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Abstract

The sign test is one of the most popular nonparametric

tests for location problems and allows testing for any

quantile of a population. However, the common sign

test has serious drawbacks such as loss of information

by considering solely signs of observations but not their

magnitudes, various problems related to handling of

ties in the data, and the lack of embedding uncertainty

regarding the fraction of underlying quantile. To ad-

dress these issues, we present an extended sign test

based on fuzzy categories and fuzzy formulated hy-

potheses that improves the generality, versatility, and

practicability of the common sign test. This generalized

test procedure is neat in theory and practice and avoids

disadvantages that are often associated with fuzzy tests

(e.g., a considerably higher complexity of the under-

lying model, a fuzzy test decision, and a possibilistic

instead of a probabilistic interpretation of test results).

In addition, we perform a comprehensive case study on

COVID‐19 in HIV‐infected individuals with a focus on

human body temperature and related measurement

problems. The results of the study clearly indicate that

fuzzy categories and fuzzy hypotheses improve the

performance of the sign test.
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1 | INTRODUCTION

Statistical inference aims at deducing properties and learning characteristics of an underlying po-
pulation with some form of sampling. This is done by selecting a statistical model for the data
generating process which is based on a set of assumptions regarding data generation and observed
data. In general, three types of model assumptions for statistical inference are distinguished: para-
metric, semiparametric, and nonparametric. Among these three types, parametric tests meet the
highest requirements by demanding that the underlying data generating process is fully captured by
a specific probability distribution defined on a finite number of unknown parameters. In contrast,
nonparametric tests impose only minimal requirements, and semiparametric tests typically imply a
number of assumptions lying between the parametric and the nonparametric case. It is crucial for
valid statistical inference to make appropriate assumptions about the data generating process (see
e.g., Grzegorzewski1), which is why specific assumptions have to be formulated very carefully and
nonparametric test methods are preferable in case of any doubt about the underlying population.

There are some popular nonparametric tests such as sign test, Wilcoxon signed‐rank test,
Mann–WhitneyU ‐test (Wilcoxon rank sum test), Kruskal–Wallis test, and Kolmogorov–Smirnov
test, just to name a few. In this paper, we focus on improving the sign test for practical applications
by embedding concepts of fuzzy statistics. The sign test is a test for location problems like any
quantile of a population that provides a series of benefits for practical test problems. First, its usage
is bounded to almost no assumptions about the population distribution, which is why the sign test
provides a very general applicability. Since quantiles such as the median or quartiles are used for
testing on location parameters, the sign test is based on a more robust measure of central tendency
compared to common parametric tests, for example, for the mean. It is also applicable to paired‐
sample data like pre‐ and post‐treatment observations for each of involved subjects. Moreover, the
sign test is an exact (binomial) test, operates also with small sample sizes, and is intuitive and
simple in application.

On the other hand, there are a few drawbacks of the common sign test:

1. It lacks statistical power due to utilization of information solely regarding the signs of the
differences between observations and the hypothesized quantile (and ignoring e.g., the
magnitude/order of these differences).

2. There are difficulties in the appropriate handling of null differences (ties), either via reduction of
the sample size (elimination of ties) or classification to both categories (negative/positive signs)
in an equal magnitude (i.e., 1 or 0.5) or classification to the underrepresented category.

3. It has a poor performance for small levels of significance in combination with very small
sample sizes.

In addition, the assumptions of crisp data and crisp hypotheses (on which the sign test is also
founded) are often inaccurate as most observations are more or less imprecise (see Shafiq et al.2)
or there is uncertainty regarding a hypothesized quantile value. For these reasons, some authors
have considered approaches of fuzzy statistics to deal appropriately with fuzziness in data and
hypotheses formulation. In the literature of fuzzy hypothesis testing, there are a few publications
considering the sign test in fuzzy environments (see Chukhrova and Johannssen,3 for a sys-
tematic review):

• Fuzzy/interval‐valued data caused by the imprecision of observations (see Grzegorzewski,4,5

Grzegorzewski and Spiewak,6‐8 Hesamian and Chachi,9 Hesamian and Taheri,10 Kahraman
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et al.,11 Momeni and Sadeghpour‐Gildeh,12 and Shams and Hesamian13), that is, fuzzy data
as perception of a crisp but unobservable random variable (so called epistemic perspective,
see Couso and Dubois14), or fuzzy set‐/interval‐valued random variables (so called ontic
perspective) (see Grzegorzewski and Spiewak6,7).

• Fuzzy/interval‐valued hypotheses caused by fuzzy quantiles like the fuzzy median (see
Grzegorzewski and Spiewak6,7) or imprecision of linguistic statements on quantiles (see
Hesamian and Chachi,9 Hesamian and Taheri,10 Momeni and Sadeghpour‐Gildeh,12 and
Shams and Hesamian13).

To the best of our knowledge, there is no sign test proposed in the literature to date where
fuzzy instead of crisp categories are considered and/or where fuzziness of the hypotheses is
caused by imprecision of linguistic statements on fractions of underlying quantiles. However,
the embedding of fuzzy categories may help to overcome shortcomings 1.–2. of the classical
sign test stated above on the one hand. On the other hand, fuzzy formulation of hypotheses
regarding fractions would be more natural and simple for the practitioner/researcher compared
to common formulation regarding quantiles, since the underlying test is of binomial type. In
addition, the standardization of modeling membership functions for popular quantiles like the
median is also possible, for example, for a better embedding into automated processes like big
data knowledge extraction. Thus, the paper pursues a twofold goal: the sign test will be ex-
tended by fuzzy categories and fuzzy hypotheses, to improve its generality, versatility, and
practicability.

To achieve the first goal, the crisp categories “negative signs (differences)” and “positive signs
(differences)” can be reformulated to fuzzy ones like “rather negative signs” and “rather positive
signs.” Such classifications can be adequately described by fuzzy sets with monotonically decreasing
and increasing membership functions, respectively. In this way, a suitable consideration of ties as
well as of magnitude of border values regarding a hypothesized quantile value is feasible by means
of corresponding membership degrees and can be easily implemented into the test statistic. In
addition, there is also the possibility to consider the order of observations beyond the border area
via full or no membership (1 vs. 0) to the respective category in compliance with the classical
approach. Further, following Dixon and Mood,15 the classification of ties to both (crisp or fuzzy)
categories in an equal magnitude of 0.5 can be proposed. But contrary to the classical approach,
where the real‐valued test statistic is either rounded up or down without consideration of the
impact of this transformation on the sample size, the implementation of the untransformed real‐
valued test statistic in the definition of the p‐value can be suggested, in particular via using gamma
functions instead of binomial coefficients.

It should be mentioned that an implementation of fuzzy categories in the framework of
fuzzy hypothesis testing has already been proposed by De Garibay,16 Grzegorzewski and
Szymanowski,17 Taheri and Hesamian,18 and Wu and Chang.19 They utilize real‐valued coding
to model memberships of crisp variables to fuzzy categories. The test statistic of the test under
consideration (no sign test has been examined) is then calculated based on the membership
degrees to specific categories of these crisp variables (i.e., [0, 1] instead of {0, 1}).

As for achieving the second goal, the methodology proposed by Chukhrova and
Johannssen20 can be transferred and adapted to the sign test. In particular, this methodology
provides the following benefits in the framework of a fuzzy sign test:

• consideration of both whole hypotheses as well as the indifference zone in the test procedure;
• specification of crisp and fuzzy areas in hypothesis formulation;
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• generalization of the indifference zone by its gradual consideration;
• formulation of the generalized p‐value using supremum of weighted conditional prob-
abilities; and

• definition of weight function under consideration of membership functions of both
hypotheses.

In addition, using the proposed methodology, the practitioner benefits from a crisp test decision,
which corresponds to a classical test decision “reject/do not reject H0,” supported by interpretations
of the generalized p‐value in the classical probabilistic sense. In contrast, the majority of fuzzy tests
provides key measures of possibilistic nature (like fuzzy test statistic, fuzzy critical value, fuzzy
p‐value, fuzzy confidence interval or fuzzy critical region) and a fuzzy test decision “reject/do not
reject H0 to a particular degree.” Such statements often lead to indifference regarding the final test
decision and can be overcome only by additional sampling or defuzzification of test results (which
demands in turn specific defuzzification approaches). Last but not least, the proposed formulation
of fuzzy hypotheses requires only specification of the indifference zone as well as of both (mostly
complementary) membership functions. Such modeling avoids a considerably increased complexity
of the underlying model that often comes along with fuzzy hypothesis testing, due to the necessity
of implementing plenty of additional assumptions regarding formulation of fuzzy data, fuzzy
random variables, and fuzzy parameters.

To emphasize the benefits of the proposed generalized sign test in practical applications, we
present a comprehensive case study based on a real data set on COVID‐19 in HIV‐infected
individuals. In particular, we analyze the human body temperature level and present methods
for handling problems regarding its categorical classification and thus appropriate interpreta-
tion of observed results by utilizing fuzzy categories. The generalized sign test is then per-
formed with crisp and fuzzy hypotheses, and the results are compared and interpreted.

The paper is organized as follows. Section 2 introduces some necessary preliminaries on
fuzzy sets. In Section 3 and 4, the one‐tailed test of significance for quantiles with crisp
and fuzzy hypotheses is discussed, respectively. Section 5 proposes adequate ways of modeling
fuzzy categories. In Section 6, we perform an extensive case study with regard to COVID‐19 in
HIV‐infected individuals. Finally, in Section 7 the paper concludes with an overview of study
results.

2 | PRELIMINARIES ON FUZZY SETS

Considering the classical (crisp) set theory, sets are defined as collections of elements ∈u ,
where each u either belongs to or does not belong to a crisp set ⊆A . Thus, a crisp set A is
described by an indicator function  →m : {0, 1}A with

⎧⎨⎩
∈
∉

m u
u A
u A

( ) =
1 if
0 ifA

While crisp sets allow only for differentiating between membership (1) and nonmembership (0)
of single elements u to a set A, fuzzy sets enable various degrees of membership by generalizing
indicator functions  →m : {0, 1}A to membership functions  →m : [0, 1]A . A fuzzy set A in 
is then given by a set of ordered pairs

≔ ∣ ∈A u m u u{( ; ( )) }A
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A fuzzy set A is referred to as

• normal, if there exists an ∈u such that ∈A m uhgt( ) = sup ( ) = 1u A ,
• subnormal, if A0 < hgt( ) < 1 for all ∈u ,
• convex, if ≥m λu λ u m u m u( + (1 − ) ) min( ( ), ( ))A A A1 2 1 2 for all ∈u u,1 2 and ∈λ [0, 1],

where hgt denotes the height of a fuzzy set A.
As we are generally referring to a nonempty (crisp) universal set  , there may be

elements of A having the degree of membership zero (see e.g., Zimmermann21). However,
elements with a nonzero degree of membership are mostly of primary interest. This leads us
to the so called γ‐cut of A, which is denoted by ∈ ∣ ≥A u m u γ= { ( ) }γ A and is defined as

the (crisp) set of elements belonging at least up to the degree ∈γ (0, 1] to A. There are some
common γ‐cuts of A like the support (supp), also called the topological closure of A, and
the core (ncl):





∈ ∣

∈ ∣

A A u m u

A A u m u

supp( ) = = { ( ) > 0}

ncl( ) = = { ( ) = 1}

A

A

0

1

The (crisp) set of all fuzzy subsets of  is denoted by  ( ).
Given two sets  ∈A B, ( ) with ≤m u m u( ) ( )A B for all ∈u , then A is a fuzzy subset of B

( ⊆A B). If there is at least one ∈u with m u m u( ) < ( )A B , then A is a proper fuzzy subset of
B ( ⊂A B).

In addition, we define a fuzzy subset Aγ of the fuzzy set A, whose support corresponds to
the γ‐cut of A, that is,

≔ ∣ ∈A u m u m u u{( ; min{ ( ), ( )}) }γ A Aγ

Since the membership function is the crucial part of fuzzy sets, operations with fuzzy sets
are defined by means of their membership functions. In this paper, we make use of basic set‐
theoretic operations on fuzzy sets like complement, intersection and union defined as follows
(see e.g., Chukhrova and Johannssen22, 23):







∈

∈

∈

∩

∪

m u m u A U

m u m u m u A B U

m u m u m u A B U

( ) = 1 − ( ) (complement of a normal fuzzy set ( ))

( ) = min{ ( ), ( )} ( intersection of fuzzy sets , ( ))

( ) = max{ ( ), ( )} (union of fuzzy sets , ( ))

A A

A B A B

A B A B

3 | ONE ‐TAILED TEST OF SIGNIFICANCE FOR
QUANTILES WITH CRISP HYPOTHESES

In the following, we discuss the classical one‐tailed sign test of significance, considering
the category “negative signs” and “positive signs” for the formulation of the test statistic
(S(−) and S(+)) in Sections 3.1 and 3.2, respectively. This separation is necessary since we
propose to use the p‐value for “left‐tailed” events for decision making in the framework of
the right‐ and left‐tailed sign test, based on the realization of the test statistic S(−) and S(+),
respectively. This proposal simplifies the calculation and is in line with the classical
approach.
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3.1 | The case of the category “negative signs”

To make statements about a true unknown quantile kq (such as median, quartiles, etc.), with
∈kq and fraction ∈q (0, 1), of a population of interest (whose cumulative distribution

function is assumed to be continuous and strictly increasing in vicinity of kq), we propose a test
procedure, which unifies the formulation of a respective test problem and its solution in the
following four steps:

1. Formulation of the hypotheses;
2. Specification of the sample size and the significance level;
3. Random sampling and determination of the test statistic;
4. Test decision regarding H0 on the basis of the p‐value.

According to the test procedure described above, in the first step hypotheses H0
′ and H1

′

(with an empty indifference zone I′ defined as a set between null and alternative hypothesis)
have to be formulated for one‐tailed test problems preliminary over the real numbers as
complementary statements on kq (e.g., the median) with a hypothesized value k (see Table 1,
row 1–2, and Figure 1). As for noncomplementary hypotheses, this case is less relevant in the
framework of a test of significance and is therefore not considered in this paper.

As well known, a quantile kq is defined by the constraint

 ≤X k q( ) = ,i q (1)

TABLE 1 Subsets of the parameter space and their indicator functions (using category “negative signs”)

Preliminary left‐tailed test Preliminary right‐tailed test

Preliminary hypothesis H0
′ ≥k kq ≤k kq

Preliminary hypothesis H1
′ k k<q k k>q

Right‐tailed test Left‐tailed test

Hypothesis H0 ≤q q0 ≥q q0

Hypothesis H1 q q> 1 q q< 1

With q q0 < = < 10 1 q q0 < = < 11 0

Set H0 ∈ ∣ ≤q q q{ Θ }0 ∈ ∣ ≥q q q{ Θ }0

Set H1 ∈ ∣q q q{ Θ > }1 ∈ ∣q q q{ Θ < }1

Set I ∈ ∣ ≤ ∅q q q q{ Θ < } =0 1 ∈ ∣ ≤ ∅q q q q{ Θ < } =1 0

m q( ) =H0

⎧⎨⎩
≤q q

q q

1 if 0 <

0 if < < 1
0

0

⎧⎨⎩ ≤

q q

q q

0 if 0 < <

1 if < 1
0

0

m q( ) =H1

⎧⎨⎩
≤q q

q q

0 if 0 <

1 if < < 1
1

1

⎧⎨⎩ ≤

q q

q q

1 if 0 < <

0 if < 1
1

1

m q( ) =I
⎧
⎨⎪

⎩⎪
≤

≤

q q

q q q

q q

0 if 0 <

1 if <

0 if < < 1

0

0 1

1

⎧
⎨⎪

⎩⎪
≤

≤

q q

q q q

q q

0 if 0 < <

1 if <

0 if < 1

1

1 0

0
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where Xi is the random variable of interest. Thus, both preliminary hypotheses can be alter-
natively reformulated to complementary statements H0 and H1 on the fraction q with parameter
space ≔Θ (0, 1) and a hypothesized fraction value, say q0 (e.g., q = 0.50 regarding a test for the
median) (see Table 1, row 3–5, and Figure 2). Note that there is a transition from a left‐ to a
right‐tailed test problem and vice versa due to the reformulation of hypotheses in compliance
with constraint (1). Further, it should be mentioned that in this paper the additional notation q1

instead of q0 for an edge element of H1 is introduced for generalization reasons in accordance
with the theory stated in the next section.

In terms of classical test theory the subsets of the parameter space Θ are defined here as
crisp disjoint sets H H I, ,0 1 ( ∪ ∪H H I = Θ0 1 ) with corresponding indicator functions
m q m q m q( ), ( ), ( )H H I0 1 (see Table 1, row 6–11). In particular, the sets H H I, ,0 1 are specified by
the hypotheses H0 and H1 as well as by the indifference zone I . The sets H0 and H1 are
nonempty, however, the set I is empty.

Assuming for the moment that the true value of the quantile kq of a population is known,
then the values of the indicator functions m q( )H0

and m q( )H1
could be determined. Therefore,

the null hypothesis would be rejected for m q m q( ) < ( )H H0 1
(this applies to ∈q H1) and would

not be rejected for m q m q( ) > ( )H H0 1
(this applies to ∈q H0). In both cases these decisions are

correct and consistent with reality.
In general, however, the true value of the fraction q is unknown. Consequently, the sta-

tistical decision regarding the null hypothesis is to make using a random sample of size n,
∈n . Therefore, in the framework of a level‐α‐test (test of significance), which controls the

type I error, the appropriate α‐level, ∈α (0, 1), is to specify in the second step. It should be
mentioned that although the sample size is user‐defined here, it should not be set arbitrarily
low, otherwise cost savings are only possible at the expense of increasing probabilities for the
type II error. These probabilities are the largest in the case of complementary hypotheses as
considered above. On the other hand, a very low sample size can lead to test situations, where
the null hypothesis can hardly be rejected. For instance, at the 5% level of significance, ≥n 6 is
necessary before any conclusion can be drawn (see Dixon and Mood15).

In the third step, random sampling of size n is to conduct. In particular, the n random
variables Xi, i n= 1, …, , are stochastically independent and drawn from a continuous dis-
tribution, whose quantile kq is uniquely defined by constraint (1). Considering exemplary a test
for the median, that is,  ≤X k( ) = 0.5i q , under H0 half and half of the sample observations
should lie below and above the hypothesized value k on average, respectively. Further, a
disjunctive coding by 0/1 of a continuous variable Xi provides its convenient treatment as a
categorical variable with indicator functions ∈m X( ) {0, 1}C i(−) and ∈m X( ) {0, 1}C i(+) regarding

FIGURE 1 Representation of preliminary hypotheses H H,0
′

1
′ for the left‐ and right‐tailed case

FIGURE 2 Representation of respective reformulated hypotheses H H,0 1 for the right‐ and left‐tailed case
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both possible categories: “negative signs” (C(−)) and “positive signs” (C(+)), which are essential
to construct the test statistic in the framework of the sign test.

Considering the membership of Xi to category C(−) as success, that is,  m X q( ( ) = 1) =C i(−)

and  m X q( ( ) = 0) = 1 −C i(−) , the random variable ∑S m X= ( )
i

n
C i

(−)
=1

(−) (in the following: the
test statistic) is defined as the number of negative signs (i.e., the number of Xi, i n= 1, …, ,
where X k<i holds) in the sample and follows the binomial distribution with probability mass
function

 ⎜ ⎟⎛
⎝

⎞
⎠S s

n

s
q q( = ) = (1 − ) .s n s(−) (−)

(−)
−(−) (−)

That is why the sign test actually corresponds to the exact binomial test with power function

G q( )n c, (−) , where c(−) is the critical (rejection) value with ≤ ≤c n0 − 1(−) , ∈c(−)
0 for the

right‐tailed case and ≤ ≤c n1 (−) , ∈c(−) for the left‐tailed case. The power functionG q( )n c, (−)

quantifies probabilities for a correct test decision (rejection of H0) for ∈q H1 and probabilities
for a false test decision (rejection of H0) for ∈q H0. Since the power function for a right‐tailed

test, ∑ ( )G q q q( ) = (1 − )n c m c

n n

m
m n m

, = +1
−

(−) (−) , is monotonically increasing, and the power

function for a left‐tailed test, ∑ ( )G q q q( ) = (1 − )n c m

c n

m
m n m

, =0

−1 −
(−)

(−)

, is monotonically decreasing,

the respective argument value of the type I error criterion (defined as the supremum of
probabilities for false rejection of H0) is equal to the edge element q0 of the set H0, that is,

≤
∈

E n c G q G q α( , ) = sup ( ) = ( )
q H

n c n c1
(−)

, , 0
0

(−) (−)

As for a test decision, it is to achieve in the fourth step by comparing the α‐level to the
p‐value. The p‐value is defined as the conditional probability that the observed sampling results
or more extreme (in terms of H0) sampling results occur, when the null hypothesis is true.
Applying this definition to the binomial test, we obtain





≥ ∑

∑

≤ ∑

∑

∈

∈

( )

( )

( )

( )

p n s S s q q

q q

p n s S s q q

q q

( , ) = ( ) = (1 − )

= (1 − ) (right‐ tailed test)

( , ) = ( ) = (1 − )

= (1 − ) ( left‐ tailed test)

r q H
m s

n
n

m
m n m

m s

n
n

m
m n m

l q H
m

s
n

m
m n m

m

s
n

m
m n m

(−) (−) (−)

=

−

=
0 0

−

(−) (−) (−)

=0

−

=0
0 0

−

0
(−)

(−)

0

(−)

(−)

If the quantile of interest is defined as median, the definition of the p‐value simplifies to





≥ ∑

≤ ∑

∈

∈

( )

( )

p n s S s

p n s S s

( , ) = ( ) = 0.5 (right ‐tailed test)

( , ) = ( ) = 0.5 (left ‐tailed test)

r q H
n

m s

n
n

m

l q H
n

m

s
n

m

(−) (−) (−)

=

(−) (−) (−)

=0

0
(−)

0

(−)

The null hypothesis is to reject, if the p‐value is lower than or equal to the given α‐level,
otherwise H0 can not be rejected.
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It should be noted that if the hypothesized quantile value is chosen close to the true value,
the common sign test generally does not result in a rejection of H0 since there is on average no
strong evidence against the validity of H0. Thus, to ensure a significant test result, the required
sample size is to specify the larger, the closer is the hypothesized quantile value to the true
value (see also Dixon and Mood15). However, embedding of fuzzy hypotheses and fuzzy ca-
tegories may lead to improved test results and may rather enable a rejection of H0 when the
hypothesized quantile value is chosen very close to the true one in combination with a com-
paratively small sample size. This is due to (1) the inclusion of the hypothesized percentage
deviation regarding q within reformulated hypotheses by means of the specification of q q,0 1 on
the one hand (fuzzy hypotheses) and (2) embedding of the magnitude of observations in the
range (x x,l r) around the hypothesized quantile value k into the test statistic on the other hand
(fuzzy categories). Consequently, we discuss modeling of fuzzy hypotheses and fuzzy categories
in Sections 4 and 5, respectively.

3.2 | Outline for the case of the category “positive signs”

Assume again that the n random variables Xi, i n= 1, …, , are stochastically independent and
are drawn from a continuous distribution, whose quantile kq is uniquely defined by constraint
(1). Considering the membership of Xi ( ∈m X( ) {0, 1}C i(+) ) to the category “positive signs” (C(+))
as success, that is,  m X q( ( ) = 1) = 1 −C i(+) and  m X q( ( ) = 0) =C i(+) , the random variable

∑S m X= ( )
i

n
C i

(+)
=1

(+) (in the following: the test statistic) is defined as the number of positive
signs (i.e., the number of Xi, i n= 1, …, , where X k>i holds) in the sample and follows the
binomial distribution with probability mass function

 ⎜ ⎟⎛
⎝

⎞
⎠S s

n

s
q q( = ) = (1 − )s n s(+) (+)

(+)
−(+) (+)

This alternative test statistic leads in turn to the exact binomial test with the following
adjustments in

1. Hypotheses formulation:
While the preliminary hypotheses H0

′ and H1
′ remain unchanged (see Table 1, rows 1–2),

the reformulated hypotheses H0 and H1 with respective indicator functions (see Table 1,
rows 3–11) should be alternatively remodeled to statements on q1 − (instead of statements
on q) in compliance with the remodeled test statistic (see Table 2, rows 3–11).

2. Power function:





⎜ ⎟

⎜ ⎟

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

∑

∑

≤ ≤ ∈

≤ ≤ ∈

G q
n

m
q q c n c

G q
n

m
q q c n c

(1 − ) = (1 − ) with 1 , ( left ‐ tailed test)

(1 − ) = (1 − ) with 0 − 1, (right ‐ tailed test)

n c

m

c

m n m

n c

m c

n

m n m

,

=0

−1

− (+) (+)

,

= +1

− (+) (+)
0

(+)

(+)

(+)

(+)

where c(+) is the respective critical (rejection) value.
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3. Type I error criterion:

≤
∈

E n c G q G q α( , ) = sup (1 − ) = (1 − )
q H

n c n c1
(+)

1−
, , 0

0

(+) (+)

4. p‐value:





⎜ ⎟

⎜ ⎟

⎜ ⎟

⎜ ⎟

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

∑

∑

∑

∑

≤

≥

∈

∈

p n s S s
n

m
q q

n

m
q q
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If the quantile of interest is defined as median, the definition of the p‐value simplifies to

TABLE 2 Subsets of the parameter space and their indicator functions (using category “positive signs”)

Preliminary left‐tailed test Preliminary right‐tailed test

Hypothesis H0
′ ≥k kq ≤k kq

Hypothesis H1
′ k k<q k k>q

Left‐tailed test Right‐tailed test

Hypothesis H0 ≥q q1 − 1 − 0 ≤q q1 − 1 − 0

Hypothesis H1 q q1 − < 1 − 1 q q1 − > 1 − 1

With q q0 < = < 10 1 q q0 < = < 11 0

Set H0 ∈ ∣ ≥q q q{(1 − ) Θ 1 − 1 − }0 ∈ ∣ ≤q q q{(1 − ) Θ 1 − 1 − }0

Set H1 ∈ ∣q q q{(1 − ) Θ 1 − < 1 − }1 ∈ ∣q q q{(1 − ) Θ 1 − > 1 − }1

SSet I ∈ ∣ ≤ ∅q q q q{(1 − ) Θ 1 − 1 − < 1 − } =1 0 ∈ ∣ ≤ ∅q q q q{(1 − ) Θ 1 − < 1 − 1 − } =0 1

m q(1 − ) =H0

⎧⎨⎩ ≤

q q

q q

0 if 0 < 1 − < 1 −

1 if 1 − 1 − < 1
0

0

⎧⎨⎩
≤q q

q q

1 if 0 < 1 − 1 −

0 if 1 − < 1 − < 1
0

0

m q(1 − ) =H1
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q q

q q

1 if 0 < 1 − < 1 −

0 if 1 − 1 − < 1
1

1

⎧⎨⎩
≤q q

q q
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1
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q q
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Summarized, when considering both test statistics S(−) and S(+) based on categories “negative
signs” (C(−)) and “positive signs” (C(+)), we obtain a consistent representation of the p‐value for
preliminary formulated left‐ and right‐tailed test, respectively, as follows

 
 

≥ ≤

≤ ≥

∈ ∈

∈ ∈

S s S s

S s S s

( ) = ( )

( ) = ( )

q H q H

q H q H

(−) (−)
1−

(+) (+)

(−) (−)
1−

(+) (+)

0 0

0 0

since it holds s s n+ =(−) (+) . In addition, the calculation effort can be reduced to the
determination of the “left‐tailed” p‐value for both types of preliminary formulated one‐tailed
hypotheses

 ≤∈p n s S s( , ) = ( ) (preliminary left ‐ tailed test)l q H
(+)

1−
(+) (+)

0 (2)

 ≤∈p n s S s( , ) = ( ) (preliminary right ‐ tailed test)l q H
(−) (−) (−)

0 (3)

In the following, we use this representation for definitions and calculations in Sections 4–6.

4 | ONE ‐TAILED TEST OF SIGNIFICANCE FOR
QUANTILES WITH FUZZY HYPOTHESES

4.1 | The case of the category “negative signs”

Given that a crisp hypothesis is a special case of a fuzzy hypothesis, the conventional test
problem described above is now to generalize using the basic approach of Chukhrova and
Johannssen20 and to solve in four steps presented in Section 3.

In the first step, we have to formulate adequate fuzzy hypotheses. Since we assume
that fuzziness of the hypotheses is caused by imprecision of linguistic statements on
fractions of underlying quantiles, we consider fuzzification of hypotheses in this paper
only regarding reformulated hypotheses as statements on an unknown fraction q, not
regarding preliminary hypotheses as statements on an unknown quantile kq. The pre-
liminary hypotheses H0

′ and H1
′ are still crisp defined as in Section 3 (see Table 3, rows

1–2). Fuzzifying solely the reformulated hypotheses H0 and H1 is quite natural due to the
fact that the sign test is a special case of the binomial test and there is in the first line an
uncertainty regarding the magnitude of the fraction q, defined uniquely by a crisp hy-
pothesized quantile value k. Considering exemplary a test for the median, such an un-
certainty regarding the 50%‐threshold can be appropriately modeled in an interval‐valued
way instead of a point‐valued specification, especially with the help of a symmetric de-
viation (e.g., 2.5%, 5%, or 10%) from the 50%‐point. An interval‐valued specification,
obtained by hypothesized values q0 and q1, constitutes the indifference zone and si-
multaneously the fuzzy areas of the reformulated hypotheses.

The particular formulation of fuzzy hypotheses as fuzzy statements on the fraction q of
interest with parameter space ≔Θ (0, 1) (see Table 3, rows 3–5, and Figure 3) implies the
definition of fuzzy sets H H I, ,0 1 (with ∪ ∪H H I = Θ0 1 ) as well as modeling of membership
functionsm q m q m q( ), ( ), ( )H H I0 1

for ∈q Θ (instead of indicator functions). Table 3 (rows 6–11)
gives an overview of these sets and their membership functions.
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In contrast to crisp reformulated hypotheses, fuzzy reformulated hypotheses are formulated
using both hypothesized fraction values q0, q1. Accordingly, it is to distinguish between crisp
comparison operators ( ≤ ≥<, , ,>) and fuzzy comparison operators ( < , ≤ , ≥ , > ) in the
formulation of the hypotheses. For example, the operator ≤ denotes “crisp” lower equal, while
the operator ≤ stands for “fuzzy” lower equal. Thus, the fuzziness of the hypotheses is caused
by a gradual fuzzification of the indifference zone I in terms of fuzzified intervals q q( , ]0 1 (right‐
tailed test) and q q[ , )1 0 (left‐tailed test), respectively (see Figure 3). Considering exemplary a right‐
tailed test for the median, linguistic formulations of H0 and H1 like

H0: The population proportion q is approximately lower than or equal to 0.5
H1: The population proportion q is approximately larger than 0.5

could appropriately be modeled via a symmetric specification of q0 and q1 regarding the
threshold 0.5 by means of the hypothesized deviation value from this 50%‐point, whose range
expresses the magnitude of uncertainty regarding q, for example, given an uncertainty level of
10% one would choose the width of the indifference zone (and thus of the fuzzy areas) as
w q q= − = 0.11 0 , that is, it holds q = 0.450 and q = 0.551 .

TABLE 3 Fuzzy subsets of the parameter space and their membership functions (using category “negative
signs”)

Preliminary left‐tailed test Preliminary right‐tailed test

Preliminary hypothesis H0
′ ≥k kq ≤k kq

Preliminary hypothesis H1
′ k k<q k k>q

Right‐tailed test Left‐tailed test

Hypothesis H0 ≤q q q,
0

≤ q
1

q ≥ ≥q q q,
1 0

Hypothesis H1 q > q q q, >
0 1

q q q< ,
1

< q
0

With ≤q q0 < < 1
0 1

≤q q0 < < 1
1 0

Set H0
∣ ∈ ∈

∈ ∣ ≤

q m q q m q

H q q q

{( ; ( )) Θ, ( ) [0, 1]}

ncl( ) = { Θ }

H H

0 0

0 0
∣ ∈ ∈

∈ ∣ ≥

q m q q m q

H q q q

{( ; ( )) Θ, ( ) [0, 1]}

ncl( ) = { Θ }

H H

0 0

0 0

Set H1
∣ ∈ ∈

∈ ∣

q m q q m q

H q q q

{( ; ( )) Θ, ( ) [0, 1]}

ncl( ) = { Θ > }

H H

1 1

1 1
∣ ∈ ∈

∈ ∣

q m q q m q

H q q q

{( ; ( )) Θ, ( ) [0, 1]}

ncl( ) = { Θ < }

H H

1 1

1 1

Set I ∣ ∈ ∈q m q q m q{( ; ( )) Θ, ( ) {0, 1}}I I ∣ ∈ ∈q m q q m q{( ; ( )) Θ, ( ) {0, 1}}I I

m q( ) =H0

⎧

⎨
⎪⎪

⎩
⎪⎪

≤q q

u q q q q

m q q q

q q

1 if 0 <

( ) if < <

( ) if =

0 if < < 1

H

0

0 0 1

1

1

C
0

⎧

⎨
⎪⎪

⎩
⎪⎪ ≤

q q

m q q q

u q q q q

q q

0 if 0 < <

( ) if =

( ) if < <

1 if < 1

H

1

1

0 1 0

0

C
0

m q( ) =H1

⎧
⎨⎪

⎩⎪

≤

≤

q q

u q q q q

q q

0 if 0 <

( ) if <

1 if < < 1

0

1 0 1

1

⎧
⎨⎪

⎩⎪
≤

≤

q q

u q q q q

q q

1 if 0 < <

( ) if <

0 if < 1

1

1 1 0

0

m q( ) =I
⎧
⎨⎪

⎩⎪

≤

≤

q q

q q q

q q

0 if 0 <

1 if <

0 if < < 1

0

0 1

1

⎧
⎨⎪

⎩⎪
≤

≤

q q

q q q

q q

0 if 0 < <

1 if <

0 if < 1

1

1 0

0
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Due to the generalization of the crisp sets H H,0 1 to fuzzy sets H H,0 1, they now
consist of a crisp and a fuzzy set: ∪H H H= C F

0 0 0 , ∪H H H= C F
1 1 1 , which are referred to as crisp

and fuzzy areas of the respective hypothesis (see Table 4, rows 1–4). The edge elements of the
nonempty supports of HF

0 and HF
1 are thereby based on the hypothesized values q0, q1. In

contrast to the normal crisp areas HC
0 and HC

1 (see Table 4, rows 5–6), the fuzzy areas ≠ ∅HF
0

and ≠ ∅HF
1 are subnormal. The membership functions u q( )0 and u q( )1 for these areas (see

Table 4, rows 7–8) are (strictly) monotonically decreasing or increasing functions depending on
whether the membership degree of any element of the parameter set has a decreasing or an
increasing trend in relation to the respective hypothesis.

Since the fuzzy sets H H,0 1 are formulated as union of their crisp and fuzzy areas
( ∪H H Hsupp( ) = supp( ) supp( )C F

0 0 0 , ∪H H Hsupp( ) = supp( ) supp( )C F
1 1 1 ), the membership

functionsm q( )H0
andm q( )H1

result as follows (see also Table 3, rows 9–10, and Table 4, rows 5–8):

∪

∪

m q m q m q m q

m q m q m q m q

( ) = ( ) = max{ ( ), ( )}

( ) = ( ) = max{ ( ), ( )}

H H H H H

H H H H H

C F C F

C F C F

0 0 0 0 0

1 1 1 1 1

Consequently, these functions are monotonically increasing or decreasing. In addition, the
membership functions m q( )H0

and m q( )H1
can be defined either complementary, that

is m q m q( ) = 1 − ( )H H0 1
, or noncomplementary, that is ≤m q m q( ) 1 − ( )H H0 1

. As for non-
complementary hypotheses, there is at least one ∈q Θ withm q m q( ) < 1 − ( )H H0 1

. However, a
consideration of another type of noncomplementary membership functions, that
is, ≥m q m q( ) 1 − ( )H H0 1

, is less relevant in practice and is therefore not considered in this
paper.

It should be noted that the specification of q q=0 1 implies crisp complementary hypotheses
with m q m q( ) = ( )H H

C
0 0

, m q m q( ) = ( )H H
C

1 1
(due to ∅H =F

0 , ∅H =F
1 ). In the cases q q<0 1

(right‐tailed test) or q q<1 0 (left‐tailed test), both fuzzy complementary and noncomplementary
hypotheses can be modeled.

Now, we exemplary consider piecewise linear, s‐, convex‐ or concave‐shaped membership
functions m q m q( ), ( )H H0 1

with u q u q( ), ( )0 1 given in Table 5. In addition, Figures 4–5 illustrate
these membership functions and demonstrate the gradual fuzzification of the indifference zone
(fuzzy complementary hypotheses). We refer for a sensitivity analysis regarding the impact of
various shapes of membership functions in the context of fuzzy hypothesis testing to
Chukhrova and Johannssen.24

In the second step, depending on the respective test situation, the user specifies the sample sizen,
∈n , and the significance level α, ∈α (0, 1). In the third step, under H0 the test statistic S(−) can

FIGURE 3 Representation of fuzzy reformulated hypotheses H H,0 1 for the right‐ and left‐tailed case
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be calculated via∑ m X( )
i

n
C i=1

(−) by using a sample of size n. In addition, a crisp test decision is to
make in the fourth step by comparing the α‐level to the generalized p‐value. The specifications of the
respective test decisions for the generalized test are identical to those for the conventional test.

As for the particular determination of the generalized p‐value, the respective results
from Section 3 can be adopted only for elements from the crisp area of H0 but not from the
fuzzy area (indifference zone). Therefore, the definition of the p‐value is to generalize in
relation to the fuzzy area of H0, particularly in compliance with the definition of the
generalized type I error criterion,

≤
∈

{ }E n c m q m q G q α( , ) = sup ( ( ) − ( )) ( ) .
q H

H H n c1
(−)

,

0

0 1
(−) (4)

The generalized error criterion E1 is defined as the supremum of weighted probabilities for false
rejection of H0. In particular, the probabilities correspond to the power functionG q( )n c, (−) , while the
weight function is defined as the difference between the membership of an element ∈q Θ to the
fuzzy null hypothesis and the membership of an element ∈q Θ to the fuzzy alternative hypothesis,
that ism q m q( ) − ( )H H0 1

for all ∈q Θ (see also Arnold25,26). Thus, with respect to the type I error,
these weights consider the loss amount, which results depending on the membership of a particular
element of the parameter space to the respective fuzzy hypothesis. For example, for ∈q Hncl( )0 , the
weight is constantly equal to one (as also for crisp formulated hypotheses):

TABLE 4 Crisp and fuzzy areas of the hypotheses and their membership functions (using category
“negative signs”)

Right‐tailed test Left‐tailed test

Set HC
0

∣ ∈ ∈

∈ ∣ ≤

q m q q m q

H q q q

{( ; ( )) Θ, ( ) {0, 1}}

supp( ) = { Θ }

H H

C
0 0

C C
0 0

∣ ∈ ∈

∈ ∣ ≥

q m q q m q

H q q q

{( ; ( )) Θ, ( ) {0, 1}}

supp( ) = { Θ }

H H

C
0 0

C C
0 0

Set HC
1

∣ ∈ ∈

∈ ∣

q m q q m q

H q q q

{( ; ( )) Θ, ( ) {0, 1}}

supp( ) = { Θ > }

H H

C
1 1

C C
1 1

∣ ∈ ∈

∈ ∣

q m q q m q

H q q q

{( ; ( )) Θ, ( ) {0, 1}}

supp( ) = { Θ < }

H H

C
1 1

C C
1 1

Set HF
0

∣ ∈ ∈

∈ ∣

q m q q m q

H q q q q

{( ; ( )) Θ, ( ) [0, 1]}

supp( ) = { Θ < < }

H H

F
0 0 1

F F
0 0

∣ ∈ ∈

∈ ∣

q m q q m q

H q q q q

{( ; ( )) Θ, ( ) [0, 1]}

supp( ) = { Θ < < }

H H

F
0 1 0

F F
0 0

Set HF
1

∣ ∈ ∈
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q m q q m q
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H H
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1 0 1

F F
1 1

∣ ∈ ∈
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q m q q m q

H q q q q

{( ; ( )) Θ, ( ) [0, 1]}

supp( ) = { Θ < }

H H

F
1 1 0

F F
1 1

m q( ) =HC
0

⎧
⎨⎪
⎩⎪

≤q q

q q

1 if 0 <

0 if < < 1
0

0

⎧
⎨⎪
⎩⎪ ≤

q q

q q

0 if 0 < <

1 if < 1
0

0

m q( ) =HC
1

⎧
⎨⎪
⎩⎪

≤q q

q q

0 if 0 <

1 if < < 1
1

1

⎧
⎨⎪
⎩⎪ ≤

q q

q q

1 if 0 < <

0 if < 1
1

1

m q( ) =HF
0

⎧
⎨⎪

⎩⎪

≤

≤

q q

u q q q q

q q

0 if 0 <

( ) if < <

0 if < 1

0

0 0 1

1

⎧
⎨⎪

⎩⎪

≤

≤

q q

u q q q q

q q

0 if 0 <

( ) if < <

0 if < 1

1

0 1 0

0

m q( ) =HF
1

⎧
⎨⎪

⎩⎪

≤

≤

q q

u q q q q

q q

0 if 0 <

( ) if <

0 if < < 1

0

1 0 1

1
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⎨⎪

⎩⎪
≤

≤

q q

u q q q q

q q

0 if 0 < <

( ) if <

0 if < 1

1

1 1 0

0
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∀ ∈ ∀ ∈ ( )m q m q q H q H( ) − ( ) = 1 − 0 = 1 ncl ( ) and thus suppH H
C

0 00 1

In addition, definition (4) can be reformulated to

⎧

⎨
⎪⎪

⎩
⎪⎪

⎫

⎬
⎪⎪

⎭
⎪⎪

⎧
⎨⎪

⎩⎪

⎫
⎬⎪

⎭⎪

∈

∈

∈

∈

{ }

{ }

{ }

{ }

( )

( )

( )

E n c m q m q G q

m q m q G q

m q m q G q

G q

m q m q G q

( , ) = sup ( ( ) − ( )) ( )

= max

sup ( ( ) − ( )) ( )

sup ( ( ) − ( )) ( )

= max

( )

sup ( ( ) − ( )) ( )

q H
H H n c

q H

H H n c

q H

H H n c

n c

q H

H H n c

1
(−)

supp( )
,

supp

,

supp

,

, 0

supp

,

C

F

F

0

0 1
(−)

0

0 1
(−)

0

0 1
(−)

(−)

0

0 1
(−)

due to the fact that only those elements of the null hypothesis, which lead to positive weights of
the power function, are of interest for the determination of the supremum of weighted prob-
abilities. Therefore, the definition of the supremum can be focused on elements of the support
of the null hypothesis that corresponds to the union of the supports of its crisp and fuzzy areas.
Given that the power functionG q( )n c, (−) is increasing for right‐tailed test problems or decreasing
for left‐tailed test problems on the one hand as well as the relationship

∀ ∈ ( )m q m q q H( ) − ( ) = 1 suppH H
C
00 1

holds on the other hand, E1 has a supremum for the elements of the support of HC
0 at the point

q q= 0. Finally, it should be noted that in the case of crisp hypotheses the support of the fuzzy
area corresponds to the empty set, which implies H Hsupp( ) = supp( )C0 0 . Thus we obtain the
results presented in Section 3.

Due to the monotonicity of the weight and power functions, for ∈q Hsupp( )F0 and
≠ ∅Hsupp( )F0 the generalized error criterion also has a supremum, which is in general not

representable in closed form. Instead, this supremum can be determined numerically, and
afterward it is to compare with the supremum of the support of the crisp area.

Applying the above results to the definition of the p‐value in the case of fuzzy hypotheses,
the generalized p‐values (i.e., weighted p‐values) for a right‐ and a left‐tailed test are then given
as follows:
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Considering in addition the distinction between crisp and fuzzy areas, we obtain in the
right‐ and left‐tailed case:
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Finally, let us interpret the generalized p‐value under separate consideration of crisp and fuzzy
areas. If the global maximum of the generalized p‐value stems from the crisp area of H0, then the
respective conditional probability (weighted by one) that the observed or more extreme (in terms of
H0) sampling results occur when H0 is true, is of probabilistic nature as in common statistical
hypothesis testing. If the global maximum originates from the fuzzy area, then the respective
weighted conditional probability falls below the (unweighted) respective p‐value in terms of an

FIGURE 4 Different shapes of membership functions (piecewise linear, s‐shaped, convex, concave),
right‐tailed case [Color figure can be viewed at wileyonlinelibrary.com]
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appropriate extent constituted by the fuzziness of hypotheses. In this case, the generalized p‐value
is in turn of probabilistic nature but adequately adjusted by a subjective component, which reflects
exemplary integrating of matters of economic or possibilistic nature into the consideration, to close,
reduce, or express existing uncertainties or imprecisions of linguistic statements.

4.2 | Outline for the case of the category “positive signs”

Using the alternative test statistic S(+), defined as the number of positive signs in the sample,
the adjustments for the generalized binomial test are as follows:

1. Hypotheses formulation (see Table 6):
While the preliminary hypotheses H0

′ and H1
′ remain unchanged (see Table 3, rows 1–2),

the reformulated fuzzy hypotheses H0 and H1 with respective indicator functions (see
Table 3, rows 3–11) should be alternatively remodeled to statements on q1 − (instead of
statements on q) with crisp and fuzzy areas (see Table 7) in compliance with the remodeled
test statistic.

2. Shapes of membership functions (see Table 8)
3. Generalized type I error criterion:

FIGURE 5 Different shapes of membership functions (piecewise linear, s‐shaped, convex, concave),
left‐tailed case [Color figure can be viewed at wileyonlinelibrary.com]
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TABLE 6 Fuzzy subsets of the parameter space and their membership functions (using category “positive
signs”)

Preliminary left‐tailed test Preliminary right‐tailed test

Hypothesis H0
′ ≥k kq ≤k kq

Hypothesis H1
′ k k<q k k>q

Left‐tailed test Right‐tailed test

Hypothesis H0 q1 − ≥ ≥q q q1 − , 1 − 1 −1 0 ≤q q q1 − 1 − , 1 −0 ≤ q1 − 1
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In addition, analogously to the crisp case, the representations (2) and (3) can be applied to
the corresponding representations of the generalized “left‐tailed” p‐value, that is,

 ≤
∈

∈p n s m q m q S s( , ) = sup {( (1 − ) − (1 − )) ( )} (preliminary left ‐ tailed test)l
q H

H H q H
(+)

1−
1−

(+) (+)

0

0 1 0

(6)

 ≤
∈

∈p n s m q m q S s( , ) = sup {( ( ) − ( )) ( )} (preliminary right ‐ tailed test)l
q H

H H q H
(−) (−) (−)

0

0 1 0

(7)

5 | FUZZY CATEGORIES

It is well‐known that the sign of a single observation of a continuous variable Xi, i n= 1, …, ,
with respect to a given hypothesized quantile value k admits two possibilities:

X k X knegative ( − < 0) and positive ( − > 0)i i

These both possibilities constitute two respective categories: “negative signs” (C(−)) and
“positive signs” (C(+)), which are essential to construct the test statistic in the framework of
the sign test. In particular, the test statistic considers only one category, exemplary “negative
signs,” and thus provides the absolute frequency (number) of negative signs for a given sample.

Further, a disjunctive coding by 0/1 of a continuous variable Xi allows its convenient
treatment as a categorical variable with the following indicator functions under H0:

⎧⎨⎩
⎧⎨⎩m X

X k

X k
m X

X k

X k
( ) =

1 if <

0 if >
and ( ) =

0 if <

1 if >C i
i

i
C i

i

i

(−) (+)

However, such a disjunctive coding leads to an exclusive choice of a category, which may seem
to be quite natural at first sight, but has two serious drawbacks for the sign test in practice:

• loss of information regarding the magnitude of sample observations x x, …, n1 (i.e., their
ranking);

• generation of discontinuities at the border point k of both categories, that is, null differ-
ences (ties).

As for the handling of ties (X k=i ), their classification to both categories in an equal magnitude
of 0.5 is recommended (see Dixon and Mood15). Such a neutral handling of ties is more promising
than a reduction of the sample size due to the elimination of ties or classification to the under-
represented category. However, such an approach can not resolve the general problem of missing
ranking of observations especially near the border point of both categories.

Consequently, a disjunctive coding (exclusive categories) is too restrictive and should be
replaced by a more appropriate one, like a fuzzy coding (i.e., fuzzy categories “rather positive
signs” and “rather negative signs”). In particular, using fuzzy instead of interval partition (see
also Figure 6), fuzzy coding allows to specify a degree of conviction of a sample observation for
each category, and simultaneously keeps the advantage of treatment as a categorical variable Xi
with membership functions ∈m X m X( ), ( ) [0, 1]C i C i(−) (+) instead of the underlying continuous
variable ∈Xi .
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Having two fuzzy categories (C C,(−) (+)) with complementary membership functions (as in
Figure 6) or noncomplementary membership functions, that is, m X m X( ) = 1 − ( )C i C i(−) (+) or

≤m X m X( ) 1 − ( )C i C i(−) (+) , the first (second) category C(−) (C(+)) may be identified with success
exemplary if one of the following options occurs:

1. ∈ ∈m X m X( ) [0.5, 1] ( ( ) [0.5, 1])C i C i(−) (+) .
2. ∈ ∈m X m X( ) (0, 1] ( ( ) (0, 1])C i C i(−) (+) .

Then it can be implemented into the test statistic defined as the number of successes in the sample.
Given complementary membership functions, option 1. provides a gradual consideration regarding
category C(−) (C(+)) to the left (right) of the hypothesized quantile value k, while option 2. allows to
implement a degree of conviction for fuzzy category C(−) (C(+)) in the whole border zone around k,
that is between xl and xr . In fact, there is no justification to neither prefer the items Xi with
membership degree≥0.5 nor discriminate the items Xi with membership degree <0.5 regarding the
category of interest, so that both options appear appropriate.

In the following, we provide a definition of the test statistic S using both options for right‐
and left‐tailed considerations in combination with C(−) and C(+), respectively, that is,

∑

∑

∈

∈

S m X X C

S m X X C

= ( ) with vs

= ( ) with (1. option)

i

n

C i i

i

n

C i i

1
(−)

=1

0.5
(−)

1
(+)

=1

0.5
(+)

(−)

(+)

(8)

∑

∑

∈

∈

S m X X C

S m X X C

= ( ) with vs

= ( ) with (2. option)

i

n

C i i

i

n

C i i

2
(−)

=1

(−)

2
(+)

=1

(+)

(−)

(+)

(9)

where ≔ ∣ ∈C X m X X{( ; ( )) }i C i i
(−)

(−) and ≔ ∣ ∈C X m X X{( ; ( )) }i C i i
(+)

(+) are the fuzzy sets
regarding the category “(rather) negative signs” and “(rather) positive signs” as well as





∣ ∈

∣ ∈

{ }
{ }
( )
( )

{ }

{ }

C X m X m X X

C X m X m X X

= ; min ( ), ( ) and

= ; min ( ), ( )

i C i C i i

i C i C i i

0.5
(−)

0.5
(+)

0.5
(−) (−)

0.5
(+) (+)

FIGURE 6 Disjunctive and fuzzy coding of a continuous variable Xi [Color figure can be viewed at
wileyonlinelibrary.com]
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are the fuzzy sets based on the 0.5‐cut ofC(−) andC(+), respectively. Modeling ofmC (−) andmC (+) can
be proposed exemplary with help of piecewise linear complementary membership functions:

⎧
⎨
⎪⎪

⎩
⎪⎪

⎧
⎨
⎪⎪

⎩
⎪⎪

≤ ≤ ≤ ≤m X

X x

x X

x x
x X x

X x

m X

X x

X x

x x
x X x

X x

( ) =

1 if <

−

−
if

0 if >

( ) =

0 if <

−

−
if

1 if >

C i

i l

r i

r l
l i r

i r

C i

i l

i l

r l
l i r

i r

(−) (+)

It should be noted that the provided example of membership functions is not the only possible
and reasonable alternative and can be adjusted to specific application fields, see Chukhrova and
Johannssen,20 for a detailed discussion on this topic. As for the specification of the target values
xl and xr , there are a lot of possibilities, for instance via symmetric modeling with respect to a
given hypothesized quantile value k, which seems to be a natural one and in compliance with
ordering on the real line. In contrast, an asymmetric modeling of target values x x,l r could
provide a more appropriate mapping of grades of preference (based e.g., on cost aspects)
attributed to the respective category.

As for a symmetric modeling, we introduce an approach using the median absolute deviation
(MAD) of individual observations Xi, i n= 1, …, , from the hypothesized quantile value k, that is,

∣ ∣ ∣ ∣X k X kMAD = median{ − , …, − }n1

for specification of xl and xr as x k= − MADl and x k= + MADr , respectively. The MAD is a
robust measure of dispersion being more resilient to outliers in the data compared to the
standard deviation (see Pham‐Gia and Hung,27 for further properties of the MAD).

It should be emphasized that fuzzy categories lead to a crisp test statistic (S is a crisp
number with ∈S + instead of ∈S 0 as in the crisp categories case), independently of
specified membership functions. This important benefit provides the possibility of a direct and
natural implementation of fuzzy categories into the classical sign test or into the generalized
sign test with fuzzy hypotheses introduced in Section 4.

In the following, we propose to link the specific formulation of the preliminary null hy-
pothesis, that is,

(a) ≤H k k: q0
′ (there are no more positive than negative signs),

(b) ≥H k k: q0
′ (there are no more negative than positive signs),

to the specific formulation of the test statistic, which considers the category of interest enclosed
in H0

′, that is,

(a) S(−) regarding “rather negative signs”,
(b) S(+) regarding “rather positive signs”.

Such a formulation of the test statistic allows to aggregate fuzzy coding into hypothesis testing in a
more compatible way and always leads to left‐tailed modeling of reformulated hypotheses H0 and H1,
and thus to the respective p‐value (p n s( , )l

(+) , p n s( , )l
(−) , see 2, 3, 6, and 7) of a left‐tailed binomial

test. While the right‐tailed sign test (based on the test statistic regarding “(rather) negative signs”) is
discussed in Sections 3.1 and 4.1, the left‐tailed test (based on the test statistic regarding “(rather)
positive signs”) can be found in Sections 3.2 and 4.2.
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Applying the 1. option (or crisp categories), the implementation of a real‐valued test statistic
into the binomial probability function for calculating the p‐value can be obtained via gamma
function Γ (that interpolates the factorial function to noninteger values) instead of using bi-
nomial coefficients (that are limited to positive integers), that is,

 ∑≤∈( ) ( )p n s S s
n

m n m
q q, = =

Γ( + 1)

Γ( + 1)Γ( − + 1)
(1 − )l q H

m

s

m n m
1
(−)

1
(−)

1
(−)

=0

−
0

1

(−)

(10)

 ∑≤∈( ) ( )p n s S s
n

m n m
q q, = =

Γ( + 1)

Γ( + 1)Γ( − + 1)
(1 − )l q H

m

s

m n m
1
(+)

1− 1
(+)

1
(+)

=0

−
0

1

(+)

(11)

with

∫ ∈
∞

z t e t zΓ( + 1) = d ,z t

0

−
+

for right‐ and left‐tailed preliminary considerations, respectively. These definitions are valid
when formulating crisp hypotheses, while the generalized p‐values (6) and (7) are to adjust in
an analogous way when formulating fuzzy hypotheses.

Considering both options (8) and (9) for the formulation of the test statistic, it holds that
≤S S1

(−)
2
(−), since the support of C0.5

(−) regarding S1
(−) contains the same items either in the crisp or

fuzzy categories case, that is, ∣ ≤X X k{ }i i , while the support of C(−) regarding S2
(−) differs, that is,

∣ ∣ ≤X X x X X k{ < } (fuzzy categories case) versus { } (crisp categories case)i i r i i

Therefore, this deviation should be appropriately compensated when using the 2. option. Such
a compensation can be provided via adjustment of the sample size n by adding a deviant
number of items, say

∣ ∣ ∣X k X xa = { < < } ,i i r
(−)

where ∈a (−)
0. This modeling is based on the maximization of the conviction approach, that

is, full consideration of an additional item with characteristic ∈X k x( , )i r in the test statistic. It
should be noted that this approach ensures the appropriate adjustment of the number of items
Xi, i n= 1, …, , which is crucial for the calculation of the test statistic, independently of the type
(crisp/fuzzy) and the sign ( ∕− +) of the category of interest. On the one hand, if we deal with
the crisp category “negative (positive) signs”, we consider solely elements Xi at and on the left
(right) of the hypothesized quantile value k, say

     

⎛

⎝
⎜⎜⎜

⎞

⎠
⎟⎟⎟n n n n n n n n= + + = + +X k X k X k X k X k X k

(−)
<

(−)
=

(−)
>

(−)

=0

(+)
<

(+)

=0

=
(+)

>
(+)

i i i i i i

with n n=X k X k=
(−)

=
(+)

i i
. The same is valid when formulating the fuzzy category “rather negative

(positive) signs” and using the 1. option. On the other hand, if we deal with the 2. option, we
additionally consider the elements Xi between k and xr (xl and k), that is, the number ≥n 0X k>

(−)
i

( ≥n 0X k<
(+)
i

) of Xi, i n= 1, …, , is a so called adjustment term, which ensures the implementation
of additional elements into the test statistic S2 and thus constitutes the definition of a (−) (a (+)),
where ∣ ∣ ∣X x X ka = { < < }i l i

(+) , ∈a (+)
0.

In addition, the above presented possibility to calculate the p‐value using gamma function
can be adjusted for the 2. option by implementing of a (−) and a (+),
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∑

≤∈ ( )p n s S s

n

m n m
q q

( + a , ) =
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Γ( + 1)Γ( + a − + 1)
(1 − )

l q H

m

s

m n m

(−) (−)
2
(−)

2
(−)

=0

(−)

(−)
+a −

0

2

(−)

(−)
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∑

≤∈ ( )p n s S s

n

m n m
q q

( + a , ) =

=
Γ( + a + 1)

Γ( + 1)Γ( + a − + 1)
(1 − )

l q H

m

s

m n m

(+) (+)
1− 2

(+)
2
(+)

=0

(+)

(+)
+a −

0

2

(+)

(+)

(13)

for right‐ and left‐tailed preliminary considerations, respectively. These definitions are valid
when formulating crisp hypotheses, while the generalized p‐values (6) and (7) are to adjust in
an analogous way when formulating fuzzy hypotheses.

6 | CASE STUDY: COVID ‐19 IN HIV ‐INFECTED
INDIVIDUALS

In this section, we present a case study considering a real data set on COVID‐19 in HIV‐infected
individuals to emphasize the benefits of the proposed methodology in practical applications.

6.1 | The data set

One week after the outbreak of pneumonia of unknown origin in Wuhan, China, on December
31, 2019, its cause has been identified as severe acute respiratory syndrome coronavirus type 2
(SARS‐CoV‐2). On March 11, 2020, due to a continuously increasing number of COVID‐19
cases worldwide, the World Health Organization (WHO) declared a pandemic. Spain, and
especially the Community of Madrid, has been one of the most affected countries worldwide
with 203,715 confirmed cases as of April 30, 2020 (see Vizcarra et al.28).

The data set underlying this case study is taken from Vizcarra et al.28 and includes data about
consecutive HIV‐infected individuals aged 18 years or older with a diagnosis of suspected or con-
firmed COVID‐19 (as of April 30, 2020). These data result from an observational prospective study at
the Hospital Universitario Ramon y Cajal, a tertiary university hospital with 1100 beds and 2873 adult
patients with HIV on regular follow‐up at the monographic HIV clinics. In particular, there are
n = 51 patients diagnosed with COVID‐19 among the 2873 HIV‐infected individuals (i.e., a
COVID‐19 infection rate of 1.78%). The authors of the study investigated whether there is an in-
creased risk (e.g., due to comorbidities, lower CD4 cell counts, or unsuppressed HIV RNA viral load)
or a decreased risk (e.g., due to immunosuppression or regular use of antiretrovirals) in HIV‐infected
individuals of SARS‐CoV‐2 infection.

6.2 | The role of human body temperature and related measurement
problems

One of the most common characteristics of HIV and COVID‐19 is an increased body temperature
(hyperthermia). It should be noted that hyperthermia is the most frequent symptom of COVID‐19
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(besides dry cough and dyspnoea), while it is an accompanying symptom of HIV. The variable
“human body temperature” is a continuous one, but commonly treated as categorical variable in
medical context and usually specified in an interval‐valued way. Considering babies and children and
adults, the average body temperature ranges from 36.6°C (97.9°F) to 37.2°C (99°F) and from 36.1°C
(97°F) to 37.2°C (99°F), respectively. In addition, the following classification for human body tem-
perature is often used for adults (see e.g., Hutchison et al.,29 Laupland,30 and Grunau et al.31):

∘ ∘

∘ ∘

∘ ∘

∘ ∘

∘ ∘

∘ ∘

Hypothermia <35.0 C (<95.0 F)

Normal 36.5 − 37.5 C (97.7 − 99.5 F)

Hyperthermia 37.5 − 38.0 C (99.5 − 100.4 F)

Fever 38.0 − 39.0 C (100.4 − 102.2 F)

High fever 39.0 − 40.0 C (102.2 − 104.0 F)

Hyperpyrexia >40.0 C (>104.0 F)

Note that the intervals are right half‐open, and ∘x C can be easily converted into ∘y F by
using y x= + 32

9

5
.

In practice the body temperature is measured real‐valued. Depending on the problem, the
measured value is often compared with either the lower bound, midpoint or upper bound of the
corresponding category to interpret the measured value. This approach is simple, but has severe
disadvantages: On the one hand, measurements of body temperature are generally imprecise. Human
body temperature varies depending on age, emotions, exertion level (according to activities), health
status (e.g., illness, menstruation), sex, state of consciousness (e.g., waking, sleeping, sedated), time of
day (due to a person's circadian rhythm), type of medical thermometer, and what part of the body the
measurement is taken at (e.g., oral, rectal, axillary, tympanic) (see e.g., Moran and Mendal32).
Therefore, each type of measurement has a specific range of temperatures. On the other hand,
temperature fluctuation within a category and membership of boundary values between categories
are not adequately represented. For instance, if a temperature of ∘37.49 C is measured by means of a
digital thermometer, the value is rounded up to ∘37.5 C and falls into the category of hyperthermia,
although it is actually more likely to be within a gray zone between the categories “normal” and
“hyperthermia.”

These measurement problems could be addressed by replacing crisp categories by fuzzy categories
for human body temperature X . With regard to the frequently observed symptom of hyperthermia in
HIV and COVID‐19 infections, that is, ≥ ∘X 37.5 C and k = 37.5, two exemplary crisp categories

Category I (negative signs regarding k): nonincreased body temperature ( ∘X < 37.5 C );
Category II (positive signs regarding k): increased body temperature ( ∘X > 37.5 C );

with indicator functions

{ {m X
X
X

m X
X
X

( ) =
1 if < 37.5
0 if > 37.5

( ) =
0 if < 37.5
1 if > 37.5C C(−) (+) (14)

and m X m X( ) = ( ) = 0.5C C(−) (+) for X = 37.5 (due to an indifference argument) could be re-
placed by fuzzy categories:

Category I (rather negative signs regarding k): rather nonincreased body tempera-
ture ( ≤ ∘X X36.9 C, ≤ ∘38.1 C ).
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Category II (rather positive signs regarding k): rather increased body tempera-
ture (X ≥ ≥∘ ∘X36.9 C, 38.1 C ).

with piecewise linear membership functions (see also Figure 7)

⎧
⎨
⎪⎪

⎩
⎪⎪
⎧
⎨
⎪⎪

⎩
⎪⎪

≤

≥

≤

≥

m X

X
X

X

X

m X

X
X

X

X

( ) =

1 if 36.9
38.1 −

38.1 − 36.9
if 36.9 < < 38.1

0 if 38.1

( ) =

0 if 36.9
− 36.9

38.1 − 36.9
if 36.9 < < 38.1

1 if 38.1

C

C

(−)

(+) (15)

where x = 36.9l and x = 38.1r are calculated with help of MAD = 0.6.

6.3 | Performing the sign test with crisp hypotheses and crisp versus
fuzzy categories

In the first step, we consider the conventional sign test with crisp hypotheses and compare the
impact of crisp versus fuzzy categories on the test decision. Let us assume that it is our goal to
check whether the median of human body temperature regarding COVID‐19‐ and HIV‐infected
individuals is significantly above ∘37.5 C . Then we can formulate the following preliminary and
reformulated hypotheses:

≤

≥

H k k H k k k

H q q H q q q

: versus : > with = 37.5

: versus : < with = 0.5

q q0
′

1
′

0 0 1 0 0

Since the test performance generally improves with an increasing value of n, we do not limit
our considerations to a single sample size, but perform an additional sensitivity analysis re-
garding various values of n. In particular, we choose ≥n 10 due to the numerical experience
regarding the performance of the sign test and successively specify n as n = 10, 11, …, 51.

FIGURE 7 Crisp and fuzzy categories for human body temperature [Color figure can be viewed at
wileyonlinelibrary.com]
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Considering random sampling and depending on the specified sample size, we use the re-
spective segment of the data set of 51 HIV‐infected individuals with diagnosis of COVID‐19,
that is, n = 10, 11, …, 51 items of the data set.

The data set (see Table 10, columns 1–2) contains eight observations that are equal to the
hypothesized quantile value k = 37.5, that is, we are confronted with the problem of ties. To
soften the difficulties in handling ties when employing the common sign test, we propose to
classify them to both categories (negative/positive signs) with an equal magnitude of 0.5. In
particular, we distinguish three cases concerning the categories:

• Case 1: crisp categories
• Case 2: fuzzy categories, piecewise linear membership functions, membership values ≥0.5

(1. option, see Section 5)
• Case 3: fuzzy categories, piecewise linear membership functions, adjusted n (2. option, see
Section 5)

To clarify the procedure and to simplify the interpretation of the results given in Table 10,
we also present examples on how to calculate the test statistic s(−) and the corresponding
p‐value for both crisp and fuzzy categories.

Example 6.1 (Calculation of test statistic and p‐value in the crisp categories case).
As for the determination of the test statistic s(−) and the corresponding p‐value (3) in
the crisp categories case (Case 1), let us calculate these values exemplary for n = 25.
Thus, we have

∑ ⋯s m x= ( ) = 1 + 0 + 0.5 + + 0.5 + 0 + 0 = 9.5
i

C i
(−)

=1

25

(−)

(see Table 9, row 4) with m X( )C i(−) determined by (14) as well as

 ∑≤∈p n s S
m m

( , ) = ( 9.5) = 0.5
Γ(26)

Γ( + 1)Γ(26 − )
= 0.1934.l q H

m

(−) (−) 25

=0

9.5

0

Example 6.2 (Calculation of test statistic and p‐value in the fuzzy categories case).
Considering fuzzy categories, we apply both options (discussed in Section 5) to determine the
test statistic s(−) and the p‐value, that is, we implement the above Cases 2 and 3. In the
first step, we calculate MAD for n = 25 as median {1.3, 0.3, …, 1.9, 0.3} = 0.6 (see Table 9,
row 3). Thus, using x k= − MAD = 37.5 − 0.6 = 36.9l and x k= + MAD =r

37.5 + 0.6 = 38.1, we obtain piecewise linear membership functions for fuzzy categories
(see (15) and Figure 7). The test statistic s(−) is then calculated by using either the whole
fuzzy set C(−) (2. option) or its subset C0.5

(−) based on the 0.5‐cut (1. option). The respective
membership values of sample items with respect to both options are given in Table 9, rows
5–6. The test statistic s(−) and the corresponding p‐value for both cases (see 10 and 12) are
calculated as follows:
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∑

∑

∑

∑

⋯

⋯

≤

≤

∈

∈

s m x

s m x

p n s S
m m

p n a s S
m m

= ( ) = 1 + 0 + 0.5 + + 0.5 + 0 + 0 = 8.75 (Case 2)

= ( ) = 1 + 0.25 + 0.5 + + 0.5 + 0 + 0.25 = 9.75 (Case 3)

( , ) = ( 8.75) = 0.5
Γ(26)

Γ( + 1)Γ(26 − )
= 0.1066 (Case 2)

( + , ) = ( 9.75) = 0.5
Γ(32)

Γ( + 1)Γ(32 − )
= 0.0319 (Case 3)

i

C i

i

C i

l q H

m

l q H

m

(−)

=1

25

(−)

=1

25

(−) (−) 25

=0

8.75

(−) (−) (−) 31

=0

9.75

0.5
(−)

(−)

0

0

Note that in Case 3, we have a = 6(−) and thus n + a = 31(−) since there are six addi-
tional membership values below 0.5 (which add up to one, see 8.75 vs. 9.75) compared to
Case 2.

We can resume as follows: While the p‐values in Case 1 (see Example 6.1) and Case 2
are above commonly used significance levels ( ≤∈ S s( ) > 10%q H

(−) (−)
0

), the p‐value in
Case 3 is below the 5%‐level, that is, ≥H q: 0.50 can be rejected only in Case 3 and we
can conclude that human body temperature is significantly above 37.5°C at the 5% level
of significance. That is, we are confronted with hyperthermia or worse.

We refer to Table 10, columns 4–10, for complete results in the crisp hypotheses case.
Although we are only interested in results for ≥n 10, the results for lower values of n are also
given for the sake of completeness. Nonetheless, the following interpretations regularly refer
to ≥n 10.

Considering the empirical median (Table 10, column 3) and the MAD (Table 10,
column 4), we also refer to Figure 8, where the empirical median k0.5, the hypothesized
quantile/median value k and x k= − MADl , x k= + MADr are plotted as functions of the
sample size n. It can be seen that the empirical median is mostly equal to 37.8 and the
MAD lies between 0.6 and 0.8 (compare also k = 37.70.5 and MAD = 0.7 for the entire data
set with n = 51). Note that the numerical results are displayed as line plots rather than
scatter plots for better output illustration.

As for varying values of n, columns 5–7 and 8–10 of Table 10 contain the test statistics
s(−) and p‐values regarding crisp hypotheses for three cases, respectively, each calculated for
n = 1, …, 51. Considering the test statistic s(−), we observe the following order:

≤s s s<Case 2
(−)

Case 1
(−)

Case 3
(−) . Analyzing and comparing p‐values lead to the implications that

Case 1 (crisp categories) generally leads to the highest p‐values, and p‐values are con-
siderably lower in Case 3 compared to Case 2 (both fuzzy categories). As a rule, the larger n,
the smaller the p‐value, and moreover, it can be seen that p‐values are mostly below 5% as
of n = 14 (Case 3) and below 10% as of n = 30 (Case 2). Considering Case 1, there is only
one p‐value below 10% (for n = 37). Overall, there are no p‐values below 1% in the crisp
hypotheses case. This behavior can also be seen in Figure 9A.
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6.4 | Performing the sign test with fuzzy hypotheses and crisp versus
fuzzy categories

In this section, we consider fuzzy reformulated hypotheses H0 and H1 using crisp and fuzzy
categories. In the first step, let us again assume that we would like to check whether the median of
human body temperature regarding COVID‐19‐ and HIV‐infected individuals is significantly above
37.5°C (right‐tailed sign test). However, instead of crisp specified 50%‐fraction, we use fuzzy
statements on the unknown fraction q, that is,  ≤ ≈ ≥ ≈X X( 37.5) ( 37.5) 50%. In particular,
the fuzzy reformulated hypotheses can be stated as follows:

≥ ≥H q q q q H q q q q q q: , versus : < , < with 0 < < < 10 1 0 1 1 0 1 0

Since we perform a test for the median, that is, the 50%‐quantile, it is appropriate to construct
symmetric membership functions around the value 0.5: ∣ ∣ ∣ ∣q q− 0.5 = − 0.50 1 ,
m q m q( ) = 1 − ( )H H1 0

. Let us additionally assume that the hypothesized median value 37.5
deviates from the true median by at most 2.5%, that is, we specify q = 0.5250 and q = 0.4751 .
Linguistic interpretations of H0 and H1 are then given by:

• H :0 The population proportion is approximately larger than or equal to 0.5, in particular
fuzzy (crisp) larger than or equal to 0.475 (0.525).

• H :1 The population proportion is approximately lower than 0.5, in particular fuzzy (crisp)
lower than 0.525 (0.475).

We propose the usage of piecewise polynomial (s‐shaped) functions for modeling the fuzzy
areas of both hypotheses, that is (q q,1 0), within the membership functions (see Section 4).
Considering q = 0.5250 and q = 0.4751 as before, m q( )H0

and m q( )H1
are defined by

FIGURE 8 The behavior of the empirical median and x k x k= − MAD, = + MADl r for increasing values
of n [Color figure can be viewed at wileyonlinelibrary.com]
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Such a choice can be justified as follows:

FIGURE 9 The behavior of (generalized) p‐values for increasing values of n, each considering four cases.
(A) Crisp hypotheses, (B) fuzzy hypotheses with w= 0.05, (C) fuzzy hypotheses with w= 0.1, (D) fuzzy
hypotheses with w= 0.2 (from top left to bottom right) [Color figure can be viewed at wileyonlinelibrary.com]

• On the one hand, the slope of the power function is not that steep in the fuzzy area (due to the
symmetry of the binomial distribution for q = 0.5 in combination with smaller values of n).
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• On the other hand, piecewise linear, convex, or concave membership functions in combi-
nation with plausibly rather narrow width of the fuzzy area lead to weight functions that are
too steep within the indifference zone. The slope of the weighted power function thus results
in suprema which are not larger as in the crisp area.

In contrast, by employing polynomial functions these problems can be avoided, and moreover,
a concave‐convex‐shaped function is better suited to ensure a “smooth transition” within the
fuzzy area around the value 0.5.

Example 6.3 (Calculation of generalized p‐values when considering fuzzy hypotheses).
As for the calculation of generalized p‐values via (5) adjusted by means of (10) and (12)
when considering fuzzy hypotheses we exemplary choose n = 25, q = 0.5250 , q = 0.4751

(thus, w = 0.05), and s‐shaped membership functions. Then we get the following
p‐values for Cases 1–3 (see also Table 10, columns 11–13, row 25):
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(25, 9.5) = max

Γ(26)

Γ( + 1)Γ(26 − )
0.525 (1 − 0.525)

sup ( ( ) − ( ))
Γ(26)

Γ( + 1)Γ(26 − )
(1 − )

= 0.1353

(25, 8.75) = max

Γ(26)

Γ( + 1)Γ(26 − )
0.525 (1 − 0.525)

sup ( ( ) − ( ))
Γ(26)

Γ( + 1)Γ(26 − )
(1 − )

= 0.0707

(31, 9.75) = max

Γ(32)

Γ( + 1)Γ(32 − )
0.525 (1 − 0.525)

sup ( ( ) − ( ))
Γ(32)
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(0.475,0.525) =0

8.75

25−
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(0.475,0.525) =0

9.75

31−

0 1

0 1

0 1

Note that the respective test statistics s(−) as well as the adjustment term a (−) are the
same as in the case of crisp hypotheses.

In the following, we perform a sensitivity analysis in the framework of the sign test re-
garding the sample size n (i.e., we successively use n = 10, 11, …, 51 items of the data set) and
various widths w q q= −0 1 of the indifference zone (and thus various widths of fuzzy areas)
when considering fuzzy hypotheses.

As in the crisp hypotheses case, the results of the analysis are given in Table 10. In parti-
cular, Table 10 contains generalized p‐values regarding fuzzy hypotheses for three cases, each
calculated for n = 1, …, 51. These p‐values are determined using different values of w: w = 0.05

(columns 11–13), w = 0.1 (columns 14–16), and w = 0.2 (columns 17–19).
We analyze the p‐values considering the above three cases and crisp versus fuzzy hy-

potheses. Figure 9 shows the behavior of (generalized) p‐values for increasing values of n and is
subdivided into four subfigures. While Figure 9A contains p‐values for all the cases based on
crisp hypotheses, Figures 9B–D present the respective cases based on fuzzy hypotheses for
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various values of the width w of the indifference zone. In addition, Table 11 gives the fractions
of (generalized) p‐values that are below or at 1%, 5%, and 10% for the considered cases.
Analyzing the results in Tables 10 and 11 and Figure 9, we get the following insights:

• The case of crisp categories (Case 1) generally leads to the highest p‐values.
• Considering fuzzy categories (Cases 2 and 3), we observe in general considerably lower p‐
values in Case 3 compared to Case 2.

• p‐values are generally higher for crisp hypotheses (columns 8–10) compared to fuzzy hy-
potheses (case by case comparison).

• Considering fuzzy hypotheses, p‐values are the lower, the larger the width w of the in-
difference zone (case by case comparison).

• As a rule, the larger n, the smaller the p‐value. This behavior is shown in Figure 9, and
moreover, it can be seen that p‐values are on average below 5% as of n = 14 (Case 3, crisp
and fuzzy hypotheses) and n = 30 (Case 2, fuzzy hypotheses).

• Considering Case 1, there are no p‐values of maximum 1% as well as only a few p‐values of
maximum 5% when hypotheses are fuzzy (w = 0.05, 0.1) and no one when hypotheses are
crisp. As for Case 3, more than 90% of p‐values are below 10% and there are strongly
increasing fractions of p‐values below 1% for larger widths w of the indifference zone, while
there is no p‐value below 1% when hypotheses are crisp.

Summarized, the classical sign test for the median (with crisp categories and crisp hy-
potheses) generally does not lead to a rejection of H0 and thus to statistical validation of
hyperthermia symptom related to COVID‐19 in HIV‐infected individuals. This is due to the fact
that the hypothesized median value ∘37.5 C is chosen very close to the true value (see also the
empirical median k = 37.70.5 that is, in turn very close to 37.5), so there is no strong evidence
against the validity of H0. In contrast, the extended sign test for the median mostly leads to a
rejection of H0 and thus to statistical validation of hyperthermia through the abandonment of
exclusive categories and an incorporation of the uncertainty level regarding the 50%‐percentile
specified by the border temperature value of 37.5°C.

7 | CONCLUSIONS

In this paper, we have presented an extended sign test under implementation of fuzzy cate-
gories and fuzzy formulated hypotheses. It has been shown that this generalized test procedure
improves the generality, versatility, and practicability of the common sign test. In particular,
the generalized sign test provides the following benefits compared to the usual test procedure
with respect to fuzzy categories (1.–2.), fuzzy hypotheses (3.–4.), and both of them (5.):

1. The magnitude of the deviations between observations and hypothesized quantile value k is
no longer ignored but incorporated into the test procedure. In particular, the formulation of
membership functions for both categories helps to adequately map the magnitude of the
observations in the border area, that is, via decreasing/increasing membership degrees to the
respective category. In addition, there is also the possibility to consider the order of ob-
servations beyond the border area via full or no membership (1 vs. 0) to the respective
category in compliance with the classical approach.
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2. Several problems of the common sign test related to ties in the data are considerably mitigated by a
neutral handling of ties (i.e., classification of ties to both categories in an equal magnitude of 0.5)
and simultaneous implementation of the untransformed real‐valued test statistic in the definition
of the p‐value by using gamma functions instead of binomial coefficients.

3. The imprecision of linguistic statements on fractions q regarding the underlying quantiles kq
is adequately modeled by implementing fuzzy sets, that is, the magnitude of uncertainty is
implemented by means of width of the indifference zone (and thus of the fuzzy areas of the
hypotheses with respective (non‐)complementary decreasing/increasing membership func-
tions, whose shapes include possibilistic aspects).

4. The formulation of fuzzy hypotheses on ∈q (0, 1) instead of ∈kq is more natural
and simpler for the practitioner/researcher due to the fact that the underlying test is of
binomial type and specific deviations (e.g., 2.5%, 5%, and 10%) from the hypothesized
fraction value (like 50% when testing for the median) can be coherently embedded
both into single applications and automated processes like big data knowledge
extraction.

5. The combination of fuzzy categories (with real‐valued test statistic) and fuzzy
hypotheses (with expanded sets of hypothesized fractions) rather enables a rejection
of H0 in cases where the hypothesized quantile value is specified very close to the
true one.

With all these advantages, the generalized sign test is neat in theory and practice, provides an
interpretation of the generalized p‐value in line with the classical probabilistic p‐value, and
ensures a crisp (binary) test decision, that is, “reject/do not reject H0”. This is not self‐evident,
since fuzzy tests often (1) lead to difficulties in practical applications due to the complexity of
the underlying methodology (like modeling of fuzzy data, fuzzy random variables, fuzzy
parameters) and (2) result in fuzzy test decisions supported by interpretations of the observed
and theoretical key measures in a possibilistic sense, and therefore lack a sound basis for
decision‐making that is essential for the practitioner.

To show the benefits of the proposed methodology in practical applications, we have
performed an extensive case study on hyperthermia symptom related to COVID‐19 in HIV‐
infected individuals. In particular, we have replaced the crisp category “(non‐)increased
temperature” by a fuzzy one due to the fact that (human body) temperature is a categorical
variable, and moreover, linguistic statements on the 50%‐threshold regarding the underlying
median were embedded into the test procedure by employing fuzzy hypotheses. The test results
clearly indicate that in situations with rigidness originated from exclusive categories as well as
with uncertainties regarding the fractions of the underlying quantiles

• fuzzy categories are preferable to crisp categories and
• fuzzy hypotheses are preferable to crisp hypotheses.

An important direction for future research is the generalization of the common two‐tailed
sign test in compliance with the extended statistical model proposed in this paper, whose
methodological complexity is considerably increased. Finally, it should be emphasized that
although the paper is focused on improving the sign test, the introduced methodology can be
transferred to other nonparametric and parametric test procedures.
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