organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

(*E*)-4-[2-(4-Ethoxyphenyl)ethenyl]-1-methylpyridinium naphthalene-2sulfonate

R. K. Balachandar,^a S. Kalainathan,^a P. G. Aravindan,^b Shibu M. Eappen^c and Jiban Podder^d*

^aCentre for Crystal Growth, School of Advanced Sciences, VIT University, Vellore 632 014, India, ^bCrystal Growth and Crystallography Division, School of Advanced Sciences, VIT University, Vellore 632 014, India, ^cSophisticated Test and Instrumentation Centre (STIC), Cochin University PO, Cochin 682 022, Kerala, India, and ^dDepartment of Physics, Bangladesh University of Engineering and Technology, Dhaka 1000, Bangladesh

Correspondence e-mail: jpodder59@gmail.com

Received 23 February 2013; accepted 4 April 2013

Key indicators: single-crystal X-ray study; T = 296 K; mean σ (C–C) = 0.003 Å; R factor = 0.052; wR factor = 0.159; data-to-parameter ratio = 18.4.

In the title salt, $C_{16}H_{18}NO^+ \cdot C_{10}H_7O_3S^-$, the substituents attached to the central C=C bond adopt a *trans* conformation and the benzene and pyridinium rings are nearly coplanar, making a dihedral angle of 6.01 (9)°. The crystal structure features weak C-H···O hydrogen bonds and C-H··· π interactions.

Related literature

The title compound was synthesized as part of a search for materials with non-linear optical properties, see: Okada *et al.* (1990); Yang *et al.* (2007). For the synthesis of the pyridinium precursor, see: Okada *et al.* (1990). For related compounds, see: Ruiz *et al.* (2006); Murugavel *et al.* (2009).

Experimental

b = 17.2838 (16) Å
c = 11.8888 (10) Å
$\beta = 92.752 \ (4)^{\circ}$
V = 2236.4 (3) Å ³

Z = 4
Mo $K\alpha$ radiation
$\mu = 0.18 \text{ mm}^{-1}$

Data collection

Bruker APEXII CCD
diffractometer
Absorption correction: multi-scan
(SADABS; Bruker, 1999)
$T_{\min} = 0.932, T_{\max} = 0.949$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.052$ 291 parameters $wR(F^2) = 0.159$ H-atom parameters constrainedS = 1.03 $\Delta \rho_{max} = 0.52$ e Å $^{-3}$ 5354 reflections $\Delta \rho_{min} = -0.32$ e Å $^{-3}$

T = 296 K

 $R_{\rm int}=0.020$

 $0.40 \times 0.35 \times 0.30 \text{ mm}$

9220 measured reflections 5354 independent reflections

3678 reflections with $I > 2\sigma(I)$

Table 1

Hydrogen-bond geometry (Å, °).

Cg1 is the centroid of the C20-C24 ring.

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
C10−H10···O3 ⁱ	0.93	2.52	3.433 (3)	168
C11−H11···O3 ⁱⁱ	0.93	2.42	3.323 (3)	165
$C12 - H12B \cdots O4^{ii}$	0.96	2.58	3.488 (3)	159
$C15 - H15 \cdots O2^{iii}$	0.93	2.31	3.189 (3)	158
$C25 - H25 \cdots O3^{iv}$	0.93	2.45	3.323 (3)	156
$C14 - H14 \cdots Cg1^{v}$	0.93	2.84	3.686 (3)	152

Symmetry codes: (i) $x + \frac{1}{2}, -y + \frac{1}{2}, z + \frac{1}{2}$; (ii) $-x + \frac{1}{2}, y - \frac{1}{2}, -z + \frac{1}{2}$; (iii) x + 1, y, z; (iv) -x, -y + 1, -z; (v) $x - \frac{1}{2}, -y + \frac{1}{2}, z + \frac{1}{2}$.

Data collection: *APEX2* (Bruker, 2004); cell refinement: *APEX2* and *SAINT* (Bruker, 2004); data reduction: *SAINT* and *XPREP* (Bruker, 2004); program(s) used to solve structure: *SIR92* (Altomare *et al.*, 1993); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *ORTEP-3 for Windows* (Farrugia, 2012) and *Mercury* (Macrae *et al.*, 2006)'; software used to prepare material for publication: *SHELXL97*.

The authors acknowledge STIC, Cochin-682022, for singlecrystal XRD facility. The authors also thank VIT University for providing the research facilities.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BH2474).

References

- Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343–350.
- Bruker (1999). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Bruker (2004). APEX2, SAINT and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.
- Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.
- Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.
- Murugavel, S., SubbiahPandi, A., Srikanth, C. & Kalainathan, S. (2009). Acta Cryst. E65, o71.
- Okada, S., Masaki, A., Matsuda, H., Nakanishi, H., Kato, M., Muramatsu, R. & Otsuka, M. (1990). *Jpn. J. Appl. Phys.* **29**, 1112–1115.
- Ruiz, B., Yang, Z., Gramlich, V., Jazbinsek, M. & Günter, P. (2006). J. Mater. Chem. 16, 2839–2842.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Yang, Z., Jazbinsek, M., Ruiz, B., Aravazhi, S., Gramlich, V. & Günter, P. (2007). Chem. Mater. 19, 3512–3518.

supplementary materials

Acta Cryst. (2013). E69, o722 [doi:10.1107/S1600536813009240]

(E)-4-[2-(4-Ethoxyphenyl)ethenyl]-1-methylpyridinium naphthalene-2-sulfonate

R. K. Balachandar, S. Kalainathan, P. G. Aravindan, Shibu M. Eappen and Jiban Podder

Comment

The title compound was synthesized in the search for materials with non-linear optical properties (Okada *et al.*, 1990; Ruiz *et al.*, 2006; Yang *et al.*, 2007). In the title compound, $C_{16}H_{18}NO^+$. $C_{10}H_7O_2S^-$, the pyridinium and benzene rings in the cation make a dihedral angle of 6.01 (9)°. This cation possess *trans* configuration, which can be confirmed from the torsion angle C6—C7—C8—C9, -177.8 (2)°. The C7=C8 group links the benzene and pyridinium rings, with a characteristic bond length of 1.329 (3) Å. These features are similar to those found in related compounds (Ruiz *et al.*, 2006; Murugavel *et al.*, 2009). All deviations from expected values for bond lengths are within *ca.* 0.05 Å. The ethoxy group has C1 and O1 atoms slightly deviated from the mean plane of the benzene ring, by 0.130 (2) and 0.015 (2) Å, respectively. The anion and cation are placed almost perpendicular each to other, the mean planes making an angle of 81.72 (6) Å.

Regarding the crystal packing, weak C—H···O hydrogen bonds and C—H··· π interactions are stabilizing the crystal structure. The inter and intramolecular C—H···O interactions are formed mainly in cation-anion and anion-anion pairs. The pyridinium ring is significantly involved in the formation of C—H···O hydrogen bonds. Interestingly, there is a dimeric hydrogen bond between two symmetry-related anions (C25—H25···O3), and other hydrogen bonds exist between anions and cations (see Table 1). In addition, one C—H··· π interaction is observed between the cation and the anion: C14 —H14···Cg^{*i*} (Cg is the centroid of ring C20/C21/C22/C24/C25/C26; symmetry code *i*: -1/2+x,1/2-y,1/2+z; see Table 1).

Experimental

4-[2-(4-Ethoxy-phenyl)-vinyl-pyridinium iodide was obtained by condensation reaction between 1,4-dimethyl pyridinium iodide, which was prepared from 4-methylpyridine and methyl iodide, and 4-ethoxybenzaldehyde (all were taken in an equimolar ratio) in the presence of piperidine added as a catalyst. The solution was refluxed for 5 h, yielding the expected pyridinium salt after filtration (Okada *et al.*, 1990). Then the iodide salt was dissolved in water (20 ml) and aqueous sodium 2-naphthalenesulfonate was added. A yellow precipitate was formed, which was filtered off and dried in an oven at 413 K for 1 h (Ruiz *et al.*, 2006). Single crystals suitable for X-ray diffraction were obtained by successive recrystallization (three times) from a methanol/water (8:2 v/v) mixture.

Refinement

H atoms were placed in calculated positions and allowed to ride on their parent atoms, with C—H distances in the range 0.93–0.97 Å and with $U_{iso}(H) = 1.2U_{eq}(\text{parent C})$ for CH and CH₂ groups, and $U_{iso}(H) = 1.5U_{eq}(\text{parent C})$ for methyl groups.

Computing details

Data collection: *APEX2* (Bruker, 2004); cell refinement: *APEX2* and *SAINT* (Bruker, 2004); data reduction: *SAINT* and *XPREP* (Bruker, 2004); program(s) used to solve structure: *SIR92* (Altomare *et al.*, 1993); program(s) used to refine

structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *ORTEP-3 for Windows* (Farrugia, 2012) and Mercury (Macrae *et al.*, 2006)'; software used to prepare material for publication: *SHELXL97* (Sheldrick, 2008).

Figure 1

The molecular structure of the title compound, with 50% probability displacement ellipsoids.

Figure 2

The crystal packing of the title salt, showing weak C—H···O, π ··· π aromatic and C—H··· π interactions.

(E)-4-[2-(4-Ethoxyphenyl)ethenyl]-1-methylpyridinium naphthalene-2-sulfonate

Crystal	data
---------	------

 $C_{16}H_{18}NO^+C_{10}H_7O_3S^ M_r = 447.53$ Monoclinic, $P2_1/n$ Hall symbol: -P 2yn a = 10.896 (1) Å b = 17.2838 (16) Å c = 11.8888 (10) Å $\beta = 92.752 (4)^\circ$ $V = 2236.4 (3) \text{ Å}^3$ Z = 4

Data collection

Bruker APEXII CCD diffractometer Radiation source: fine-focus sealed tube Graphite monochromator ω and φ scan F(000) = 944 $D_x = 1.329 \text{ Mg m}^{-3}$ Mo K α radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 2935 reflections $\theta = 4.7-55.0^{\circ}$ $\mu = 0.18 \text{ mm}^{-1}$ T = 296 KBlock, yellow $0.40 \times 0.35 \times 0.30 \text{ mm}$

Absorption correction: multi-scan (*SADABS*; Bruker, 1999) $T_{min} = 0.932$, $T_{max} = 0.949$ 9220 measured reflections 5354 independent reflections 3678 reflections with $I > 2\sigma(I)$

$R_{\rm int} = 0.020$	k = -2
$\theta_{\rm max} = 28.3^{\circ}, \theta_{\rm min} = 2.5^{\circ}$	l = -1
$h = -14 \longrightarrow 14$	

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.052$ $wR(F^2) = 0.159$ *S* = 1.03 5354 reflections 291 parameters 0 restraints 0 constraints Primary atom site location: structure-invariant direct methods

2→11 5→9

Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring sites H-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + (0.0795P)^2 + 0.5684P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{\rm max} = 0.004$ $\Delta \rho_{\text{max}} = 0.52 \text{ e} \text{ Å}^{-3}$ $\Delta \rho_{\rm min} = -0.32 \text{ e} \text{ Å}^{-3}$

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
S 1	-0.13928 (4)	0.46834 (3)	0.22800 (4)	0.03758 (16)	
01	-0.22890 (17)	0.26974 (11)	0.70188 (18)	0.0674 (5)	
02	-0.17437 (15)	0.39399 (10)	0.27088 (15)	0.0621 (5)	
O3	-0.15214 (14)	0.47353 (9)	0.10620 (13)	0.0496 (4)	
O4	-0.19562 (15)	0.53257 (11)	0.28333 (15)	0.0614 (5)	
N1	0.67371 (16)	0.21961 (12)	0.39556 (15)	0.0439 (4)	
C1	-0.4210 (2)	0.24499 (16)	0.7732 (2)	0.0598 (7)	
H1A	-0.4018	0.2784	0.8361	0.090*	
H1B	-0.4758	0.2049	0.7956	0.090*	
H1C	-0.4596	0.2744	0.7129	0.090*	
C2	-0.3040 (2)	0.20899 (16)	0.7340 (2)	0.0569 (6)	
H2A	-0.2636	0.1794	0.7943	0.068*	
H2B	-0.3221	0.1747	0.6708	0.068*	
C3	-0.1151 (2)	0.25166 (14)	0.66518 (19)	0.0464 (5)	
C4	-0.0432 (2)	0.31443 (15)	0.6413 (2)	0.0565 (6)	
H4	-0.0741	0.3641	0.6501	0.068*	
C5	0.0732 (2)	0.30478 (14)	0.6047 (2)	0.0502 (6)	
Н5	0.1200	0.3480	0.5885	0.060*	
C6	0.12266 (19)	0.23083 (13)	0.59137 (17)	0.0382 (5)	
C7	0.24500 (19)	0.21686 (13)	0.55280 (17)	0.0396 (5)	
H7	0.2698	0.1654	0.5500	0.048*	
C8	0.3257 (2)	0.26921 (13)	0.52101 (18)	0.0431 (5)	
H8	0.3042	0.3211	0.5255	0.052*	
C9	0.44579 (19)	0.25042 (12)	0.47955 (17)	0.0389 (5)	
C10	0.4916 (2)	0.17538 (13)	0.47388 (19)	0.0457 (5)	
H10	0.4452	0.1343	0.4992	0.055*	
C11	0.6037 (2)	0.16135 (14)	0.4317 (2)	0.0487 (5)	
H11	0.6322	0.1107	0.4279	0.058*	
C12	0.7940 (2)	0.20278 (17)	0.3504 (2)	0.0599 (7)	
H12A	0.8180	0.2449	0.3036	0.090*	
H12B	0.7888	0.1562	0.3066	0.090*	

H12C	0.8540	0.1963	0.4115	0.090*
C13	0.0494 (2)	0.16808 (14)	0.6163 (2)	0.0469 (5)
H13	0.0801	0.1183	0.6082	0.056*
C14	-0.0689(2)	0.17784 (14)	0.6530(2)	0.0504 (6)
H14	-0.1166	0.1350	0.6692	0.060*
C15	0.6331 (2)	0.29222 (15)	0.4003 (2)	0.0551 (6)
H15	0.6818	0.3323	0.3752	0.066*
C16	0.5214 (2)	0.30866 (15)	0.4413 (2)	0.0559 (6)
H16	0.4953	0.3598	0.4438	0.067*
C17	0.02063 (18)	0.47725 (11)	0.26229 (16)	0.0335 (4)
C18	0.0604 (2)	0.46691 (12)	0.37619 (17)	0.0403 (5)
H18	0.0045	0.4519	0.4287	0.048*
C19	0.1800 (2)	0.47885 (13)	0.40938 (18)	0.0457 (5)
H19	0.2046	0.4733	0.4849	0.055*
C20	0.26751 (19)	0.49955 (13)	0.33080 (19)	0.0417 (5)
C21	0.3931 (2)	0.51132 (15)	0.3618 (2)	0.0567 (7)
H21	0.4194	0.5074	0.4372	0.068*
C22	0.4766 (2)	0.52831 (16)	0.2831 (3)	0.0651 (8)
H22	0.5590	0.5348	0.3049	0.078*
C23	0.10290 (18)	0.49640 (11)	0.18361 (16)	0.0341 (4)
H23	0.0761	0.5022	0.1086	0.041*
C24	0.22918 (18)	0.50750 (12)	0.21552 (17)	0.0367 (4)
C25	0.3178 (2)	0.52578 (13)	0.1359 (2)	0.0476 (5)
H25	0.2938	0.5309	0.0601	0.057*
C26	0.4380 (2)	0.53582 (16)	0.1703 (3)	0.0620 (7)
H26	0.4952	0.5479	0.1174	0.074*

Atomic displacement parameters $(Å^2)$

	U^{11}	U ²²	U ³³	U^{12}	U^{13}	U^{23}
S 1	0.0314 (3)	0.0373 (3)	0.0442 (3)	-0.0046 (2)	0.00312 (19)	-0.0015 (2)
01	0.0487 (10)	0.0612 (12)	0.0944 (14)	0.0025 (9)	0.0244 (9)	0.0087 (10)
O2	0.0515 (10)	0.0550 (11)	0.0799 (12)	-0.0178 (8)	0.0034 (9)	0.0173 (9)
03	0.0410 (8)	0.0584 (10)	0.0486 (9)	-0.0081 (7)	-0.0055 (6)	0.0012 (8)
O4	0.0419 (9)	0.0679 (12)	0.0748 (11)	0.0089 (8)	0.0046 (8)	-0.0213 (9)
N1	0.0359 (9)	0.0542 (12)	0.0424 (9)	-0.0050 (8)	0.0097 (7)	0.0004 (9)
C1	0.0369 (13)	0.0729 (19)	0.0707 (17)	0.0030 (12)	0.0144 (11)	-0.0028 (14)
C2	0.0491 (14)	0.0530 (16)	0.0687 (16)	-0.0018 (12)	0.0035 (12)	-0.0022 (13)
C3	0.0359 (11)	0.0528 (14)	0.0512 (13)	0.0054 (10)	0.0108 (9)	0.0038 (11)
C4	0.0502 (14)	0.0406 (13)	0.0805 (17)	0.0066 (11)	0.0215 (12)	0.0006 (12)
C5	0.0466 (13)	0.0386 (13)	0.0669 (15)	-0.0026 (10)	0.0168 (11)	0.0035 (11)
C6	0.0348 (10)	0.0409 (12)	0.0393 (10)	0.0007 (9)	0.0057 (8)	0.0026 (9)
C7	0.0403 (11)	0.0370 (11)	0.0419 (11)	0.0008 (9)	0.0057 (8)	0.0021 (9)
C8	0.0422 (12)	0.0369 (12)	0.0510 (12)	0.0015 (9)	0.0118 (9)	0.0027 (10)
C9	0.0380 (11)	0.0397 (12)	0.0395 (10)	-0.0029 (9)	0.0069 (8)	0.0030 (9)
C10	0.0423 (12)	0.0394 (12)	0.0568 (13)	-0.0086 (10)	0.0158 (10)	0.0021 (10)
C11	0.0465 (13)	0.0411 (13)	0.0597 (13)	-0.0033 (10)	0.0146 (10)	-0.0030 (11)
C12	0.0354 (12)	0.082 (2)	0.0635 (15)	-0.0020 (12)	0.0175 (10)	0.0022 (14)
C13	0.0407 (12)	0.0381 (12)	0.0628 (14)	0.0024 (10)	0.0105 (10)	0.0025 (11)
C14	0.0423 (12)	0.0450 (14)	0.0648 (14)	-0.0072 (10)	0.0114 (10)	0.0062 (11)

C15	0.0482 (14)	0.0476 (14)	0.0710 (16)	-0.0131 (11)	0.0179 (11)	0.0094 (12)
C16	0.0498 (14)	0.0390 (13)	0.0807 (17)	-0.0032 (11)	0.0209 (12)	0.0096 (12)
C17	0.0336 (10)	0.0283 (10)	0.0386 (10)	-0.0002 (8)	0.0004 (8)	-0.0022 (8)
C18	0.0456 (12)	0.0398 (12)	0.0358 (10)	0.0006 (9)	0.0050 (8)	0.0006 (9)
C19	0.0521 (13)	0.0468 (13)	0.0374 (10)	0.0054 (10)	-0.0070 (9)	-0.0005 (10)
C20	0.0391 (11)	0.0334 (11)	0.0517 (12)	0.0025 (9)	-0.0084 (9)	-0.0011 (10)
C21	0.0458 (13)	0.0534 (15)	0.0688 (15)	0.0015 (11)	-0.0197 (12)	-0.0015 (12)
C22	0.0343 (12)	0.0618 (17)	0.098 (2)	-0.0072 (12)	-0.0126 (13)	0.0035 (15)
C23	0.0341 (10)	0.0322 (10)	0.0359 (9)	-0.0023 (8)	0.0008 (7)	0.0015 (8)
C24	0.0341 (10)	0.0308 (10)	0.0449 (11)	-0.0008 (8)	-0.0004 (8)	0.0015 (9)
C25	0.0386 (12)	0.0463 (13)	0.0581 (13)	-0.0033 (10)	0.0036 (10)	0.0060 (11)
C26	0.0391 (13)	0.0583 (17)	0.089 (2)	-0.0074 (11)	0.0099 (12)	0.0050 (14)

Geometric parameters (Å, °)

S1—O2	1.4408 (17)	C10—H10	0.9300
S1—O4	1.4425 (17)	C11—H11	0.9300
S1—O3	1.4510 (16)	C12—H12A	0.9600
S1—C17	1.777 (2)	C12—H12B	0.9600
O1—C3	1.371 (3)	C12—H12C	0.9600
O1—C2	1.396 (3)	C13—C14	1.390 (3)
N1-C15	1.333 (3)	C13—H13	0.9300
N1-C11	1.346 (3)	C14—H14	0.9300
N1-C12	1.470 (3)	C15—C16	1.362 (3)
C1—C2	1.512 (3)	C15—H15	0.9300
C1—H1A	0.9600	C16—H16	0.9300
C1—H1B	0.9600	C17—C23	1.367 (3)
C1—H1C	0.9600	C17—C18	1.413 (3)
C2—H2A	0.9700	C18—C19	1.359 (3)
C2—H2B	0.9700	C18—H18	0.9300
С3—С4	1.375 (3)	C19—C20	1.412 (3)
C3—C14	1.382 (3)	C19—H19	0.9300
C4—C5	1.371 (3)	C20—C21	1.415 (3)
C4—H4	0.9300	C20—C24	1.420 (3)
С5—С6	1.399 (3)	C21—C22	1.368 (4)
С5—Н5	0.9300	C21—H21	0.9300
C6—C13	1.387 (3)	C22—C26	1.392 (4)
С6—С7	1.451 (3)	C22—H22	0.9300
С7—С8	1.329 (3)	C23—C24	1.423 (3)
С7—Н7	0.9300	С23—Н23	0.9300
С8—С9	1.457 (3)	C24—C25	1.420 (3)
С8—Н8	0.9300	C25—C26	1.365 (3)
C9—C16	1.391 (3)	C25—H25	0.9300
C9—C10	1.393 (3)	C26—H26	0.9300
C10—C11	1.364 (3)		
O2—S1—O4	113.52 (11)	N1—C12—H12A	109.5
O2—S1—O3	113.19 (10)	N1—C12—H12B	109.5
O4—S1—O3	112.62 (11)	H12A—C12—H12B	109.5
O2—S1—C17	105.67 (10)	N1—C12—H12C	109.5

O4—S1—C17	105.23 (10)	H12A—C12—H12C	109.5
O3—S1—C17	105.68 (9)	H12B—C12—H12C	109.5
C3—O1—C2	117.9 (2)	C6-C13-C14	121.6 (2)
C15—N1—C11	119.78 (19)	С6—С13—Н13	119.2
C15—N1—C12	120.4 (2)	C14—C13—H13	119.2
C11—N1—C12	119.9 (2)	C3—C14—C13	119.5 (2)
C2—C1—H1A	109.5	C3—C14—H14	120.2
C2—C1—H1B	109.5	C13—C14—H14	120.2
H1A—C1—H1B	109.5	N1—C15—C16	121.0 (2)
C2—C1—H1C	109.5	N1—C15—H15	119.5
H1A—C1—H1C	109.5	C16—C15—H15	119.5
H1B—C1—H1C	109.5	C15—C16—C9	121.3 (2)
O1—C2—C1	106.8 (2)	C15—C16—H16	119.4
O1—C2—H2A	110.4	С9—С16—Н16	119.4
C1—C2—H2A	110.4	C23—C17—C18	120.35 (18)
O1—C2—H2B	110.4	C23—C17—S1	122.14 (15)
C1—C2—H2B	110.4	C18—C17—S1	117.46 (15)
H2A—C2—H2B	108.6	C19—C18—C17	120.31 (19)
O1—C3—C4	114.7 (2)	C19—C18—H18	119.8
O1—C3—C14	125.7 (2)	C17—C18—H18	119.8
C4—C3—C14	119.5 (2)	C18—C19—C20	120.97 (19)
C5—C4—C3	120.9 (2)	C18—C19—H19	119.5
C5—C4—H4	119.5	C20—C19—H19	119.5
C3—C4—H4	119.5	C19—C20—C21	122.6 (2)
C4—C5—C6	121.0 (2)	C19—C20—C24	119.10 (18)
С4—С5—Н5	119.5	C21—C20—C24	118.3 (2)
С6—С5—Н5	119.5	C22—C21—C20	121.3 (2)
C13—C6—C5	117.5 (2)	C22—C21—H21	119.4
C13—C6—C7	119.0 (2)	C20—C21—H21	119.4
C5—C6—C7	123.6 (2)	C21—C22—C26	120.0 (2)
C8—C7—C6	127.4 (2)	C21—C22—H22	120.0
С8—С7—Н7	116.3	C26—C22—H22	120.0
С6—С7—Н7	116.3	C17—C23—C24	120.52 (17)
C7—C8—C9	124.2 (2)	С17—С23—Н23	119.7
С7—С8—Н8	117.9	С24—С23—Н23	119.7
С9—С8—Н8	117.9	C25—C24—C20	119.16 (19)
C16—C9—C10	116.0 (2)	C25—C24—C23	122.15 (18)
C16—C9—C8	120.3 (2)	C20—C24—C23	118.69 (18)
С10—С9—С8	123.65 (19)	C26—C25—C24	120.2 (2)
C11—C10—C9	120.9 (2)	С26—С25—Н25	119.9
C11—C10—H10	119.6	С24—С25—Н25	119.9
C9—C10—H10	119.6	C25—C26—C22	121.2 (2)
N1-C11-C10	121.0 (2)	С25—С26—Н26	119.4
N1-C11-H11	119.5	C22—C26—H26	119.4
C10-C11-H11	119.5		

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	$D \cdots A$	D—H··· A
С23—Н23…О3	0.93	2.54	2.912 (2)	105
C10—H10…O3 ⁱ	0.93	2.52	3.433 (3)	168
С11—Н11…ОЗ"	0.93	2.42	3.323 (3)	165
C12—H12 <i>B</i> ····O4 ⁱⁱ	0.96	2.58	3.488 (3)	159
С15—Н15…О2ііі	0.93	2.31	3.189 (3)	158
C25—H25…O3 ^{iv}	0.93	2.45	3.323 (3)	156
C14—H14····Cg1 ^v	0.93	2.84	3.686 (3)	152

Symmetry codes: (i) x+1/2, -y+1/2, z+1/2; (ii) -x+1/2, y-1/2, -z+1/2; (iii) x+1, y, z; (iv) -x, -y+1, -z; (v) x-1/2, -y+1/2, z+1/2.