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Abstract

Genotype errors are well known to increase type I errors and/or decrease power in related tests of genotype-
phenotype association, depending on whether the genotype error mechanism is associated with the phenotype.
These relationships hold for both single and multimarker tests of genotype-phenotype association. To assess the
potential for genotype errors in Genetic Analysis Workshop 18 (GAW18) data, where no gold standard genotype
calls are available, we explored concordance rates between sequencing, imputation, and microarray genotype calls.
Our analysis shows that missing data rates for sequenced individuals are high and that there is a modest amount
of called genotype discordance between the 2 platforms, with discordance most common for lower minor allele
frequency (MAF) single-nucleotide polymorphisms (SNPs). Some evidence for discordance rates that were different
between phenotypes was observed, and we identified a number of cases where different technologies identified
different bases at the variant site. Type I errors and power loss is possible as a result of missing genotypes and
errors in called genotypes in downstream analysis of GAW18 data.

Background
Over the past decade, a large body of literature has been
amassed related to genotype errors for SNP microarrays.
We now have a clear understanding of the prevalence of
such errors and of many potential sources of the errors, as
well as an understanding of the downstream implications
of genotype errors on the type I error rate and power of
related single SNP tests of genotype-phenotype association
[1]. In particular, nondifferential genotyping errors, that is,
errors that are the result of a random process unrelated to
the phenotype, decrease power [2-4]. However, differential
genotyping errors, errors that occur according to different
random processes according to the value of the phenotype,
may inflate the type I error rate [5,6]. Additional work has
confirmed that similar results hold for analysis of imputed
genotypes using standard single-marker tests of genotype-
phenotype association [7].

With the advent of next-generation sequencing (NGS),
multimarker analysis methods have increased in popular-
ity. Recent papers demonstrate similar results (i.e.,
decreased power and increased type I error for nondiffer-
ential and differential genotyping errors) are true for
multimarker tests as well. In particular, for collapsing tests
[e.g., [8-10]], the effects of both differential and nondiffer-
ential genotyping errors can be exacerbated by the cumu-
lative nature of genotyping errors across a set of markers
[11,12]. The relationship for particular collapsing tests is
anticipated to hold for the larger set of all collapsing (bur-
den) and variance components tests based on structural
similarities in these classes of tests [13]. To date, large
error rates have been observed for sequence data [14-16],
much larger than were typical in the early days of SNP
microarrays [17]. Thus, there is the potential for substan-
tial power loss and inflated type I error for multimarker
tests involving NGS data.
For the typical researcher, it is often costly and impracti-

cal to invest in large-scale quality control studies to obtain
study-specific estimates of genotype reliability. However,
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as was seen in the GAW18 data, it is reasonable to think
that as more and more studies sequence existing samples,
a typical quality control approach may involve evaluating
the concordance between genotypes obtained on the sam-
ples using SNP microarrays with genotypes obtained using
the new NGS technology. We conducted our analysis
using sequencing data (measured with NGS technology or
through imputation) and SNP microarray data. After eval-
uating the overall concordance levels between genotype
calls, we evaluated which types of discordance are most
common and the potential for concordance rates, which
are related to the phenotype.

Methods
We used the following procedure to evaluate the con-
cordance of sequence and microarray data. First, we
considered all SNPs for which both sequence and
microarray data were available in the distributed
GAW18 files by matching SNP identification (rs) num-
bers. Prior to our analysis, each set of data went through
separate data cleaning pipelines, which included cleaning
observed mendelian errors within the pedigrees for both
the sequence and microarray data and which are
described in detail elsewhere [18]. This yielded a preli-
minary data set containing 297,197 SNPs. After elimi-
nating SNPs for which the major and minor alleles
present at the variant site differed between the 2 tech-
nologies (56,741 SNPs), the resulting final analysis data
set consisted of 240,456 SNPs, spread across all odd-
numbered autosomes. Even-numbered autosomes and
sex chromosomes were not part of the GAW18 data
release. Next, for each of the 240,456 SNPs in the analy-
sis data set, we identified and recorded both the gen-
ome-wide association studies (GWAS) and NGS
genotypes (including missing) for each of 959 people for
whom both GWAS and NGS data was available. The
959 people include 464 individuals who were actually
sequenced and 495 individuals for whom sequence data
was imputed using MaCH as described elsewhere [18].

Statistical analysis
For each SNP in the analysis we computed a variety of sta-
tistics evaluating the concordance between genotype calls
on the 3 different platforms (NGS, imputed, and SNP
microarray). We started by counting the overall number of
concordant and discordant genotypes for sequenced and
microarray data. There are 16 possibilities for each indivi-
dual-SNP combination: AA-AA, AA-AB, AA-BB, AA-XX,
AB-AA, AB-AB, AB-BB, AB-XX, BB-AA, BB-AB, BB-BB,
BB-XX, XX-AA, XX-AB, XX-BB, and XX-XX, where i-j
indicates that the individual is identified as genotype i for
sequence data and genotype j for microarray data. (Note
that we use “A” to represent the reference allele for the
NGS technology, “B” to represent the nonreference allele

for the NGS technology, and × to represent missing
throughout this article.)
In addition to overall concordance, concordance rates

were computed conditional on the observed genotype
for the microarray technology. Concordance rates were
also computed for individuals with different phenotype
groups (males vs. females; hypertensive [systolic blood
pressure >140 mm Hg or diastolic blood pressure >90
mm Hg at any of 4 exams]; vs. nonhypertensive smokers
[self-identified at any of 4 waves] vs. nonsmokers).
T-tests were used to compare average concordance rates
between technologies and between phenotypes across
the set of all SNPs.

Results
Table 1 cross-classifies all 240,456 SNPs for which both
SNP microarray and sequence data are available, and
which met our initial screening criteria (see Methods for
details). Across the 230,597,304 (240,456 SNPs × 959 indi-
viduals) possible genotype calls, there are more than
500,00 discordant genotypes (both technologies call a
genotype, and the genotypes are different), and more than
5 million genotypes that are missing on at least 1 of the 2
platforms. This means that the overall proportion of
discordant genotypes (including missing) is 2.63%, while
the proportion of discordant called genotypes is 0.23%.
To gain a better understanding of the distribution of the

discordant genotypes noted in Table 1, we computed con-
ditional concordance rates (Table 2). In particular, we
examined the probabilities that the sequence technology
yields each different genotype (or missing) conditional on
the genotype identified by the microarray technology.
Table 2 provides separate conditional concordance rates
for NGS and imputed genotypes.
As Table 2 shows, in a number of cases, the average

concordance rates are substantially different between
the 2 sequencing technologies. In fact, except for AA
given AA, XX (missing) given AA and BB given XX
(missing), all p-values from t-tests comparing the average
rates between the 2 technologies are less than 2 × 10−16.
When the microarray platform identifies the genotype as
a nonreference allele homozygote, imputed sequence
data shows higher concordance than NGS data. When
the microarray identifies the genotype as a homozygote
reference allele, rates of discordance for the homozygous
nonreference allele genotype are also higher for imputed
data compared to NGS genotypes. However, when the
microarray platform calls the genotype a heterozygote,
the NGS sequence genotypes are more concordant, as is
the case when the microarray platform identifies the
genotype as a reference allele homozygote and the discor-
dance rates for the heterozygote genotype are compared.
When the SNP microarray genotype is missing, the
sequence data often identifies at least 1 reference allele at
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the site. There is also a strong association between MAF
and concordance rates. In particular, SNPs with lower
MAF have substantially lower concordance between plat-
forms than do SNPs with larger MAFs (detailed results
not shown).
Finally, Table 3 illustrates an analysis comparing the

average conditional concordance rates for hypertensive
individuals compared to nonhypertensive individuals. The
strongest evidence for significant differences (p <2 × 10−16)
in average conditional concordance were observed
between hypertensive and nonhypertensives for sequence
AA or BB given GWAS AA, sequence AA or AB given
GWAS AB, and sequence AA, AB, or BB given GWAS
BB. Some evidence of differential average conditional con-
cordance rates between males and females and smokers
and nonsmokers also exists (detailed results not shown).

Discussion
Although most genotypes are the same for both technol-
ogies, there are still substantial numbers of discordant
genotype pairs. The most common type of discordance
comes from missing genotypes on the sequence technol-
ogy, which occurred most frequently when the microar-
ray technology identified at least 1 reference allele at the
variant site. Power loss will occur when genotypes are
not called, and so using sequence technology genotypes
will, when analyzing single SNPs or sets of SNPs consid-
ered in this analysis, yield lower power overall than
using microarray genotypes. We note, however, that
overall power may still be higher when using sequenced
genotypes as our analysis necessarily precludes the inclu-
sion of less common SNPs, which are not measured by
the microarray technology.

Table 1 Cross-classification of results summed over all SNPs and individuals

Sequence genotype1 Microarray genotype Total

AA AB BB Missing (XX)

AA 117,284,236 58,271 1,309 2,554 117,346,370

AB 101,015 65,584,521 29,302 8,970 65,723,808

BB 6,844 339,856 41,656,995 24,361 42,028,056

Missing (XX) 3,009,304 1,506,621 977,234 5,911 5,499,070

Total 120,401,399 67,489,269 42,664,840 41,796 230,597,304

Table 2 Conditional concordance rates (conditional on microarray genotype; SE in parentheses)

Sequence genotype1 Microarray genotype

AA AB BB Missing (XX)

AA NGS 0.998 (0.03) 0.003 (0.03) 0.004 (0.06) 0.52 (0.36)

Imp 0.998 (0.02) 0.02 (0.11) 0.0006 (0.02) 0.44 (0.46)

AB NGS 0.0009 (0.02) 0.996 (0.04) 0.02 (0.08) 0.30 (0.24)

Imp 0.002 (0.02) 0.980 (0.12) 0.006 (0.06) 0.38 (0.43)

BB NGS 0.0007 (0.02) 0.0006 (0.02) 0.98 (0.10) 0.19 (0.28)

Imp 8 × 10−5 (0.008) 0.003 (0.05) 0.993 (0.07) 0.18 (0.35)

Missing (XX) NGS 8 × 10−5 (0.005) 0.0006 (0.02) 0.0007 (0.01) 0.001 (0.02)

Imp 8 × 10−5 (0.005) 0.0003 (0.009) 0.0004 (0.01) 0.007 (0.07)

Table 3 Conditional concordance rates of hypertensive vs. nonhypertensive individuals (conditional on microarray; SE
in parentheses)

Sequence genotype Microarray genotype

AA AB BB Missing (XX)

AA Hypertensive 0.998 (0.03) 0.009 (0.07) 0.005 (0.07) 0.51 (0.43)

Nonhypertensive 0.999 (0.02) 0.010 (0.07) 0.0004 (0.02) 0.51 (0.37)

AB Hypertensive 0.001 (0.02) 0.990 (0.08) 0.013 (0.07) 0.30 (0.36)

Nonhypertensive 0.001 (0.02) 0.987 (0.08) 0.011 (0.07) 0.30 (0.26)

BB Hypertensive 0.0009 (0.03) 0.002 (0.03) 0.982 (0.10) 0.19 (0.33)

Nonhypertensive 4 × 10−5 (0.005) 0.002 (0.04) 0.989 (0.07) 018 (0.28)

Missing (XX) Hypertensive 7 × 10−5 (0.005) 0.0004 (0.009) 0.0004 (0.01) 0.001 (0.02)

Nonhypertensive 7 × 10−5 (0.004) 0.0005 (0.01) 0.0005 (0.01) 0.002 (0.02)
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Although discordance between called genotypes is less
common than with missing genotypes, the amount of
discordance (500,000 discordant genotypes; 0.23% overall
discordance rate) is still notable. Of particular note are the
high proportions of heterozygote (microarray) to nonrefer-
ence allele homozygote and reference allele homozygote
(microarray) to heterozygote (sequence) discrepancies;
more than 80% of all called genotype discordance is from
these 2 types of discrepancies. The conditional discor-
dance rates in Table 2 suggest that the majority of the dis-
cordance occurs in the imputed sequence (not the NGS
sequence) data. Given that the NGS data comes from
60× coverage, the microarray genotype calling pipeline is
well established, and the imputation procedure used in the
GAW18 data is both novel and complex, we conclude it
likely that aspects of the imputation procedure is what
yielded the majority of observed discordant genotypes.
It is reasonable to view the conditional discordant

genotype rates in Table 2 as conservative estimates of
the genotype error rate because, if the technologies are
applied independently, the vast majority of genotype
errors of each technology will appear in a discordant
genotype pair. However, if genotype errors are corre-
lated between the 2 technologies (eg, at a particular var-
iant site, similar samples are prone to error on both
technologies), using the conditional discordant rate as
an estimate of the genotype error rate may be substan-
tially lower than the true genotype error rate.
As documented for single-marker tests, genotyping

errors from the major homozygote to the minor homo-
zygote are the most costly (in terms of power loss)
[2,4,19]. Recently, Powers et al [11] documented poten-
tially large declines in statistical power for collapsing
tests in case-control designs, when genotype errors
(particularly from more common to less common geno-
types) are present, as is the case here. For example, with
genotype error rates of 0.2% to 0.5% for more common
to less common genotypes (as estimated in Table 2),
power loss between 2% and 5% for most collapsing tests
will occur. Genotype error rates of up to 2% from less
common to more common genotypes have only modest
impact on power (<0.5% decline). Because these results
were for case-control studies, further research is needed
to demonstrate similar effects of genotyping errors on
family based collapsing tests. These papers [2,4,11,19]
also found that power loss increases as the MAF
decreases; because discordance was larger for lower
MAF SNPs, power loss will be larger for lower MAF
SNPs in GAW18 data. Furthermore, our analysis only
considered SNPs with MAF above 5%, as rarer SNPs
were not genotyped using the microarray technology. If
the trend we observed continues, these SNPs may have
even larger error rates and, hence, even more dramatic
power loss.

These problems are further compounded when we
consider that there was some evidence of differential dis-
cordance between phenotypes. Differential discordance
can lead to inflated type I errors; for example, in line with
our observation, for collapsing tests, error rates of 0.2% in
cases and 0.1% in controls (or vice versa) can inflate the
type I error rate from 5% to between 15% and 25% for
most tests [5,6,12]. Although quality-control approaches
(eg, Q-Q plots) can detect large-scale type I error devia-
tions, isolated differential genotyping errors may escape
typical quality control and manifest themselves as false
positives. To minimize the effect of differential genotyping
errors, random assignment of subjects across genotyping
laboratories, laboratory assistants and plates should always
be practiced. Although the precise cause of the modest
differential genotyping errors observed here is unknown, it
may be a result of familial aggregation of hypertension and
nonrandom assignment of family members to sequencing
runs, imputation quality differences between families, or
other unmeasured covariates.
We note that our analysis did not consider many of

the most egregious inconsistencies: namely, 56,741 SNPs
where the allele calls were different. Further analysis is
needed to identify whether the allele call differences
yield substantially different genotype distributions in the
cases and controls between the 2 technologies, or it is
simply a matter of exchanging one base for another in
the calling algorithms (eg, reverse and forward strand
differences between the 2 technologies).
It is likely that, increasingly, sequence and microarray

data will be available for the same sample as was the case
here. In addition to providing an opportunity to empiri-
cally evaluate data quality, as was done here, discordant
genotypes present an opportunity to utilize better quality
data in downstream analyses. Recently, we showed that,
under modest assumptions of independence of the
2 independent genotype mechanisms, a 50-50 weighting
strategy of the 2 discordant genotypes should be used in
analyses of phenotype-genotype association [20]. Thus, a
reasonable choice for the genotype to be analyzed in cases
of discordance is the dosage, where dosage = 0.5 is used
for major homozygote-heterozygote discordant pairs and
dosage = 1.5 is used for heterozygote-minor homozygote
pairs. Further work is needed to confirm the optimality of
this result for multimarker rare variant tests of association.

Conclusions
Despite sophisticated data-cleaning pipelines for all 3 tech-
nologies, a noticeable number of discordant genotypes
remain in the GAW18 data. It is encouraging that the
majority of discordant genotypes were identified as miss-
ing by one of the technologies; however, a substantial
number of discordant called genotypes were still observed.
Although the amounts and types of discordance observed
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here will likely lead to power loss and/or type I errors in
downstream analysis, further research is needed to under-
stand the impact of errors on tests of association in family
based studies using sets of markers. However, it is reason-
able to expect that errors and missing data will likely
impact the type I and/or power for family based tests as
they do for case-control tests.
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