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Abstract
‘Athlete’s heart’ is a common term for the various adaptive changes induced by
intensive exercise. Exercise causes alterations of the heart in hemodynamic
response to the increased systemic and pulmonary demand during exercise.
The understanding of these adaptations is of high importance, since they may
overlap with those caused by pathological conditions. Cardiac imaging
assessment of the athlete’s heart should begin with a complete
echocardiographic examination. In recent years classical echocardiographic
surveys have been joined by new developments: tissue Doppler imaging, strain
rate echocardiography, and real-time 3-dimensional echocardiography. This
review paper focuses on the importance of these new echocardiographic
techniques in delineating the morphological characteristics and functional
properties of the athlete’s heart.
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The athlete’s left heart
Standard echocardiographic analysis
Long term physical training causes structural, functional and elec-
trical changes in the heart that are physiological responses to the 
hemodynamic demands of increased cardiac output during effort. 
This adaptive remodelling can be defined as “athlete’s heart”.

The understanding of these changes is of high importance, since 
they have to be distinguished from those caused by pathological 
conditions. Moreover, there is some evolving evidence suggesting 
that some of the exercise-induced changes may be associated with 
acute and chronic cardiac damage and that in a small number of ath-
letes this may predispose to atrial and ventricular arrhythmias. Thus, 
the need for a standardization of cardiovascular pre-participation 
screening of competitive athletes for sports eligibility has emerged, 
since athletes with underlying, masked cardiomyopathy may be at 
risk of lethal consequences during physical exertion1,2.

According to the Morganroth’s original hypothesis, two main mod-
els of training can be identified, which cause two distinct patterns of 
cardiac remodelling (myocardial hypertrophy)2. Endurance train-
ing characterizes aerobic sports with dynamic-isotonic muscular 
involvement – such as long-distance swimming and running. These 
activities cause a gradual decrease in systemic arterial resistance 
and an increase in venous return, with a predominant volume over-
load, with higher left ventricular (LV) end diastolic volume (EDV) 
and stroke volume (eccentric hypertrophy).

On the other hand, strength training is typical of anaerobic sports 
characterized by predominant static-isometric muscular exercise, 
such as body-building, short-distance running and swimming. 
These sports categories cause mainly an increase in myocardial wall 
thickness rather than cavity diameters (concentric remodelling and 
hypertrophy), in response to the predominant pressure overload.

Morganroth’s original hypothesis has been criticized, because car-
diac remodelling is also influenced by other factors like ethnicity, 
age, sex, genetics and body size. Moreover it has to be noted that 
most sports are actually characterized by a variable combination of 
both endurance and strength exercise, rather than only one of them.

Standard echocardiography has an essential role in assessing the 
characteristics of the athlete’s heart and in differentiating physiologi-
cal and pathological LV hypertrophy (LVH)3. Previous authors4 in a 
large series of top level athletes reported that 55% had increased LV 
end-diastolic diameter and only 15% of them had values > 60 mm, 
even if ejection fraction (EF) was normal. Competitive athletes 
have LVH, involving all myocardial segments, with a maximal 
septal thickness < 12 mm. Conversely, patients with hypertrophic 
cardiomyopathy (HCM) show increased wall thickness (>15 mm), 
mainly in the basal septum, and in 20% of cases there is systolic 
anterior motion (SAM) of the mitral valve, or aortic valve mid-
systolic closure5. After a deconditioning period of at least three 
months a reduction in wall thickness can be observed in athletes, 
but not in HCM.

Identification of HCM is challenging, when wall thickness is 
between 13 and 15 mm (the so-called grey-zone of LVH)7. In the 
last few years, development of new echocardiographic techniques 

have improved the knowledge of the athlete’s heart and differential 
diagnosis of physiological and pathological LVH.

New left ventricular echocardiographic techniques
In the athlete’s heart, LV diastolic function is often supranormal, 
in particular in endurance-trained athletes, when compared with 
untrained individuals. LV remodelling in athletes is associated 
with normal or increased myocardial relaxation, as an expression 
of increased elastic recoil, different from HCM patients, in whom 
diastolic dysfunction may be the first expression of the disease and 
may precede the development of LVH8.

In athletes transmitral E/A ratio is often > 2, with typical low A 
velocity (late diastole), and this parameter is useful to distinguish 
this condition from pathological LVH, where E/A ratio is < 1 and E 
velocity deceleration time is prolonged9.

Pulsed tissue Doppler (TDI)-derived early diastolic myocardial 
velocity (e’) of basal septal and basal lateral wall is increased in 
athletes. Conversely, HCM is characterised by an e’ reduction in 
both the hypertrophic septum and the normal thickness of lateral 
wall10. Lewis et al. suggested that an e’ peak velocity threshold of 
< 11.5 cm/sec on TDI can be useful to raise suspicion for pathologi-
cal LVH11 (Figure 1).

Athletes have no regional diastolic dysfunction (e’/a’ < 1), while 
this is evident in 25% of myocardial segments of HCM patients and 
in hypertensive patients12.

Finally E/e’ ratio is low in athletes, but increased in HCM patients, 
it being related with NYHA class and exercise capacity. Reduction 
of e’ velocity of both septal and lateral annulus is common after 
ultra-long duration exercises13.

Moreover, pulsed TDI gives additional information regarding myo-
cardial systolic performance at rest, showing normal or supranor-
mal values in athlete’s heart14. In athletes, LVH is combined with 
normal EF, normal or supranormal stroke volume and systolic peak 
velocity (s’) > 9 cm/sec, while in pathological LVH (HCM or arte-
rial hypertension) s’ is < 9 cm/sec, with EF normal or high in early 
stages and reduced in advanced stages15.

The athlete’s heart can be considered an interesting model of strain 
variation at different loading conditions, because there is a LV 
adaptation of at rest and a load dependency of strain measurement. 
(Figure 2 and Figure 3).

In particular, in athletes mild impairment of global longitudinal 
strain (GLS), lower apical radial strain and lower twisting at rest 
than in sedentary controls have been observed, together with an 
increase of basal and middle radial and circumferential strain16,17. 
Athletes had higher values for transverse, radial, and circumferen-
tial strains when compared with HCM18.

While conventional echocardiographic parameters often failed to 
distinguish between endurance (runners) and strength (bodybuild-
ers) athlete’s heart, a speckle tracking echocardiography (STE) 
analysis showed a different pattern of myocardial deformation in 
these two groups: while global radial strain (GRS) was similar, GLS 
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Figure 1. Transmitral flow pattern (left panel, 1a) and tissue Doppler (right panel, 1b) of an endurance athlete, showing supranormal 
diastolic function both at a global and regional level.

Figure 2. Automated function imaging (AFI) of left ventricular 2-D strain of endurance athlete, showing normal longitudinal regional 
myocardial deformation despite left ventricular hypertrophy (arrows) (LAX: long-axis view; A4C: apical four- and A2C apical two-
chamber views). Bull’s eye represents in a single image all myocardial regional deformations, from basal, to middle and apical segments.

was lower in runners and global circumferential strain (GCS) was 
lower in bodybuilders: correlations were found in runners between 
GLS and end-diastolic volume (r = 0.46; p < 0.05) and body 
surface area (r = 0.49; p < 0.05), while in bodybuilders, GCS was 
closely related to LV mass (r = 0.61; p < 0.01) and systolic blood 
pressure (r = 0.42; p < 0.05)19.

Another study used strain rate imaging to distinguish between indi-
viduals with hypertensive LVH and those with strength-training 

athletic LVH, reporting a significant reduction of systolic and 
diastolic strain and strain rate in hypertensive individuals, but not 
in athletes: an e′/a′ ratio >1 was found in 100% of a large popu-
lation of competitive athletes, 90% of subjects had e′ ≥16 cm/s, 
s′ ≥10 cm/s, and GLS ≤21%20. Moreover, hearts of hypertensive are 
characterized by reduced GLS, whereas GCS, GRS, and torsion are 
similar to those of athletes’ hearts: the extent of GLS is strongly 
associated with LV diastolic function, independently of afterload 
changes and the degree of LVH21.
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Santoro et al. stated that LV apical circumferential strain in endur-
ance athletes group was lower than the strength group and control 
groups (-21.6 ± 4.1% vs. -26.8 ± 7.7%, p < 0.05; vs. -27.8 ± 5.6%, 
p < 0.01). The endurance group had lower LV twisting (LVT) and 
untwisting (UTW) than strength group (6.2 ± 0.1° vs. 12.0 ± 0.1°, 
p < 0.01; -67.3 ± 22.9°/s vs. -122.5 ± 52.8°/s, p < 0.01) and control 
group (10.0 ± 0.1°, p < 0.01; -103.3 ± 29.3°/s, p < 0.01)22.

Finally, STE showed reduction of longitudinal, circumferential and 
radial strains and also reduction and delay of peak twisting in tria-
thletes soon after ultralong-duration exercises23.

Three-dimensional (3D) echocardiography offers the ability to 
improve the diagnostic capability of cardiac ultrasound for evalu-
ating cardiac anatomy, ventricular function, valvular disease and 
blood flow velocity. This technique is able to quantify LV volume 
and mass in a fashion which is similar to cardiac magnetic reso-
nance. However, 3D echocardiography is more reproducible, has 
lower costs and is applicable to a large population of athletes. 3D 
echocardiography gives more detailed information than two dimen-
sional (2D) echo techniques, providing data on LV remodelling and 
function; 3D is better in describing morphological features, show-
ing differences in the length and shape of the LV chamber, which 
are not adequately assessed using 2D technique24.

Using 3D echocardiography, Caselli et al. showed LV end-diastolic 
volumes and mass increased in athletes compared to untrained con-
trols; gender and type of sport had the highest impact on LV remod-
elling. In particular, male gender and endurance disciplines had 
the highest impacts on LV end-diastolic volume and mass. Body 

surface area (BSA) was also an important factor on LV remodelling, 
while age and blood pressure had only minimal effects. Preserved 
LV systolic function was observed in athletes, with average values 
similar in athletes and untrained controls25.

De Castro et al. measured LV remodeling index (LVRI) to describe 
the pattern of LV remodelling in athletes: athletes’ LVRI was simi-
lar to that of controls, suggesting that the LV remodeling associated 
with intensive athletic conditioning does not alter LV geometry. 
Athlete’s heart has a “symmetric” remodeling pattern, because an 
increased cavity dimension and volume are accompanied by an 
increased thickness and mass of the ventricles, in the absence LV 
systolic dysfunction26.

Moreover, isometric activity in strength sports had the highest 
effects on LV wall thickness, while isotonic activities as mara-
thons had the highest impact on LV diastolic cavity diameter27. The 
athlete’s heart is therefore characterized by harmonic LV remodel-
ling, differently from patients with hypertrophic or dilated cardio-
myopathy28 (Table 1).

Left atrial function
Atrial function may represent an essential part of cardiac function 
that is sometimes neglected.

D’Andrea et al. investigated whether mechanical dysfunction in 
the left atrium (LA) is present in patients with either physiologi-
cal or pathological LVH using two-dimensional strain rate imaging: 
LA maximum volume was increased but similar between the two 
groups of patients with LVH. Peak systolic myocardial atrial strain 

Figure 3. Short-axis left ventricular 2-D strain of endurance athlete, showing optimal regional myocardial deformation of all myocardial 
layers (arrows) (Epi: epicardium; meso: mesocardium; endo: endocardium).
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was significantly impaired in patients with pathological LVH com-
pared with controls and athletes. As assessed by multivariate analy-
sis, LV end-diastolic volume/BSA and LV mass in athletes were the 
only independent factors influencing LA lateral wall peak systolic 
strain. In contrast, in hypertensive patients, an independent nega-
tive association of LA lateral wall peak systolic strain with both LV 
mass and circumferential end-systolic stress was observed. Moreo-
ver, in the overall population of patients with LVH, LA lateral wall 
systolic strain was an independent predictor of maximum workload 
during exercise testing29.

Athlete’s right heart
Standard echocardiographic analysis
In the recent years, the substantial structural and functional adapta-
tions of the right heart (RH) have been documented, highlighting 
the complex interplay with the left heart. There is also evolving 
evidence of acute and chronic cardiac damage, mainly involving 
the right heart and which may predispose to atrial and ventricu-
lar arrhythmias, configuring an exercise-induced cardiomyopathy. 
Endurance exercise seems to be associated with the greatest extent 
of cardiac remodelling, involving both LV and right ventricle (RV), 
while strength training seems to impact minimally on the RV30–33. 
Moreover, the reversibility of the changes induced by sport after 
detraining was considered a typical feature of the athlete’s heart, but 
several studies have showed that structural and functional recovery 
might be incomplete, in particular for RV changes and this is par-
ticularly true in more practiced athletes33.

Standard echocardiography is the first line imaging exam to differ-
entiate athlete’s heart RV remodeling from pathological conditions. 
The RH clearly participates in the process of enlargement of the 
athlete’s heart, with an increase in internal diameters and thickness 
of its free walls. RV shows greater inflow and outflow dimensions 
in athletes compared with sedentary controls, with no significant 
difference in the systolic function. D’Andrea et al. documented that 
RH measures were all significantly greater in highly-trained endur-
ance athletes, compared to age and sex matched strength-trained 
athletes34,35.

Typical RV characteristics of the athlete’s heart can resemble those 
found in arrhythmogenic right ventricle cardiomyopathy (ARVC): 
in ARVC the enlargement of the RV cavity involves both RV inflow 
and outflow, and may be associated with RV wall segmental mor-
phological and functional abnormalities; in athletes RV enlarge-
ment involves only the inflow tract and systolic function is typically 
normal36. In addition, the inferior vena cava appeared to be dilated 
in a study involving 58 endurance athletes37.

LV stroke volume and pulmonary artery systolic pressure (PASP) 
were found to be powerful independent predictors of both RV and 
right atrial (RA) dimensions.

Interesting changes in the pulmonary vascular haemodynam-
ics of highly trained athletes can be detected at rest. Concerning 
the PASP values, whose upper limit of normal was 40 mmHg, 

Table 1. Athlete’s left heart functional parameters by new echo technologies.

Authors Journal Number of 
Athletes

Type of Sport Parameter Mean 
value

Upper 
limit

D’Andrea A. et al. J Am Soc Echocardiogr 
2010;23:1281–8

650 Endurance/ 
Power

IVS Tissue Doppler 
Sm (cm/sec)

13 18

IVS Tissue Doppler 
Em (cm/sec)

24 21

LV Tissue Doppler 
Sm (cm/sec)

15 20

LV Tissue Doppler 
Em (cm/sec)

16 22

LV Tissue Doppler 
Em/Am (cm/sec)

1.45 1.7

D’Andrea A. et al. Br J Sport Med 
2006;40:244–50

155 Power LV Intra-ventricular 
delay (mesc)

9.5 45

Palka P. et al. J Am Coll Cardiol 
1997;30:760–8

158 Power LV myocardial velocity 
gradient (sec-1)

4.6 7

D’Andrea A. et al. J Am Soc Echocardiogr 
2010;23:1281–8

650 Endurance/ 
Power

LV systolic global 
longitudinal strain (%)

-17.5 - 22

D’Andrea A. et al. Br J Sports Med. 
2008;42(8):696–702

80 Power LA strain (%) 50 80
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endurance-trained athletes showed the highest values, compared 
with strength trained athletes, and LV stroke volume was an inde-
pendent predictor of PASP38–40.

Resting RV global systolic function as measured by fractional area 
change (FAC) and Tricuspid Annular Plane Systolic Excursion 
TAPSE seems to be lower in endurance athletes comparing with 
non-athletic controls. The reduction was more pronounced in the 
presence of higher RV dilation.

New right ventricular echocardiographic techniques
Concerning the advanced ultrasound technologies, TDI velocity 
measurements showed that the early-diastolic phase of LV filling 
was increased, along with a prolonged isometric relaxation time. 
LV stroke volume was an independent predictor of the early diasto-
lic velocity (Em) and the time of regional isovolumic release (RTm) 
of RV free walls34.

As for RV systolic function, both TDI and 2D-strain-derived defor-
mation indexes are reduced at rest in endurance athletes at the RV 

inlet and mid-free wall level. These changes in RV function at rest 
are not caused by myocardial damage, in fact there are no increases 
in NT-proBNP levels among athletes41,42.

Galderisi et al. showed that by combining 3D echo and STE, RV 
preload exerts its maximal influence on lateral longitudinal fibres 
(RV lateral longitudinal strain)41.

A recent study by D’Andrea et al. found comparable 2D and 3D RV 
systolic indexes between endurance athletes and controls. In this 
setting, a mild reduction in global RV function could be considered 
a physiological consequence of RV dilation, since an efficient stroke 
volume will be reached with higher end-diastolic volumes and then 
at lower ejection fraction. On the other hand, a severe reduction in 
RV global systolic function should be considered an abnormal find-
ing even among athletes43 (Figure 4).

During exercise, increases in both pressures and volumes were 
greater for the RV, while increases in wall thickness were relatively 
less than for the LV. As a result, RV wall stress estimates increased 

Figure 4. Right ventricular 2-D strain of endurance athlete, showing normal myocardial longitudinal deformation (arrow).
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Table 2. Athlete’s right heart functional parameters by new echo technologies.

Authors Journal Number of 
Athletes

Type of 
Sport

Parameter Mean 
value

Upper 
limit

Oxborough D. 
et al.

J Am Soc Echocardiogr 
2012;25:263–71

102 Endurance RV Tissue Doppler 
Sm (cm/sec)

11 14

RV Tissue Doppler 
Em (cm/sec)

10 17

RV longitudinal 
strain (%)

-27 -41

125% during exercise as compared with a modest 14% increase in 
LV wall stress44.

However, echocardiographic estimates of contractility seem to 
increase proportional to increases in pulmonary artery pressures 
during intense exercise of short duration45, suggesting that the RV 
has the contractile reserve to meet exercise demands, at least for a 
while.

The RV is more susceptible than the LV to prolonged exercises 
and is able to induce cardiac fatigue: many studies reported RV 
dysfunction after long term exercises, as marathons46–50. D’Andrea 
et al. observed RV dilatation following an ultra-endurance triathlon 
without changes of LV dimension, by using M-mode, 2D echo and 
STE (reduction of longitudinal strain about 15% relative to baseline 
values)51 (Table 2).

Conclusions
In the last few years, clinical exercise practice, both for recreational 
and competitive purposes has been spreading worldwide and an 
increase in the number of subjects with features of exercise-induced 
cardiac remodeling can be expected. It is important to distinguish 
healthy, physiological modifications of the athlete’s heart from 
pathological conditions such as cardiomyopathies.

Cardiac imaging is essential in identifying cardiovascular disease in 
athletes, but it must be integrated with medical history, symptoms, 
age, gender, ECG and genetic analyses.

Standard echocardiography has a pivotal role in assessing the 
athlete’s heart characteristics while the latest developments in 
ultrasound techniques, such as TDI, 2D strain imaging and 3D 
echocardiography are important to improve knowledge about 
physiological and pathological heart remodeling related to sport 
exercise.
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