) altered K+ handling; and (2) gliotransmitter release.
Neuromodulators affect astrocyte Ca2+ and this in turn
influences K+ homeostasis (Wang et al., 2012b). As discussed
above, alterations in K+ homeostasis are involved in regulating
synaptic activity and are a potential mechanism through which
neuromodulator-mediated action on astrocytes could affect
synaptic function. The other major effect of neuromodulator
induced astrocyte Ca2+ responses is the downstream effect
this would have on gliotransmitter release. In support,
5HT2B receptor activation promotes astrocytic ATP release
(Kinoshita et al., 2018). NE is also associated with astrocyte
ATP release that results in increased efficiency at glutamatergic
post-synapses (Gordon et al., 2005). A recent HA study found
that H1 activation increased Ca2+-dependent glutamate release,
while H2 activation was associated with increasing cAMP
(Kárpáti et al., 2018). DA, in a somewhat unique fashion to the
other neuromodulators, is associated with increased glutamate
gliotransmission when D2-A2A heterodimers are activated
(Cervetto et al., 2017). Accordingly, neuromodulator-mediated
effects on astrocyte Ca2+ provide compelling evidence for glial
involvement in modulating synaptic function downstream of
these signaling molecules.

NEUROMODULATOR-MEDIATED EFFECTS
ON CORTICAL INHIBITION

Consistent with their putative role in ‘‘brain-state’’
switching—regulating the sleep-wake cycle and gating periods
of sustained attention—neuromodulators appear to filter
corticocortical and thalamocortical information flow partly
via modulation of cortical inhibition (Lei et al., 2007; Deng
and Lei, 2008; Xiao et al., 2009; Salgado et al., 2012, 2016).
Cortical inhibition refers to the process in which GABAergic
interneurons attenuate the activity of cortical neurons in
response to a variety of inputs (Daskalakis et al., 2007; Isaacson
and Scanziani, 2011). This process is vital to the balanced
interplay of excitation and inhibition observed in spontaneous
cortical oscillations (Atallah and Scanziani, 2009) and the

response to sensory stimuli (Monier et al., 2003; Wilent and
Contreras, 2005; Isaacson and Scanziani, 2011). Appropriate
interpretation of incoming sensory information is heavily reliant
on the induction of inhibition (Aston-Jones and Bloom, 1981c;
Bouret and Sara, 2005). Neuromodulator-induced alterations
in cortical inhibition will therefore have a profound impact
on the way sensory information is perceived. For example,
neuromodulator-mediated tuning of local signal-to-noise ratio
and frequency transmission, phenomena heavily influenced by
cortical inhibition, is likely involved in the matching of local
neuronal activity to the sensory demands of the environment;
e.g., NE is released in a ‘‘burst-like’’ manner in response to
salient stimuli (Aston-Jones and Bloom, 1981a), which amplifies
the signal-to-noise ratio and improves the filtering of relevant vs.
irrelevant information (Aston-Jones and Bloom, 1981a,b; Bouret
and Sara, 2005).

The neuromodulators ACh, 5HT, and NE influence cortical
inhibition across a variety of contexts to modulate the flow of
sensory information. For example, during fear conditions, ACh
activation of layer I interneurons leads to inhibition of layer
II/III inhibitory interneurons, thereby diminishing inhibitory
tone on pyramidal neurons (increased excitation; Letzkus et al.,
2011). This process is central to associative fear learning in
the auditory cortex, highlighting important functional roles for
cortical inhibition. Regarding 5HT influence, we have recently
demonstrated that 5HT increases spontaneous inhibition and
attenuates evoked inhibition in the somatosensory cortex (Quon
et al., 2018; Wotton et al., 2018), which suggests an important
role for 5HT in modulating sensory adaptation. As for NE,
it is proposed to influence cortical inhibition in a manner
that improves signal-to-noise. Post-synaptically, NE depresses
GABAergic influence through α1-receptors, which lowers the
threshold for activation. In contrast, pre-synaptic α2- and
β-receptor contributions increase GABA release probability
(Salgado et al., 2012), which facilitates lateral inhibition through
selective enhancement of perisomatic inhibition (Salgado et al.,
2011). These effects of NE on cortical inhibition align with the
known role of NE in ‘‘filtering’’ sensory information.

Neuromodulators, such as 5HT, may employ an astrocyte
intermediary in the modulation of cortical inhibition (Figure 5).
A study by Deng and Lei (2008) demonstrated a 5HT2A/Gq-
dependent depolarization of interneurons in response to
5HT, leading to increased spontaneous and decreased evoked
inhibitory postsynaptic currents (sIPSCs; eIPSCs; Deng and
Lei, 2008). However, as astrocytes express most 5HT receptors,
and many P2Y receptors also link to Gq signaling pathways
(Abbracchio et al., 2006; Erb et al., 2006), these findings do
not rule out a role for 5HT-recruited astrocytic purinergic
activity in cortical inhibition. We have recently demonstrated
the effects of 5HT on cortical inhibition, characterized by
increased spontaneous and reduced evoked inhibition, are
blocked following the application of P2Y and A2A antagonists
(Quon et al., 2018; Wotton et al., 2018). This putative
5HT-induced purinergic signaling is likely astrocytic in origin,
as disruption of astrocyte metabolism was found to impair
5HT responses on evoked inhibition (Quon et al., 2018;
Wotton et al., 2018). The fact that disruption of astrocyte
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FIGURE 5 | Proposed schematic for astrocytes as intermediary or amplifier
of 5HT-mediated inhibition. (A) Deng and Lei (2008) show 5HT effects on
inhibition in the auditory cortex are mediated by 5HT2A receptors, Gαq/11, and
task-3 potassium channel inhibition. (B) We recently provided evidence that
astrocytes may be an intermediary in the effects of 5HT on cortical inhibition
in the somatosensory cortex (Quon et al., 2018; Wotton et al., 2018), as the
application of purinergic antagonists and disruption of astrocytic metabolism
blocked the effects of 5HT. It appears possible that 5HT promotes astrocytic
ATP release downstream of 5HT2A stimulation, leading to interneuron
depolarization (P2Y also linked to Gαq/11). It is not clear whether astrocytes
mediate 5HT effects entirely or merely serve to amplify the effects given their
strategic position.

function and/or purinergic signaling blocks the effects of 5HT
on spontaneous and evoked inhibition heavily implicates the
involvement of astrocytes in 5HT-mediated cortical inhibition
(Quon et al., 2018). Knowing that astrocytes are ideally situated
to influence and/or synchronize activity across numerous
neurons simultaneously, astrocytes may modulate multiple
synapses via purinergic signaling to expand the range of 5HT
effects on cortical inhibition.

NEUROMODULATORS DIFFERENTIALLY
AFFECT EXTRACELLULAR POTASSIUM
REGULATION

As mentioned above, alteration of [K+]e is a potent means
to affect neuronal and network activity. Astrocyte calcium-
mediated uptake of K+ resulting in a mild, transient decrease
in baseline [K+]e is reported to increase the signal-to-noise
ratio in the hippocampus (Wang et al., 2012b), whereas
suppression of uptake resulting in a mild accumulation of
baseline [K+]e increases high-frequency oscillations (Ding et al.,
2016; Bellot-Saez et al., 2018; Rasmussen et al., 2019) as
well as gain in the visual cortex (Rasmussen et al., 2019).
Recent modeling using the Averaged-Neuron computational
model demonstrated [K+]e to be a potent mediator of changes
in brain state, although calcium and magnesium also play
a role (Rasmussen et al., 2017). Using this computational
model they showed that, although changes from sleep to
wakefulness required inhibition of calcium-sensitive potassium
channels with changes in extracellular ions only affecting the
threshold, the transition from quiet to active wakefulness
was mediated by a subtle change in extracellular ions; K+

being the most potent (Rasmussen et al., 2017). Furthermore,
given the known ability for neuromodulators to inhibit the

calcium-sensitive K+ channel (McCormick and Williamson,
1989; McCormick et al., 1993) and affect baseline [K+]e
(Ding et al., 2016; Wotton et al., 2020), it is reasonable
that an increase in tonic neuromodulator release and effects
on calcium-sensitive K+ channels induces general wakefulness
whereas phasic neuromodulator release with associated effects
on extracellular ion concentrations governs transitions between
quiet and active wakefulness.

Modulation of astrocyte-mediated K+ uptake and distribution
can occur via three distinct pathways. The first involves
a synaptic activity-mediated increase in astrocyte [Na+] via
glutamate transport to drive the Na+/K+ ATPase (Larsen et al.,
2016b). The second involves an astrocyte calcium-mediated
increase in [Na+] via the Na+/Ca2+ exchanger (Wang et al.,
2012b) that may or may not depend on neural activity. Finally,
the third involves direct long-range neuromodulator-mediated
regulation of Na+/K+ ATPase or Kir4.1 independent of local
network activity (Wotton et al., 2020). Such diversity over the
control of [K+]e regulation that may or may not depend on local
synaptic activity enables a powerful means to regulate brain-wide
network connectivity and, ultimately, behavior.

Although a cocktail of neuromodulators (NE, ACh, DA,
orexin, and HA) induced an increase in [K+]e that was
associated with the transition in brain state (Ding et al.,
2016), recent evidence suggests that individual neuromodulators
have differential effects (Wotton et al., 2020). 5HT, NE, and
ACh differentially affected inward rectifiers and the Na+/K+

ATPase to exert distinct effects on baseline [K+]e as well as
recovery from evoked K+ increases that were associated with

FIGURE 6 | Differential effects of neuromodulators on evoked increases in
extracellular potassium mirror differential neuromodulator effects on
adaptation. (A) Example traces (left) and histograms (right) showing
activity-induced recovery decay tau is accelerated by 5HT and NE, but not
ACh. (B) A 10-pulse train shows significant spike frequency adaptation in the
somatosensory cortex (left) that is differentially regulated by neuromodulators
(right). N = 5–18. ∗ <0.05 by repeated-measures ANOVA with Fisher’s LSD
post hoc. Data and figures were adapted from Wotton et al. (2020) with
permission.
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effects on somatosensory adaptation (Figure 6) and amplitude
(Wotton et al., 2020). 5HT was found to affect K+ regulation
and somatosensory adaptation via effects on Kir, whereas
NE and ACh effects were mediated by opposing action on
Na+/K+ ATPase activity. Thus, in addition to direct differential
action on neurons and probable differences in effects on
astrocyte gliotransmission, neuromodulators differentially affect
astrocyte regulation of [K+]e to expand the repertoire by which
neuromodulators govern network activity and connectivity.

CONCLUSION

Given their sponge-like morphology and positioning, the
hypothesis that astrocytes extend neuromodulator effects
would appear to rectify the gap between the limits imposed
by simple diffusion and the rapid, far-reaching influence of
neuromodulators on brain-state transitions. Despite being
released extrasynaptically in a volume manner, neuromodulator
effects are limited by diffusion in the complex CNS. This
manner of unaided diffusion appears to be an inefficient
method to alter networks/synapses in the widespread and
timely manner known to be characteristic of neuromodulator
signaling. Intriguingly, astrocytes express receptors for
neuromodulators, form a far-ranging interconnected
syncytium, demonstrate calcium-wave propagation in response

to neuromodulator binding, influence the function of a
multitude of synapses through the release of gliotransmitters
and regulation of extracellular potassium, and can promote
synchronicity of neuronal populations that are related
to the different brain states. Perhaps the different brain
states can be viewed as a means to conserve energy with
neuromodulators (and astrocytes) gating desynchronized
up-states and circuit gain only in times of need, while
synchronized slow oscillations (down-states) reduce energy
demands and help clear the brain of wastes and metabolites.
Astrocytes are necessary both for eliciting neuromodulator
effects and extending their influence/reach beyond that of
simple diffusion. We conclude that astrocytes are ideally
positioned and suited to be the ultimate effectors of long-range
neuromodulatory networks.
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