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Abstract: Recent advances in additive manufacturing, specifically direct ink writing (DIW) and
ink-jetting, have enabled the production of elastomeric silicone parts with deterministic control
over the structure, shape, and mechanical properties. These new technologies offer rapid prototyp-
ing advantages and find applications in various fields, including biomedical devices, prosthetics,
metamaterials, and soft robotics. Stereolithography (SLA) is a complementary approach with the
ability to print with finer features and potentially higher throughput. However, all high-performance
silicone elastomers are composites of polysiloxane networks reinforced with particulate filler, and
consequently, silicone resins tend to have high viscosities (gel- or paste-like), which complicates or
completely inhibits the layer-by-layer recoating process central to most SLA technologies. Herein,
the design and build of a digital light projection SLA printer suitable for handling high-viscosity
resins is demonstrated. Further, a series of UV-curable silicone resins with thiol-ene crosslinking and
reinforced by a combination of fumed silica and MQ resins are also described. The resulting silicone
elastomers are shown to have tunable mechanical properties, with 100–350% elongation and ultimate
tensile strength from 1 to 2.5 MPa. Three-dimensional printed features of 0.4 mm were achieved, and
complexity is demonstrated by octet-truss lattices that display negative stiffness.

Keywords: stereolithography; 3D printing; silicone; elastomer; MQ resin; thiol-ene

1. Introduction

Soft, elastomeric ‘rubbery’ materials are polymers with low elastic moduli and high
deformation capability, which make them ideal candidates for various applications, in-
cluding shock absorption, cushions, seals and gaskets, tires, tubes, and belts. Elastomeric
feedstocks are actively being developed for additive manufacturing (AM) [1] and are being
applied to soft robotics [2], metamaterials [3], auxetic materials [4], and prosthetics [5].
Despite tremendous progress over the past 15–20 years, only a subset of traditionally
available materials is 3D-printable, and AM-feedstock development remains a considerable
challenge. In an ideal scenario, the underlying properties of an AM material would be iden-
tical to those obtained via traditional manufacturing (subtractive, injection molding, etc.).
However, 3D-printed materials tend to display lower mechanical properties, inferior aging,
and anisotropic behavior, all of which limit AM for end-use production [6,7]. Feedstock de-
velopment challenges hinge on maintaining desired properties while adapting the material
to conform to the engineering constraints of a particular printer and/or printing process.
As examples, this may include endowing a material with UV-reactive functional groups for
a stereolithography (SLA) process [8] or formulating with thixotropic additives to facilitate
direct ink writing (DIW) [9]. Here, we have approached this problem by co-developing
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a UV-curable silicone elastomer with the build of an SLA printer specifically designed to
handle the viscous nature of reinforced silicone resin.

Silicones are an important class of semi-inorganic polymers valued for their unique
combination of desirable properties, including exceptional thermal stability, chemical in-
ertness, and a unique ability to maintain useful properties over a wide range of service
temperatures (−50 ◦C to over 250 ◦C) [10]. Elastomeric silicone rubbers generally consist
of networks of polydimethylsiloxane (PDMS) or poly(methyl/phenyl)siloxane copolymer
chains crosslinked together using various chemical strategies, including condensation,
free-radical coupling, or Pt-catalyzed hydrosilylation [11]. Nearly all high-performance
commercial silicone rubbers are composites consisting of siloxane networks with embed-
ded reinforcing particulate filler [12]. Commonly employed fillers include silica (fumed,
colloidal), carbon black, and diatomaceous earth. The incorporation of sub-micron-sized
particulate filler significantly improves mechanical properties and increases abrasion resis-
tance in rubbery networks [13]. Without filler, silicone vulcanites are extremely soft and
weak and have limited use in mechanical applications.

DIW and ink-jetting are the preferred methods for 3D-printing silicone parts and have
recently been commercialized [14,15]. However, there are many advantages in developing a
lithographic-based approach, including unparalleled resolution and throughput, as evidenced
by SLA’s role as an enabling technology at the heart of the multi-billion dollar per year
dental aligner industry [16]. Moreover, in comparison to DIW technologies, SLA enables
the design and build of more complex structures, including architectures with unsupported
overhangs. Recently, several groups have reported on the SLA of silicones [17–28] and/or
related polysiloxane-containing materials [2], using predominately acrylate [23–25,27] and/or
thiol-ene [17–22,26] crosslinking as workhorse chemistries. Notably, however, many reported
SLA silicone formulations have lacked the addition of reinforcing filler. Presumably, this is
because the addition of filler sharply increases the viscosity of silicone formulations, which
challenges the development of traditional SLA-based processing [18].

SLA photoresists are generally designed to have low starting viscosities to facilitate
layer-by-layer recoating, i.e., uncured resin wets the surface of cured material at each step
of the printing process [1]. Materials with higher surface tensions or viscosities simply do
not level out to form thin layers. This issue has been addressed in part by using bottom-up
approaches, in which thin layers of resin are formed by lowering a build plate into a
resin bath. Transparent baths allow for thin layers of resin to be illuminated from below.
While this approach has proven successful [29], it does introduce the additional problem
of needing to separate each printed layer from the bath floor. If unmitigated, the forces
required to separate a printed layer from the bath floor can damage small features or even
tear the printed structure from its build substrate. Multiple solutions to this problem have
been explored with varying degrees of success, including tilting the bath, translating the
bath laterally, and using a flexible release film or oxygen-permeable membrane as the bath
floor, such as the CLIP process [30–33].

This work presents a custom-built bottom-up digital light projection SLA printer de-
signed specifically to process paste-like (up to 100 kPa·s) silicone resins. The paste-SLA
printer was then utilized to develop a series of tunable UV-curable silicone elastomers based
on thiol-ene crosslinking and reinforced with a combination of MQ resins and fumed silica.

2. Materials and Methods
2.1. SLA-Paste Printing

The paste-SLA printer utilizes a DLP6500FLQ 0.65 1080p DMD (TI, Dallas, TX) to
pattern a 14.5 × 8.16 mm2 light field of 405 nm light with a pixel size of 7.56 µm. This
image is magnified 2× before passing through a transparent vat made of 0.127 mm FEP
Teflon. A mechanical aperture in the optical path limits the intensity of light that travels
to the build plane, and a decreasing aperture diameter can increase the resolution of the
patterned light. Figure S1 contains experimental measurements relating aperture size to
light intensity at the build plane. FEP Teflon was chosen to provide a low-surface energy
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interface. A LTS150 translation stage and CR1-Z7 rotational stage (Thorlabs, Newton,
NJ, USA) are controlled through LabVIEW (NI, Austin, TX, USA) and translate the build
substrate vertically and rotate the resin bath for recoating, respectively. The resin bath is
modeled after the FlexVat [34] and allows for varying the tension of the FEP Teflon film. At
lower tension, the film can deform to larger peel angles.

Printed structures with 50 µm layers were fabricated using patterned 405 nm light
with an intensity of 34 mW/cm2 for 7 s per layer. After printing, parts were cleaned of
residual uncured resin by first compressing the structures to extrude the bulk of the resin
out of the structures’ inner pores. Parts were then placed in a mixture of Dawn dish soap
detergent and water and agitated by hand until the part was deemed visually clean. Parts
without pores, such as tensile specimens, were wiped clean of excess resin using kim-wipes.

2.2. Materials

All materials were used as received unless otherwise noted. Vinyl terminated poly-
dimethylsiloxanes (VTS-1, -2, -3), (mercaptopropyl)methylsiloxane-dimethylsiloxane copoly-
mers (MFS-1, -2), and amphorous hexamethyldisilazane treated fumed silica (surface area
= 200 m2/g) were obtained from Gelest, Morrisville, PA, USA. Isopropylthioxanthone
(ITX), 4-methoxyphenyl (MEHQ), 2-ethylhexyl 4-(dimethylamino)benzoate (EHDA), 2-(2H-
benzotriazol-2-yl)-4,6-di-tert-pentylphenol (BTA), tetraorthosilicate, hexamethyldisiloxane,
sodium bicarbonate, sodium sulfate, and sulfuric acid were obtained from Sigma Aldrich,
St. Louis, MO, USA. Tetrahydrofuran (THF), ethanol, toluene, dichloromethane (DCM),
and isopropanol were obtained from VWR, Radnor, PA, USA as ACS grade. All deuterated
solvents for NMR analysis (chloroform, toluene, etc.) were obtained from Cambridge
Isotopes, Tewksbury, MA, USA. FEP film for the resin bath was obtained from American
Durafilm, Holliston, MA, USA.

MQ resin Synthesis: MQ resin was synthesized according to a procedure described
by Flagg et al. [35]: A 500 mL round bottom flask equipped with a stirring bar and reflux
condenser was charged with 90 mL of ethanol, 50 mL water, and 50 µL sulfuric acid. The
reaction vessel was then warmed to 50 ◦C in an oil bath. Tetraorthosilicate (60 g, 0.29 mol)
was added, and the reaction mixture was allowed to stir at 50 ◦C for 2 h. A combined
mixture of hexamethyldisiloxane (21.9 g, 0.13 mol) and 1,3-divinyltetramethyldisiloxane
(2.9 g, 0.016 mol) was then added, followed immediately thereafter by 2 mL of sulfuric
acid. The resulting mixture was then gradually warmed to 80 ◦C while stirring over the
course of 2 h. The reaction vessel was removed from the oil bath, allowed to cool to
room temperature, and the contents were transferred to a separatory funnel. The lower
layer (organics) was collected and washed with saturated sodium bicarbonate and then
dried over magnesium sulfate. Rotary evaporation, followed by 70 ◦C vacuum oven
drying, yielded a white powder. The M-to-Q ratio of the powder was determined to be
approximately 0.8 via NMR analysis following a procedure described by Wu et al. [36]. The
vinyl concentration of the resin was also determined by NMR analysis to be approximately
0.5 mmol/g.

Resin Formulation: VTS-1,-2,-3 and MFT-1,-2 were mixed at a stoichiometric ratio of
1:1 vinyl-to-mercapto function groups as prescribed in Table 1. Next, 0.6 wt% EHDA was
added to the formulation, followed by a solution of 0.3 wt% ITX, 0.1 wt% MEHQ, and
0.24 wt% BTA dissolved in 0.5 mL THF. The subsequent mixture was then subjected to
planetary centrifugal mixing using a Thinky. TEFS formulations: Fumed silica was added
batch-wise a few grams at a time with intermediate Thinky mixing after each addition.
TEMQ formulations: MQ resin was dissolved in a minimal amount of DCM (approximately
5 mL DCM per gram of MQ resin) and mixed by hand with the desired amount of VTS.
The resulting mixture was then placed under a stream of nitrogen for 12 h or until the DCM
was removed as determined gravimetrically. MFS, EDHA, ITX, MEHQ, BTA, and fumed
silica were then added as described above. Resin formulations containing MEHQ inhibitor
exhibited shelf-lives of 12 months or more.
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2.3. Instrumentation

Tensile testing was conducted on an Instron Mechanical Testing System according
to ASTM D638. A series of 3 mm thick sheets of ‘bulk’ test specimens were cured with a
Loctite LED flood array with 405 nm wavelength at 250 mW/cm2 and cut with a type IV
dumbbell specimen tensile die. Bulk specimens were mounted with pneumatic grips and
measured against a 100 N load cell at a crosshead speed rate of 10 mm/min. Strain was
recorded as the displacement between the crossheads, and Young’s modulus was calculated
from the resulting stress–strain curve over 0–2%. SLA-printed tensile specimens were 20%
the size of the ASTM geometry and were printed with their shortest axis oriented in the Z
direction. A pull rate of 15 mm/min was used to test these specimens to failure. Strain was
recorded by marking the gauge area with permanent marker recording displacement with
an in-line camera.

Compression testing of the printed lattices was also conducted on the Instron MTS,
and a compression rate of 5 mm/min was used to compress the structures to increasing
strains from 33% to 87%.

Shore A hardness experiments were carried out with a PTC Instruments Durometer
Model 408. NMR spectroscopy was conducted on a 600 MHz Bruker, Billerica, MA, USA
spectrometer. All features were measured using a Zeiss, Oberkochen, Germany, Stereo
Discovery V8 stereomicroscope.

Rheology experiments were performed on a TA Instruments, New Castle, DE, USA,
AR2000ex rotational rheometer using a 20 mm parallel plate setup. All measurements
were carried out using a sample thickness (gap) of 1 mm. Oscillatory measurements of the
elastic (G′) and viscous (G”) shear moduli were performed as frequency sweeps at a low
constant strain of 0.05%. The values of G′ were reported at a frequency of 1 Hz. To test
the thermal stability of the resin, oscillatory experiments were carried out at temperatures
25–150 ◦C. The temperature was controlled using a Peltier plate, and the resin was allowed
to equilibrate at the set temperature for 2 h before the measurement. Shear viscosity was
measured as a flow ramp by varying the shear rate from 10 to 2 to 102 s−1.

Differential scanning calorimetry (DSC) was performed on the cured samples to
determine the transition temperature of the silicone materials using a Cryo-Discovery
series DSC (TA Instruments). The samples were subjected to a heat, cool, heat cycle that
ramped from −140 to 50 ◦C at 10 ◦C min−1, held at 50 ◦C for 1 min, ramped down to
−140 ◦C at 10 ◦C min−1, and heated again at a rate of 10 ◦C min−1 up to 50 ◦C.

X-ray tomography imaging was performed at beamline 8.3.2. of the advanced light
source, Berkeley, CA, USA [37], tuned to illuminate the gyroid sample with a 22 keV X-ray
beam. Projections were collected through a 10× lens onto a 2560 × 2160 pixel array PCO
edge 4.2 detector, resulting in a resolution of 6.16 µm/pixel. A total of 1313 radiographies
were collected around a 180◦ rotation range with an exposure time of 1 s. A series of
5 vertical scans were required to image the entire height of the sample. Normalization
of images was carried out with standard flat-field correction, followed by filtered back
projection and downscaling of reconstructed volume with a factor of 3. Using Fiji image
processing [38] package 1.53c [39], a 2D median filter (2 pixels radius) was applied for
noise reduction and image segmentation was applied using Otsu’s method to differentiate
the sample from the surrounding air. The extracted sample was converted to STL file
format using 3D slicer 4.8.1 [40] and registered and compared to a prescribed file using
CloudCompare 2.12 [41].

3. Results
3.1. DLP-SLA Paste Printer Design and Build

An SLA paste-printer was designed with a bottom-up approach using a reconfigurable
digital mask to pattern a uniform field of light from a 405 nm LED array, see Figure 1.
The resin is illuminated from beneath through a transparent vat floor with a maximum
intensity of 34 mW/cm2 over an area of approximately 29 × 16 mm2.
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Figure 1. Printing process for paste-SLA printer. (a) Build plate and printed structure descend
into resin bath from above to trap a thin layer of resin, which is then illuminated from below a
transparent bath. Bath rotation recoats and exposes fresh resin. (b) Picture of paste-SLA printer
during illumination. (c) Pictures of the recoating process of a 100,000 Pa·s silicone resin.

In this technique, the build plate and printed structure descend from above the vat to
trap a thin layer of resin in between the structure’s previously cured layer and the vat floor.
Thin layers (100 µm or less) can be achieved with high-viscosity resins and even pastes, and
layer thickness is only limited by the degree of coplanarity between the build substrate and
the vat floor. Figure 1a shows the overall printing process: (1) the build plate is lowered
into a thin layer of resin, (2) a pattern is projected from below, and (3) the structure is then
lifted out of the vat and the vat is rotated 30◦ to present a new area of uncured resin [29].

Finally, thin layers of uncured resin were crucial for mitigating part deformation,
especially for higher viscosity resins, displacement of which can exert significant forces on
the structure as it is lowered into the resin bath. Thin layers are achieved by incorporating
a stationary wiper blade with a gap thickness of approximately 500 µm, see Figure 1c.

3.2. Formulation of UV-Curable Silicone Elastomers

The silicone formulations in this study were developed using vinyl terminated-polydimet
hylsiloxane (VTS) and polymercaptosiloxane-co-dimethylsiloxane (MFS) monomers as crosslink-
ers, see Scheme 1. UV-initiated thiol-ene crosslinking of silicones was first described in the
1970s [42] and has since seen renewed interest for 3D printing [17–22,26]. A wide variety
of VTS monomers are commercially available, and although the selection of mercapto-
containing siloxanes is more limited, several synthetic approaches for their preparation
have been described in recent years [23,43].

Overall, the formulation of thiol-ene silicones was challenged by a lack of miscibility
of MFS in VTS and general poor solubility of photo-initiators in PDMS (see Table S1).
Mercapto-siloxane copolymers (MFS) containing greater than ca. 10 mol% mercaptopropyl
methylsiloxane relative to dimethylsiloxane were found to have only limited solubility
in vinyl-terminated polydimethylsiloxane. Initial formulations were carried out with
commercially available MFS-1, which has manufacturer specified 4–6 mol% thiol functional
groups, determined to be 0.485 mmol/g via 1H NMR analysis. The molar ratio of thiol-to-
vinyl functional groups was held at a 1:1 for all formulations, see Table 1. The photo-initiator
package consisted of a type II radical initiator (ITX + EDHA), a photo-absorber (BTA) and
a radical inhibitor (MEHQ).
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Table 1. Composition of PDMS-resin formulations. TEFS and TEMQ refer to resins reinforced with
fumed silica and MQ resin, respectively. phr is the mass part of filler per hundred mass parts of
rubber (i.e., VTS + MFS).

Sample Ingredients (phr)

VTS-1 VTS-2 VTS-3 MFS-1 MFS-2 Fumed
Silica

MQ
Resin

TEFS-1 - 80 - 20 - - -

TEFS-2 - 80 - 20 - 10 -

TEFS-3 - 80 - 20 25

TEFS-4 - 80 - 20 - 33 -

TEFS-5 55 - - 45 - 33 -

TEFS-6 - - 86 14 - 33 -

TEMQ-1 70 30 - 17.5 17.5

TEMQ-2 - - 73 17 10 17 33

TEMQ-3 - - 73 17 10 - 37

TEMQ-4 - - 77 - 23 15 54

Varying amounts (phr) of reinforcing hexamethyldisilazane treated fumed silica with
a vendor specified surface area of 200 m2/g were used for reinforcement. Silicone for-
mulations containing fumed silica are designated as TEFS. The viscosity of a VTS-2 +
MFS-1 formulation rose from 4 Pa·s (TEFS-1, Table 1) to over 100,000 Pa·s (TEFS-4) with a
compounding of 33 phr (see Figure S2). In addition to filler, the mechanical properties of
siloxane networks can be tuned by controlling the extent of crosslinks and the distribution
of chain lengths [11]. However, the solubility of MFS-2 (1.64 mmol/g) was found to be less
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than 3 wt%, severely hampering our ability to tune the degree of crosslinking. This issue
was addressed in part by adding vinyl-functionalized MQ resin, which we found enhanced
miscibility of MFS-2 in VTS-2 and VTS-3. MQ resins are nm-sized inorganic/organic hybrid
molecules consisting of a SiO4/2 network (‘Q’-unit) decorated with trialklylsilyl functional
groups (‘M’-unit) [36,44,45]. These materials have a particle-like morphology yet display
excellent solubility in most organic solvents, including PDMS. MQ resin has found use
as a reinforcing agent in optically transparent silicone formulations [46]. The MQ resins
utilized in this work were synthesized from tetra orthosilicate and had an M-to-Q ratio of
0.8 and vinyl concentration of approx. 0.5 mmol/g. Silicone formulations containing MQ
resin are designated as TEMQ.

3.3. Mechanical Properties and Testing

Miniaturized ASTM D638 type IV dogbone specimens were printed at 80% power
(405 nm, 27 mW/cm2, 7 s per layer) in the XY plane with 50 µm steps (smallest dimension
in the Z-axis) within the maximum available build window of our paste-SLA printer. This
corresponds to a 3D-printed specimen with dimensions that are approximately 20% of the
ASTM specifications. Elongation was measured by tracking the displacement of fiducial
markers added to the gage section of the specimen (Figure 2c). Both engineering stress and
strain are reported for all samples in Table 2, and we note that we are likely over-estimating
the true tensile strength at break due to difficulties associated with gripping these small
samples. A series of corresponding ‘bulk’ specimens were prepared to validate the tensile
results obtained for printed TEMQ1–4. Bulk samples of 3 mm thickness were cured under
a 405 nm 250 mW/cm2 flood lamp for 10 min from which full-size type IV dogbones
could be die-cut. The results of the printed and bulk specimens were statistically similar,
giving confidence to the results obtained from smaller 3D-printed samples (see results in
Figure S3). The addition of fumed silica from 0 to 33 phr resulted in stronger, tougher
materials; see TEFS-1 through 4 and Table 2 (for corresponding stress–strain curves, see
Figures S4–S7). Finally, the thermal properties of thiol-ene cured TEFS1–4 were evaluated
under DCS and found to exhibit stereotypical PDMS crystallization onset at −75 ◦C and
glass transition at ca. −115 ◦C (see Figure S8).

Table 2. Summary of mechanical properties determined by tensile elongation, durometry, and rheol-
ogy. a G′ is the shear modulus of the uncured resin determined by rheology. b σmax engineering stress
is the ultimate tensile strength determined by ASTM D638 testing. c εmax (mm/mm) engineering
strain is the elongation at break. d E is the Young’s modulus determined at 0.2% engineering strain. e

Hardness. Stress-strain curves for TEFS-4–6, and TEMQ-1–4 can be found in Figure 2.

Sample G′ (kPa) a σmax (MPa) b εmax
c E (MPa) d Shore A e

TEFS-1 0.001 0.14 ± 0.04 1.12 ± 0.27 0.20 ± 0.02 12

TEFS-2 0.15 0.36 ± 0.05 1.55 ± 0.16 0.37 ± 0.02 21

TEFS-3 8 0.56 ± 0.09 1.81 ± 0.25 0.57 ± 0.03 22

TEFS-4 64 0.93 ± 0.07 2.80 ± 0.15 0.62 ± 0.09 23

TEFS-5 — 0.27 ± 0.04 0.57 ± 0.02 0.65 ± 0.05 22

TEFS-6 — 0.92 ± 0.08 3.64 ± 0.24 0.45 ± 0.01 25

TEMQ-1 13 1.77 ± 0.36 3.81 ± 0.79 0.79 ± 0.04 35

TEMQ-2 64 1.64 ± 0.29 2.01 ± 0.42 1.17 ± 0.11 39

TEMQ-3 0.0076 0.43 ± 0.08 1.41 ± 0.10 0.38 ± 0.01 29

TEMQ-4 160 2.43 ± 0.11 1.58 ± 0.11 2.25 ± 0.16 54
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The similarities between the cured and ‘bulk’ specimens were also surprising, given
the difference in light intensities, 27 vs. 250 mW/cm2, respectively. We further explored
post-cure strategies as a means to improve the mechanical properties. Prolonged post-
UV exposure (>hours) did not significantly improve the tensile properties of 3D-printed
specimens, although the materials did noticeably yellow. Post-print thermal exposure
was even more complicated. Short durations at 180 ◦C (<2 h) also did not improve the
mechanical properties but did cause yellow/browning. Prolonged thermal exposure
(>24 h) or thermal cycling negatively impacted material properties and notably induced
embrittlement and friability even in samples with high fumed silica loading (i.e., TEFS-4).
The mechanism leading to embrittlement is unknown, and we are currently evaluating
methods to track the degree of cure in an effort to address this issue.

The effect of the VTS chain length was evaluated for three samples, TEFS-4, 5, and 6,
each with 33 phr fumed silica, see Figure 2a. There is a noticeable increase in toughness
moving from VTS-1 (0.61 mmol/g vinyl) in TEFS-5 to VTS-2 (0.12 mmol/g) in TEFS-4. The
mechanical properties of the TEFS-5 formulation with 33 phr fumed silica are similar to the
properties obtained from TEFS-1 with 0 phr fumed silica, Table 2. This result highlights
that the optimization of silicone formulations is a function of both the underlying network
structure and its interaction with the reinforcing filler.

The incorporation of MQ resins was envisioned as a means to reduce the viscosity
of the resin while still maintain high levels of reinforcement. The shear modulus (G′) of
the resins was measured as a function of filler; see Table 2 or Figure S9 for a graphical
representation. Increasing concentrations of silica from 0 to 33 phr result in an exponential
rise in G′ (TEFS-1 to 4). We were able to achieve similar G′ values for TEMQ-2 and -4



Polymers 2021, 13, 2239 9 of 15

compared to TEFS-1 with higher combined MQ resin plus fumed silica filler concentrations,
50 and 69 phr, respectively, vs. 33 phr.

As noted in Section 3.2, the addition of MQ resin also enhanced the miscibility of MFS-
2. The addition of vinyl functionalized MQ resin (ca. 0.5 mmol/g) and MFS-2 (1.64 mmol/g
thiol) improved tunability and enabled formulations with varying hardness, stiffness, and
strength, see Figure 2b. Increasing the concentration of MQ resin generally resulted in
stiffer, harder parts that failed at higher ultimate tensile strengths (σmax). The greatest σmax
was achieved with TEMQ-4 at around 2.5 MPa. These results are likely directly correlated
with increased crosslinking. Notably, formulations with only MQ resin and performed
poorly, see TEMQ-3. Although the exact mechanism of MQ resin reinforcement is unknown,
Kishi et al. have found evidence of MQ resin clustering/domain formation in PDMS/MQ
resin blends [47]. We hypothesize that MQ resin clustering in effect results in the formation
of larger agglomerates that provide network reinforcement. In this case, fumed silica may
be needed to nucleate MQ resin domain growth. TEMQ-1 with a combined 33 phr MQ
resin and fumed silica significantly out-performed TEFS-4 containing only 33 phr fumed
silica. TEMQ-1 exhibited nearly twice σmax with an order of magnitude lower G′.

Finally, cyclic tensile experiments were carried out on TEFS-4 at a pull rate of 2 mm/s to
60% of elongation at break (Figure 2d). The stress-strain curve exhibits a drop in the elastic
modulus following the first cycle, characteristic of the Mullins effect (bold green dotted line).
The specimen was then observed to continue to relax, albeit at a slower rate, over the next
40 cycles, before ultimately failing due to the formation of a crack in the gage section.

3.4. Optimization of SLA-Paste Printing

Refinement of the printing process was carried out on TEFS-2 for ease of handling un-
der a variety of conditions, including exposures time (5–10 s), light intensity
(7–34 mW/cm2), and photo-initiator concentration. Features and voids were evaluated
with the test mask shown in Figure 3a, which consists of pairs of 500 µm lines arranged
with a varying pitch from 0.25 to 3 mm. All resins were formulated with a type II photo-
initiator consisting of 0.3 wt% ITX and 0.6 wt% EHDA. A MEHQ inhibitor was added
to both to enhance the shelf-life of the resin and for tuning lateral resolution. Increased
amounts of MEHQ (0.05 vs. 0.1 wt%) generally resulted in sharper voids (Figure 3a,b) and
finer features (Figure 3c). The only voids not over-polymerized (i.e., the measured area
was less than programmed area) were fabrication with 0.10 wt% MEHQ and lower light
intensities 20 mW/cm2. Voids of 0.25 × 0.25 mm2 or less were not able to be resolved. Line
widths generally increased as pitch decreased, except again in the case of higher inhibitor
and lower intensities (solid squares, Figure 3c). Photo-absorber (BTA) was also tuned
to decrease layer thickness, as seen in Figure S16. A layer thicknesses of approximately
0.3 mm could be obtained at 0.5 wt% BTA loading.

A 1 × 1 × 1 cm3 gyroid sample made with TEFS-3 with 24 mW/cm2 (Figure 4a) was
imaged by X-ray tomography to investigate defects introduced in the object during the
printing process. No porosity was found in the walls of the gyroid structure, suggesting
proper adhesion of the successive printed layers. In addition, slices of the reconstructed
gyroid volume show unobstructed channels (Figure 4b). Further analysis was performed
to compare the prescribed geometry to the final printed object. Triangulated surfaces of the
input geometry and reconstructed volume were aligned in 3D (Figure 4c), and distance
differences of the triangles from both volumes were measured. Results indicate that the
printed object is, on average, slighty bigger than originally intended (0.266 mm) with local
variation. This result is consistent with the tendency of voids towards over polymerization.
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3.5. Negative Stiffness Behavior in Printed Lattices

A series of compression tests were conducted on lattice structures with an octet truss
unit cell to observe their mechanical performance and negative stiffness behavior. Lattices
were printed from TEMQ-3 and subjected to increasing compressive strains from 33% to
87% before failure occurred at the nodes, and the lattice did not recover. Figure 5 displays
stress vs. strain data along with images of the lattice’s behavior during compression up
to 67% strain. There is a period of negative stiffness between 16% and 20% strain when
one layer of struts buckles and the unit cells collapse, and an additional period of negative
stiffness that occurs at 35% strain when the second-row collapses. After these two regions
of negative stiffness, the stress has a positive slope as it approaches full densification, with
failure occurring at 87% strain and 2.4 MPa (Figure S17). The negative stiffness regions
at which struts start to buckle are tunable by adjusting strut thickness, so structures such
as these could be designed to isolate shocks based on expected force amplitude. The two
regions of negative stiffness seen in this structure, for instance, could be adjusted so that
one region occurs at relatively low forces and another at higher forces to accommodate a
range of possible impacts.
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Figure 4. 3D-printed gyroid sample. (a) Picture of the 1 × 1 × 1 cm3 printed sample. (b) Reconstructed slices of the
sample taken at multiple heights showing different layers and the fully dense structure of the sample. Image rendering was
performed with Avizo Lite 9.5.0 (FEI Visualization Sciences Group, Burlington, MA). (c) Surface distance measurement
between prescribed and printed sample. Colors indicate local displacement of the printed sample in positive (yellow and
red shades) and negative (green and blue shades) directions. Histogram of the measurement shows a broad peak center
around 0.25 mm.
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relaxed at (4). At 20% strain, one layer of unit cells has collapsed (arrow in picture 2), exhibiting negative stiffness behavior.
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4. Discussion

The objective of this work was to develop an SLA methodology to produce end-use
silicone parts of arbitrary complexity. We developed a paste-printer design specifically to
handle non-Newtonian filler-reinforced silicone resins. The results of this work highlight
several challenges that are actively informing and guiding our subsequent efforts in this area.

First, although the thiol-ene click chemistry is an attractive crosslinking strategy for
silicones, two issues have presented significant hurdles for future development. As noted
in Section 3.3, we observed peculiar and rather poor aging behavior upon exposure to
elevated temperatures. Silicones are renowned for having a wide service-temperature
window, including above 200 ◦C. The observed embrittlement behavior is currently under
investigation. Further, although we were able to demonstrate tunability (Figure 2), we
thus far have been unsuccessful in reaching tensile properties found in commercial-grade
silicones cured through alternative methods (σmax > 5 MPa, εmax > 400%). We believe
that part of the challenge associated with developing thiol-ene silicones is related to
the solubility, or lack thereof, of the mercapto functionalized monomer (MFS) in vinyl
terminated PDMS. MQ resin provided a partial solution as this material was found to
improve MFS solubility. During the writing of this manuscript, we became aware of at
least two other groups that took a similar MQ resin approach for the development of SLA
silicones. In 2007, Shin-Etsu chemical Co. patented an MQ resin reinforced resin [48], and
in 2019, Zhao et al. reported a formulation with an MT resin [20]. Neither group reported
significantly improved mechanical properties to those demonstrated in this work.

Significant challenges also remain in the recoating/plunging and lift-off phase of the
printing process (i.e., Steps 1 and 3 in Figure 1a). For some of the highest-viscosity silicone
resins, the stiffness of the uncured material is similar, if not greater, than the stiffness of
the printed structure, particularly for lattices with finer features (Figure 5). In the current
paste-SLA design, the printed structure needs to displace excess resin in the vat during the
plunging phase. During this process, the printed structure can be compressed or deformed
laterally, and both scenarios result in errors and defects during illumination. Separation
forces during lift-off continue to present a significant hurdle. Despite our efforts to use a
low surface energy release film as the vat floor, some structures could have small features
torn during the separation process, and in other cases, the entire structure could be torn off
the build substrate. An example of this type of damage can be seen in the frayed edges on
the right-hand side of the octet truss lattice (Figure 5). The currently available techniques
for reducing this separation force, such as tilting the build plate or only loosely tensioning
the release film, are limited to creating relatively small peel angles between the release film
and the cured layer. With this in mind, we are exploring solutions that can create larger
peel angles, and we are exploring alternative strategies such as acoustic vibration to reduce
the separation force.

5. Conclusions

In summary, we have developed a series of UV-curable thiol-ene silicones reinforced
by a combination of fumed silica and MQ resin. The resulting silicone elastomers are
demonstrated to have tunable mechanical properties, with ultimate tensile strength and
elongation up to 2.5 MPa and 350%, respectively. A custom-built SLA printer was co-
developed and built specifically to process the paste-like silicone resins. Features of
0.5 mm were reliably achieved, and complexity was demonstrated through the fabrication
of gyroid and octet-truss lattices. We are in the process of scaling this technology through
the design and build of a larger printer with the targeted goal of producing parts as large
as 15 × 15 × 15 inch3. The next-generation printer and corresponding materials will be
used to meet the needs of internal programs for the production of complex gasketing and
soft robotic components.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/polym13142239/s1. Figure S1: Measured Intensity at the build plate as function of aperture

https://www.mdpi.com/article/10.3390/polym13142239/s1
https://www.mdpi.com/article/10.3390/polym13142239/s1


Polymers 2021, 13, 2239 13 of 15

diameter. Table S1: Solubility of photo-initiator components in TEMQ-1. Figure S2: Viscosity of VTS-2
+ MFS-1 as a function of silica content. Figure S3: ASTM D638 tensile testing for TEFS-1 through
TEFS-4 compared to ‘bulk’ specimen. Figure S4: Tensile data for TEFS-1 specimens. Figure S5: Tensile
data for TEFS-2 specimens. Figure S6: Tensile data for TEFS-3 specimens. Figure S7: Tensile data for
TEFS-4 specimens. Figure S8: DSC analysis of TEFS1–4. Figure S9: Resin Shear modulus as a function
of filler concentration (wt%). Figure S10: Tensile data for TEFS-5 specimens. Figure S11: Tensile data
for TEFS-6 specimens. Figure S12: Tensile data for TEMQ-1 specimens. Figure S13: Tensile data for
TEMQ-2 specimens. Figure S14: Tensile data for TEMQ-3 specimens. Figure S15: Tensile data for
TEMQ-4 specimens. Figure S16: Layer thickness as a function of photo-absorber. Figure S17 Stress vs.
strain data for a TEFS-3 octet truss lattice compressed to 87% strain. Video S1: CT Reconstruction of
Silicone Gyroid.
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