
REVIEW
published: 20 September 2021

doi: 10.3389/fcvm.2021.739095

Frontiers in Cardiovascular Medicine | www.frontiersin.org 1 September 2021 | Volume 8 | Article 739095

Edited by:

Haiyang Tang,

University of Arizona, United States

Reviewed by:

Pritesh Jain,

University of California, San Diego,

United States

Stephen C. Kolwicz Jr,

Ursinus College, United States

*Correspondence:

Haitao Shen

shenht@sj-hospital.org

Specialty section:

This article was submitted to

Cardiovascular Metabolism,

a section of the journal

Frontiers in Cardiovascular Medicine

Received: 10 July 2021

Accepted: 27 August 2021

Published: 20 September 2021

Citation:

Yin Y and Shen H (2021) Advances in

Cardiotoxicity Induced by Altered

Mitochondrial Dynamics and

Mitophagy.

Front. Cardiovasc. Med. 8:739095.

doi: 10.3389/fcvm.2021.739095

Advances in Cardiotoxicity Induced
by Altered Mitochondrial Dynamics
and Mitophagy
Yiyuan Yin and Haitao Shen*

Department of Emergency Medicine, ShengJing Hospital of China Medical University, Shenyang, China

Mitochondria are the most abundant organelles in cardiac cells, and are essential

to maintain the normal cardiac function, which requires mitochondrial dynamics

and mitophagy to ensure the stability of mitochondrial quantity and quality. When

mitochondria are affected by continuous injury factors, the balance between

mitochondrial dynamics and mitophagy is broken. Aging and damaged mitochondria

cannot be completely removed in cardiac cells, resulting in energy supply disorder and

accumulation of toxic substances in cardiac cells, resulting in cardiac damage and

cardiotoxicity. This paper summarizes the specific underlying mechanisms by which

various adverse factors interfere with mitochondrial dynamics and mitophagy to produce

cardiotoxicity and emphasizes the crucial role of oxidative stress in mitophagy. This review

aims to provide fresh ideas for the prevention and treatment of cardiotoxicity induced by

altered mitochondrial dynamics and mitophagy.
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INTRODUCTION

As the body’s “power plant,” heart is the body’s largest oxygen and energy consumption
organ. Therefore, mitochondria, as the core organelles of oxidative phosphorylation, play an
important role in maintaining cardiac homeostasis. Under normal conditions, cardiac cells
regulate the dynamic balance of mitochondria through a variety of signal pathways, remove
damaged mitochondria through the process of mitochondrial fission, fusion and autophagy, and
maintain the normal cardiac function. However, injury factors such as hypoxia, oxidative stress,
poisoning, and hyperglycemia can cause abnormalities in mitochondrial dynamics and mitophagy,
resulting in cardiotoxicity. Therefore, interventional treatment for different injury factors is
of great significance for improving cardiotoxicity induced by altered mitochondrial dynamics
and mitophagy.

CONCEPT OF MITOCHONDRIAL DYNAMICS AND MITOPHAGY

Mitochondria are critical organelles of eclectic cells and can reach 25–35% of cell volume
(1–3). They have a phospholipid bimolecular membrane structure and play a crucial role in
maintaining normal functionality in cells and metabolizing steady state. Moreover, they are
also the primary locations for the oxidative metabolism of cells. Also, mitochondria have
a mediated effect on cell proliferation or apoptosis, regulation of nuclear gene expression,
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and innate immunity (4, 5). Under normal physiological
conditions, mitochondria produce ATP through the tricarboxylic
acid cycle to meet the energy needs of the heart (6–8). It
is not only the power plant of the cell, but also the center
of signal transmission including calcium homeostasis (9, 10),
which ensure the normal operation of the mitochondrial electron
transport chain to maintain the normal cardiac function (11,
12). In the electron transport chain, premature leakage of
electrons will lead to the production of physiological reactive
oxygen species (ROS), and a small amount of ROS can be
decomposed by superoxide dismutase (SOD) and glutathione
(GSH) in the mitochondria (9, 10, 13). When the mitochondria
is in an abnormal state, the tricarboxylic acid cycle and calcium
homeostasis are destroyed, and the mitochondrial membrane
potential dissipation in turn leads to the disorder of the
electron transport chain and the accumulation of ROS (14,
15). The original mitochondrial quality of cardiac cells cannot
maintain the normal function of cardiac cells, resulting in cardiac
dysfunction and cardiotoxicity (6, 16, 17).

Although mitochondria are usually described as independent
organelles, they actually form a dynamic equilibrium network
maintained by mitochondrial dynamics, which is essential
for maintaining normal cell metabolism. In mitochondrial
structures, the outer mitochondrial membranes (OMM)
comprises a relatively smooth lipid double layer, and the inner
mitochondrial membrane (IMM) folds inwards to form a
structure called argon (18). The fission of membranes and outer
membranes in mitochondria is a critical event in mitochondrial
fission; it is a process that divides a single mitochondrion
into two mitochondria, guided by a dynamin-related protein
1 (DRP1) (19). Mitochondrial fusion is divided into outer
membrane fusion and endometrial fusion, the balance of which
determines the connectivity of the network (20).

Mitophagy is the process that identifies damaged
mitochondria in cells, which in turn binds to autophagy-
related proteins to create autophagic small bodies. These
bodies are degraded by fusion with lysosomes (21). Generally,
mitochondria are abundant in cardiac cells, making the cardiac
cells more sensitive to alterations in mitochondrial functionality
(22). Under normal circumstances, a certain mitophagy level
promptly removes damage to aging mitochondria and metabolic
toxic substances, promotes mitochondrial renewal, and ensures
the survival of cells (23–25).

THE PHYSIOLOGICAL STATE OF
MITOCHONDRIAL DYNAMICS AND
MITOPHAGY

Cardiotoxicity is caused by altered mitochondrial dynamics
and mitophagy (26, 27). The cardiac cells can remove
dysfunctional mitochondria through mitochondrial fission,
fusion, and autophagy. The process has a direct regulatory
effect on the quantity and quality of the cardiac mitochondria.
Thus, it ensures the stability of the inner environment of
cardiac cells (28–32). Under normal physiological conditions,
mitochondria are constantly updated to sustain healthy cardiac

functionality. Moreover, it can promote the formation of new
mitochondria and maintain the cardiac continuous contraction.
At this stage, the cardiac can promptly remove damaged
mitochondria through fission, fusion, and autophagy, and
facilitate the recovery of effective cellular components, such
as proteins, deoxyribonucleic acid (DNA), etc., to ensure the
normal metabolism of updated cells, thus compensate to ensure
the nominal function of mitochondria to maintain the cardiac
continuous contraction state (33).

It is generally believed that fission and fusion are carried
out at the same time and are dynamically balanced, and fission
is often regarded as a prerequisite for mitophagy (34–37).
Parkin, the key protein of mitophagy, can induce ubiquitination
or degradation of MFN1/2, thereby inhibiting mitochondrial
fusion (38, 39). The significance of mitophagy for fusion is that
when damaged mitochondria fuse with healthy mitochondria, a
larger damaged mitochondria will be formed, which can activate
mitophagy and maintain mitochondrial homeostasis (34, 40–42).
In mitochondrial fission, fusion and mitophagy, mitochondrial
autophagy plays a central role (34).

Mitochondrial Fission
Mitochondrial fission is divided into the fission of membranes
and outer membranes in mitochondria and is regulated by DRP1
(43, 44). DRP1 is classified as a homologous protein of guanosine
triphosphate (GTP) hydrolyzed enzyme (GTPase) power protein.
It has an active role in endocytosis and is a key regulatory factor in
mitochondrial fission, primarily located in cell pulp (20, 45, 46).

The serine 637 (S637) phosphorylation of DRP1 inhibits the
translocation of mitochondria DRP1 and its GTPase activity.
Meanwhile, serine 616 (S616) phosphorylation elevates the
DRP1 activity, which splits the mitochondria. During the fission
process, mitochondrial fission 1 (FIS1) protein, mitochondrial
fission factor (MFF), 49 kDa mitochondrial dynamic protein
(MiD49), and 51 kDa mitochondrial kinetic protein (MiD51)
induce DRP1 phosphorylation to recruit DRP1 into the
mitochondrial outer membrane. Afterward, the DRP1 oligopoly
reaction at the fission point of the OMM self-assembles to
create a spiral structure. It forms a cleavage ring that shrinks
and shears the mitochondrial outer and inner membranes and
breaking the mitochondria (47–54). Notably, FIS1 is distributed
throughout the outer membrane, while MFF is dotted, showing
a stronger interaction with DRP1 than FIS1. FIS1 and MFF
can independently promote the collection and oligopoly of the
mitochondrial outer membrane, yet, MFF plays a more critical
role. Besides, in the absence of MFF and FIS1, MiD49 andMiD51
can recruit DRP1 to the mitochondria (49).

Furthermore, cyclase-associated protein (CAP) are
recently discovered split-promoting proteins that induce
the oligomerization of DRP1 and the expression of FIS1, which
promotes DRP1-mediated mitochondrial fission (55).

Mitochondrial Fusion
Mitochondrial fusion is divided into outer membrane fusion
and endometrial fusion. It is regulated by a variety of
proteins, including mitofusin (MFN) in the outer membrane
of mitochondria and optic atrophy protein 1 (OPA1) (44,
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45, 49, 51, 56–61). Among them, mitofusin 1 (MFN1) and
mitofusin 2 (MFN2) regulate mitochondrial outer membrane
fusion. MFN1 positioned mitochondria and MFN2 positioned
mitochondria and endoplasmic reticulum. MFN1 and MFN2
form a stable homologous dimer through their GTPase domain.
Next, hydrolyzed GTP and the outer membrane of the two
mitochondria are combined and fused, which is critical for outer
membrane fusion (49, 52, 54, 56).

The OPA1 regulates the fusion of the IMM. OPA1 is
treated with mitochondrial processing peptide (MPP) enzyme
to produce a long-form OPA1 (L-OPA1) of membrane binding,
and then positioned as intermembrane space AAA (i-AAA)
protease in the membrane of the mitochondria IMM peptide
enzymes and mitochondrial AAA (m-AAA) protease are
further cut into short -form OPA1 (S-OPA1). Afterward, the
mitochondrial membranes are arranged into two layers of film
while maintaining the fidelity of the mitochondrial crucible
structure and promoting endometrial fusion (49, 58, 62).

Mitophagy
Mitophagy is an autophagy process that is regulated by several
mechanisms and protein molecules. However, it is different than
ordinary autophagy and is highly selective (63, 64). Presently,
three major pathways can induce and activate mitophagy:
PTEN-induced kinase 1 (PINK1)-Parkin signaling pathway,
BCL2 interacting protein 3 (BNIP3)/NIP3-like protein X (NIX)
pathway, and the FUN14 domain containing 1 (FUNDC1)
signaling pathway. Out of the three, the PINK1-Parkin signaling
pathway is the most characteristic and significant autophagy
pathway (65–67). In mitophagy, different pathways cooperate
and coordinate to sustain the normal functionality in cells.

The PINK1-Parkin Signaling Pathway
PINK1 is a mitochondrial serine-threonine protein kinase.
When the mitochondrial membrane potential decreases, the
PINK1-Parkin signaling pathway PINK1 aggregates in the
mitochondrial membrane’s outer membrane and activates Parkin
on damaged mitochondria (68–76). Generally, PINK1 is less
expressed. It enters the mitochondria, anchors the mitochondrial
intima through the mediation of outer membrane-related
proteins. Under external stimulation or pathological conditions,
mitochondrial depolarization can cause PINK1 translocation to
mitochondria’s outer membrane. Afterward, it catalyzes ubiquitin
phosphorylation to activate the Parkin receptor binding Parkin
and initiate mitophagy (30, 70, 77–85). Moreover, the PINK1-
Parkin pathway is also the primary mechanism of Zinc induced
mitophagy (86).

BNIP3/NIX Pathway
BNIP3 (also known as NIX) is a member of the Bcl-2 protein
family. It is a form of a mitochondrial outer membrane protein
with a biphasic effect. The phosphorylation of their microtubule-
associated protein 1A/1B-light chain 3 (LC3)-interacting region
(LIR) binds to LC3-phosphatidylethanolamine conjugate light
chain 3 (LC3II), which is involved in mitophagy and plays a
significant role in myocardial mitochondrial regeneration (24,
87–89). The hypoxia inducible factor 1 subunit alpha (HIF-1α)

can bind to the BNIP3 promoter to induce BNIP3, and BNIP3
expression can also promote PINK1 translocation, and then
induce mitophagy (90). Reportedly, the cardiac dual-specificity
phosphatase-1 (DUSP1) also induces BNIP3 expression and
promotes mitophagy (91).

FUNDC1 Signaling Pathway
The FUNDC1 is a highly conserved mitochondrial outer
membrane protein. Similar to BNIP3/NIX, it directly interacts
with LC3 through the N end, mediating hypoxia-induced
mitophagy, which is widely expressed in various cells, tissues,
and organs, particularly heart (63, 79, 88, 90, 92, 93).
Under normal oxygen conditions, FUNDC1 phosphorylated
by semi refined carrageenan (SRC) kinases and Casein kinase
II (CK2) decreases their affinity to LC3, which effectively
inhibits mitophagy. FUNDC1 was dephosphorylated by serine
13-position phosphatase, such as PGAM family member 5
(PGAM5), triggering its association with LC3, thereby enhancing
mitophagy (23, 88, 93).

Biogenesis
Mitochondrial biogenesis is also considered to be an important
factor in maintaining mitochondrial homeostasis. It is a complex
process involving the synthesis of mitochondrial inner and outer
membranes and mitochondrial-encoded proteins, the synthesis
and input ofmitochondrial-encoded proteins, and the replication
of mitochondrial DNA (mtDNA) (94–97), which is mainly
regulated by PPARG Coactivator 1 Alpha (PGC-1α) and Nuclear
Respiratory Factor 1 (NRF1), and can be defined as “the process
of producing new components of the mitochondrial network”
(98–100). Some scholars evaluate the biogenesis of mitochondria
by measuring the rate of mitochondrial protein synthesis.
Mitochondrial biogenesis and mitophagy coordinately regulate
the molecular mechanism of mitochondrial homeostasis (101–
104). On the one hand, the process of mitochondrial biogenesis
is accompanied by mitophagy, on the other hand, abnormal
mitophagy can feedback and inhibit mitochondrial biogenesis,
and the PGC-1α-NRF1-FUNDC1 pathway plays a key role in it,
cooperating tomaintain the quality and quantity of mitochondria
(96, 97, 105, 106).

THE PATHOPHYSIOLOGICAL STATE OF
MITOCHONDRIAL DYNAMICS AND
MITOPHAGY

When cardiac cells are stimulated by mechanical traction,
ischemia-reperfusion injury, and oxidative stress, they can cause
changes in the shape, structure and function of the heart
(107–110). Multiple signal pathways are activated when the
heart is stimulated by pathogenic factors, such as mitogen-
activated protein kinase signaling pathway, calcineurin (CaN)
signaling pathways, protein kinase A signaling pathways and
angiotensin type I receptors cause calcium homeostasis to be
destroyed and calcium overload, which ultimately leads to
cardiac pathophysiological changes (111–114). When excessive
or continuous stress acts on the heart, the mitochondrial
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energy metabolism function and quality control system are
seriously disturbed, which exceeds the self-regulation range
of mitochondrial dynamics and mitophagy. On the one
hand, it causes the energy metabolism of cardiac cells to
become impaired, on the other hand, the mtDNA and ROS
released by damaged mitochondria accumulate to reach a
toxic concentration, which together lead to cardiotoxicity
(25, 66, 115–117), the process of cardiotoxicity caused by
different injury factors is shown in Figure 1. Cardiotoxicity
refers to cardiac damage caused by excessive accumulation
of endogenous or exogenous substances to reach a toxic
concentration (118). Generally speaking, cardiotoxicity can cause
cardiac electrophysiological dysfunction or myocardial damage
(119). Moreover, mitochondrial dynamics play a vital role in the
onset of nervous system diseases, implying that mitochondrial
dynamics disorders may have damaging effects on cardiac
neuronal cells (120).

In addition, among smoking and obesity people, the
cardiovascular morbidity has increased significantly (121–126).
It has been reported that smoking and obesity can cause
abnormal mitochondrial dynamics and mitophagy (127–131).
Therefore, smoking and obesity may also lead to mitochondrial
damage, which in turn causes cardiac dysfunction, leading
to cardiotoxicity.

Hypoxia
Generally, hypoxia refers to any kind of physiological oxygen
deficiency or tissue oxygen demand deficiency state and the
integration of local responses defines hypoxia as a paradigm
of reactions affecting the entire body (86, 132, 133). Studies
have shown that inhibiting the breathing of rats caused obvious
cardiotoxicity (79, 134–138).

Mitochondrial Fission, Fusion, and Hypoxia
During mitochondrial fission, lack of oxygen can increase the
production of 4-hydroxyethyl ether (4-HNE) to promote the
S616 phosphorylation of DRP1 to induce mitochondrial fission.
Besides, in the presence of histone deacetylase 6 (HDAC6),
hypoxia can promote mitochondrial fusion by inducing
the binding of HDAC6 with MFN2, causing mitochondrial
dysfunction (139–141).

Mitophagy and Hypoxia
Hypoxia can be specifically activated by FUNDC1; under
normal conditions, FUNDC1 is highly conserved and stable in
mitochondria’s outer membrane. During hypoxia, it is FUNDC1
dephosphorylated by 13 phosphatases (such as PGAM5) of
serine, triggering its binding to LC3 and improving mitophagy
activity. It removes damaged mitochondria (23, 79, 88, 92, 93,
142–144). Hypoxia can activate poly (ADP-ribose) polymerase
(PARP), promoting mitophagy by regulating mitochondrial
membrane potential and inducing cardiomyocyte apoptosis, ROS
is central for PARP mediated mitochondrial membrane potential
(1Ψm) decline, and inhibited PARP can reduce the production
after injury (80). Moreover, the activation of FUNDC1 is vital in
platelet aggregation. Past studies have demonstrated that lacking
the FUNDC1 gene canmake themitochondrial function of blood

platelet disordered. In long-term hypoxia, it will eventually form
a microthrombus and lead to cardiac microvascular structure
destruction (79, 145).

Oxidative Stress
Oxidative stress (OS) is a state of imbalance between oxidation
and antioxidant effect in the body. It produces several destructive
products, such as ROS, which has an adverse impact on the
body and is often considered to be a crucial factor that leads
to aging and disease (146, 147). OS is caused by the imbalance
between ROS and endogenous antioxidants in response to
injury, which can lead to cardiotoxicity (148). ROS is a
collective common term that includes highly oxidative radicals
such as hydroxyl (OH-) and superoxide (O2•-) radicals, and
non-radical species such as hydrogen peroxide (H2O2) (149–
151). Antioxidants in the mitochondria, such as superoxide
dismutase (SOD) and glutathione (GSH), will rapidly degrade
or sequester O2·-, thereby reducing reactivity (152–154). Due
to the high concentration of mitochondria in myocardial tissue,
reduced mitochondrial antioxidant capacity results in cardiac
dysfunction (155–157). In addition, ROS is involved in a series
of vascular diseases associated with the functional properties of
the endothelial cell barrier (158–160).

Reportedly, ROS can significantly promote the activity
of DRP1 to increase the mitochondrial fission frequency,
resulting in mitochondrial dysfunction. Oxidative stress can
significantly increase the expression of WD repeat domain 26
(WDR26) protein, which is a critical medium for PINK1-Parkin
signaling pathways to induce cell mitophagy and depolarize
mitochondria by elevating the mitochondrial membrane
potential, causing PINK1 to transpose, which in turn catalyzes
ubiquitin phosphorylation to activate the Parkin receptor
(70, 78–80, 161). Parkin is dependent on p53, it triggers
mitophagy through autophagy small body lysosome pathways
and then degrades through autophagy-lysosome pathways.
Moreover, oxidative stress could also lead to an extended
opening time for mitochondrial permeability transition pore
(mPTP), releasing apoptosis factors such as cytochrome c
into the matrix, damaging cells (162–164). Meanwhile, ROS
activates multiple inflammatory pathways such as NLR family
pyrin domain containing 3 (NLRP3)-mediated inflammatory
responses. And the inhibition of mitophagy further aggravates
these inflammatory responses and exacerbates damage (165).
During myocardial ischemic re-perfusion injury (MIRI), the cell
ischemia hypoxia activates PINK1/Parkin-mediated mitophagy
and then removes the defective mitochondria. Afterward,
restores the intracellular steady-state to offset the damage
inflicted by hypoxia. In the case where Parkin is lacking, it
will further aggravate ischemia re-perfusion damage and inflict
damage to the heart (78, 166–170). Uncoupling protein 2
(UCP2) and vitamin D interferes with abnormal mitophagy
to protect the damaged cardiac from ischemic re-injection
(171, 172). Moreover, oxidative stress reactions can also activate
mitophagy through BNIP3/NIX and ROS promotes BNIP3
expression by activating the HIF-1α, which subsequentially
induces mitophagy (89, 90). Reportedly, the oxidative stress
response is a crucial cause of mitophagy disorders in diabetic

Frontiers in Cardiovascular Medicine | www.frontiersin.org 4 September 2021 | Volume 8 | Article 739095

https://www.frontiersin.org/journals/cardiovascular-medicine
https://www.frontiersin.org
https://www.frontiersin.org/journals/cardiovascular-medicine#articles


Yin and Shen Mitochondrial Dynamics and Cardiotoxicity

FIGURE 1 | The process of cardiotoxicity caused by different injury factors.

patients (24). In addition, membrane associated Ring-CH-
Type Finger 5 (MARCHF5) and cellular communication
network factor 1 (CCN1/Cyr61) are protein molecules located
in the mitochondrial outer membrane, these proteins also
play a vital role in the autophagy process of mitochondria,
reducing expression during oxidative stress, and further inhibits
mitophagy (173, 174).

Hyperglycemia
Studies have shown that hyperglycemia can increase the opening
of mPTP by causing mitochondrial rupture and stimulating the
generation of ROS, leading to the release of cytochrome c into
the cytoplasm to activate the NLRP3 inflammasome (175–177).
Subsequently, NLRP3 activates downstream nuclear factors to
cause the release of inflammatory factors such as TNF-α and IL-6
further promotes the occurrence of inflammation, which well-
explains the pathogenesis of diabetic cardiomyopathy (178–180).

Hyperglycemia causes calcium overload by activating the
ORAI calcium release-activated calcium modulator 1 (ORAI1)
channel-mediated Ca2+ internal flow pathway. It would induce
S616 phosphorylation to further advance the expression of DRP1
and inhibit the MFN1 gene expression, as well as promote
mitochondria fission, resulting in mitochondrial dysfunction (53,
181, 182). Moreover, protein kinase A activity is significantly
inhibited at low glucose levels, enhancing the positioning
capacity of DRP1 on the outer membrane of the mitochondria,
which significantly increases the rate of mitochondrial fission
(183). Past studies have established that hunger or reduced

insulin signals are a strong trigger for autophagy (92, 184, 185).
Hyperglycemia can induce myocardial mitochondria division
but inhibit mitophagy, causing the accumulation of functionally
impaired mitochondria (57, 186, 187). Additionally, DRP1 and
ROS have mutually reinforcing associations (188). As a result,
oxidative stress reactions increase and ROS accumulates during
hyperglycemia conditions, which further damages cardiac cells
(24, 189).

Poisoning
Poisoning refers to the systemic damage caused by the poisoning
amount of harmful substances after entering the human
body. Cardiotoxicity caused by drugs is divided into type I
cardiotoxicity and type II cardiotoxicity (190–193). Among
them, type I cardiotoxicity is associated with irreversible
cardiac cell injury and is typically caused by anthracyclines and
conventional chemotherapeutic agents, such as doxorubicin
(DOX), daunorubicin, taxane and so on (194–196). Type
II cardiotoxicity, associated with reversible myocardial
dysfunction, is generally caused by biologicals and targeted
drugs, such as trastuzumab, pertuzumab, azidothymidine,
sumatinib, cloflupine, and cocaine, ethanol, etc (197, 198). The
above-mentioned drugs can cause cardiotoxicity by interfering
with mitochondrial dynamics and mitophagy, and ROS plays an
important role in this process (26, 199–202). Studies have shown
that anthracyclines such as doxorubicin and daunorubicin
accumulate in the heart by binding to cardiolipin in the inner
mitochondrial membrane (198). Anthracyclines binds with high
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affinity to the mitochondrial phospholipid cardiolipin, inhibits
its function, stimulates ROS production, inhibits oxidative
phosphorylation, and causes mitochondrial DNA damage.
These events result in mitochondrial defects, leading to the
opening of mPTP and the activation of cell death pathways,
which precipitate myocardial dysfunction (27, 203, 204). In
addition, recent experimental studies have found mitochondrial
iron accumulation following doxorubicin to be the mediator
of doxorubicin cardiotoxicity from redox cycling and oxidative
injury. ABCB8, a mitochondrial transport protein facilitates the
export of iron from the mitochondria. Doxorubicin reduces
ABCB8 transporter in the mitochondria. Overexpression of
ABCB8 protein or administration of dexrazoxane, an iron
chelator reverses the anthracycline-induced mitochondrial iron
overload and oxidative injury. It has been reported that the
expression of TNF-α and IL-6 in the myocardial tissue and H9C2
cells treated with DOX increased significantly (1, 198, 205–208).
Taxane further inhibits mitophagy by interfering with the
normal microtubular transport function in the cardiomyocytes
(26, 153, 198).

Unlike anthracyclines, trastuzumab induced left ventricular
dysfunction (LVD) and congestive heart failure (CHF) are
mostly reversible upon its discontinuation. At a molecular
level, trastuzumab binds to the extracellular domain 4 of
HER2 receptor, which prevents HER2 dimerization, activation
and downstream signaling (190, 194–196). It may induce the
occurrence of oxidative stress, which can also lead to the opening
of mPTP and the activation of cell death pathways, leading to
cardiac dysfunction (192, 209, 210). There are reports that drugs
that cause type II cardiotoxicity can also enhance anthracycline
cardiotoxicity, such as azidothymidine and rosiglitazone (193,
198, 211). In addition, there are some antidepressants and
excessive metal elements, such as cloflupine, cocaine, antimony,
mercury and so on (197, 212).

Mitochondrial Fission, Fusion and Poisoning
Poisoning can change the mitochondrial dynamically regulated
protein expression. On the one hand, poisoning induces the
expression of MFN2 and OPA1 in the cardiac tissue, which
increases the mitochondrial length and organelle aspect ratio
and excessive mitochondrial fusion. As a result, the activity
of mitochondrial respiratory chains is reduced, which leads to
severe cell defects (213–215). On the other hand, poisoning
promotes apoptosis by promoting DRP1 phosphorylation,
subsequentially leading to the fission of mitochondria in cardiac
cells (216).

Mitophagy and Poisoning
Doxorubicin (DOX), organophosphorus, nicotine, excessive
alcohol, and other toxic substances can also inhibit the expression
of Parkin, deteriorate the mitophagy ability of cardiac cells,
damage mitochondria, and destroyed substances in cardiac
cells will continue to accumulate, causing cardiac damage (26,
217, 218). Moreover, the decrease of mitophagy can lead to
excessive ROS in cardiac cells, further promote the release
of cytochrome c and cysteine aspartate protease, disrupt the
stability of mitochondria DNA, inhibit the activity of respiratory

electron-transport chain, and reduce both oxygen utilization
and consumption. It can even initiate mitochondrial apoptosis
and induce mitochondrial damage (26, 88, 219–224). Parkin
overexpression increases mitophagy, which aggravates cell death
through poisoning. And, Parkin knockdown has the opposite
effect (225, 226). DOX can also dysregulate the cytosolic
and mitochondrial signaling axes, which leads to mitophagy
destruction and arrhythmias, causing impaired mitochondrial
clearance, the accumulation of dysfunctional mitochondria,
ROS overload, and a lack of Adenosine triphosphate (ATP).
Meanwhile, DOX can also phosphorylate BNIP3 and then
inhibit mitophagy, which is closely related to the mitochondrial
sirtuins (SIRT3-SIRT4) pathway (26, 27, 150, 206, 207, 221,
225, 227, 228). Recently, it was reported that excessive DOX
can also significantly induce elevated insulin-like growth factor-
II receptor (IGF-IIR) expression, IGF-IIR induces myocardial
hypertrophy and cardiomyocyte death in a paracrine/autocrine
manner. Concurrently, IGF-IIR can further promote mitophagy
by inducing Parkin expression and cause cardiac damage (28,
229, 230).

THERAPEUTIC APPLICATION OF
MITOCHONDRIAL DYNAMICS AND
MITOPHAGY

Mitochondrial dynamics and mitophagy play an important role
in cardiotoxicity, so they can be regarded as potential therapeutic
targets. Cardiotoxicity can be treated, or its progress can be
delayed by promoting or inhibiting mitochondrial dynamics
and mitophagy, thus maintaining the functional stability of
mitochondria and reducing cell damage under the influence of
injury factors (Table 1).

Hypoxia preconditioning induced FUNDC1-dependent
activation of mitophagy and decreased I/R-induced cardiac
injury (79). Shaftaside is a natural flavonoid. Shaftaside and
MYLS22 can effectively inhibit the expression of DRP1 andOPA1
to inhibit mitochondrial fission and reduce the cardiotoxicity
induced by hypoxia, oxidative stress, hyperglycemia and
poisoning (231). In healthy and MIRI rat cardiomyocytes, Zn
and salidroside can activate mitophagy by up-regulating the
expression of PINK1/Parkin, clear damaged mitochondria, and
maintain normal cardiac function (86, 232–234). Myocardial
mitochondrial function adapts to stress during acute exercise and
manifests as significant upregulation of the mitophagy-related
protein BNIP3, which stimulates mitophagy and minimizes
myocardial injury. Melatonin and acute exercise preconditioning
can activate the expression of PINK1 and BNIP3, respectively, to
enhance mitophagy and decreased ROS-induced cardiac injury
(235–242). Metformin can inhibit mitochondrial fission by the
activation of MFN1 and the inhibition of DRP1, which decreased
hyperglycemia -induced cardiotoxicity (176, 243–247).

CONCLUSIONS AND PROSPECTS

Mitochondrial dynamics and mitophagy are decisive factors for
maintaining the homeostasis of the cardiac cell environment
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TABLE 1 | Therapeutic application of mitochondrial dynamics and mitophagy.

Injury factors Key protein Representative interventions Mechanisms Effects to cardiotoxicity

Hypoxia FUNDC1 Hypoxia preconditioning Mitophagy Protection

Hypoxia DRP1 Schaftoside Fission Protection

OS PINK1 Zine, Melatonin Mitophagy Protection

OS BNIP3 Acute exercise Mitophagy Protection

OS DRP1 Melatonin Fission Protection

Hyperglycemia DRP1 Metformin Fission Protection

Hyperglycemia MFN1 Metformin Fission Protection

Anthracyclines poisoning BNIP3 Acute exercise Mitophagy Protection

Organophosphate poisoning Parkin Salidroside Mitophagy Protection

Nicotine poisoning OPA1 MYLS22 Fusion Protection

and ensuring the normal function of the cardiac. Hypoxia,
hyperglycemia, and oxidative stress mainly interfere with
mitochondrial fission and mitophagy to cause cardiotoxicity,
while poisoning mainly interferes with mitochondrial fusion
and mitophagy to cause cardiotoxicity. In view of different
injury factors, taking different representative interventions to
maintain the normal mitochondrial dynamics and mitophagy
is of great significance for the prevention and treatment of
cardiotoxicity. However, whether different therapeutic effects can
be achieved through different routes of administration requires
further research. Therefore, the exploration, regulation, and
monitoring of the balance point in mitochondrial dynamics
is crucial for preventing external injury factors from inducing
cardiotoxicity. However, at the advent, the specific mechanism of
action of mitochondrial dynamics and mitophagy in the process
of cardiotoxicity is yet to be established. Extensive empirical

studies are needed to study, confirm, and provide a theoretical
basis for mitochondrial dynamics-induced cardiotoxicity, which
would help prevent various causes of cardiotoxicity.
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