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Abstract

Allostatic load is a commonly used metric of health risk based on the hypothesis that recurrent exposure to environmental
demands (e.g., stress) engenders a progressive dysregulation of multiple physiological systems. Prominent indicators of
response to environmental challenges, such as stress-related hormones, sympatho-vagal balance, or inflammatory
cytokines, comprise primary allostatic mediators. Secondary mediators reflect ensuing biological alterations that accumulate
over time and confer risk for clinical disease but overlap substantially with a second metric of health risk, the metabolic
syndrome. Whether allostatic load mediators covary and thus warrant treatment as a unitary construct remains to be
established and, in particular, the relation of allostatic load parameters to the metabolic syndrome requires elucidation.
Here, we employ confirmatory factor analysis to test: 1) whether a single common factor underlies variation in physiological
systems associated with allostatic load; and 2) whether allostatic load parameters continue to load on a single common
factor if a second factor representing the metabolic syndrome is also modeled. Participants were 645 adults from Allegheny
County, PA (30–54 years old, 82% non-Hispanic white, 52% female) who were free of confounding medications. Model
fitting supported a single, second-order factor underlying variance in the allostatic load components available in this study
(metabolic, inflammatory and vagal measures). Further, this common factor reflecting covariation among allostatic load
components persisted when a latent factor representing metabolic syndrome facets was conjointly modeled. Overall, this
study provides novel evidence that the modeled allostatic load components do share common variance as hypothesized.
Moreover, the common variance suggests the existence of statistical coherence above and beyond that attributable to the
metabolic syndrome.
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Introduction

Measured levels of seemingly disparate physiological processes

tend to covary in populations and to aggregate within individuals.

Two widely-used, but interrelated, metrics have been proposed to

express shared physiologic variance in the context of health risk.

The first is called the metabolic syndrome and figures prominently

in cardiovascular disease and diabetes risk epidemiology. The

metabolic syndrome captures the co-occurrence of several

cardiometabolic abnormalities, which include insulin resistance,

hypertriglyceridemia, low high-density lipoprotein cholesterol

concentration, central adiposity, and elevated blood pressure

(BP) [1–4]. These risk factors covary in populations of varying age,

gender and ethnicity [5–9]and, when combined in a single index,

strongly predict incident cardiovascular disease and diabetes,

disease course, and mortality [5,7,8,10,11]. Increasing evidence

from the fields of genomics and metabolomics also identifies

common pathways that contribute to multiple components of the

metabolic syndrome [12–17]. Thus, considering the metabolic

syndrome as a distinct entity has epidemiologic justification,

although it remains unclear whether one or more pathways drive

the observed covariation of these risk factors.

In contrast, the second metric, allostatic load, stems from

a conceptual model of biological adaptations to cumulative

environmental demands (allostasis) [18,19]. It is hypothesized that

recurrent activation of autonomic and neuroendocrine responses,

elicited by exposure to stressful situations and varying in extent,

frequency, or duration, engender a progressive dysregulation of

multiple physiological systems. Proponents of the allostatic model

distinguish between two components of allostasis, referred to as

primary and secondary mediators. Prominent indicators of

response to environmental challenges, such as the release of

stress-related hormones (e.g., catecholamines, cortisol), a shift in

sympatho-vagal balance, or the production of inflammatory

cytokines, comprise the primary allostatic mediators. Secondary

mediators reflect ensuing biological alterations that accumulate

over time and confer risk for clinical disease. These include many

of the same factors that define the metabolic syndrome. Allostatic

theory posits a centrally-mediated orchestration of environmen-
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tally-induced biological adaptations, so that the index of allostatic

burden (allostatic load) is typically constructed as a simple

aggregate of primary and secondary mediators [20,21]. Such

summary scores have been shown to predict cognitive and physical

functioning [21,22], incident cardiovascular disease [20,21] and

all-cause mortality [20,23]_ENREF_16. Further, the few studies

that have examined the primary and secondary components of

allostatic load separately suggest that primary mediators may

predict all-cause mortality independently of variables related to the

metabolic syndrome [20,23]. Whether covariation among the

various indicators contributing to allostatic load warrants their

treatment as a unitary construct remains to be established,

however, and in particular, the relation of primary allostatic

mediators to secondary mediators (e.g., metabolic syndrome)

requires elucidation.

Confirmatory factor analysis (CFA) is a hypothesis-driven

statistical technique developed to determine whether associations

among multiple variables conform to one or another hypothesized

underlying structure [24]. CFA models are comprised of a series of

simultaneous regression equations, and the fit of these equations to

observed data can be tested using model fit statistics [24,25].

Within these models, one or more first-order factors can be

posited. Such factors could reflect, for instance, associations

among several closely related (and hence, highly intercorrelated)

variables within a common physiological system (e.g., systolic and

diastolic blood pressure; central adiposity and body mass index).

First-order factors may also covary to yield one or more second-

order factors. Such second-order factors may be used to describe

association across measures from different physiological systems

(e.g., a single factor underlying both a first-order blood pressure

factor, defined by systolic and diastolic blood pressure, and a first-

order adiposity factor, defined by BMI and waist circumference).

CFA has shown prior utility in examining the mathematical

structure underlying metabolic syndrome [26–32]. In applying

CFA to the standard elements of the metabolic syndrome, for

instance, first-order factors representing each of the four compo-

nent systems (namely, insulin resistance, obesity, dyslipidemia and

elevated BP) could be unified under a single second-order factor,

labeled ‘‘metabolic syndrome’’, and this hierarchical structure

provided a good fit across different samples, and in men and

women [29–32]. Evidence of a single common factor underlying

interindividual variability in these several physiological systems

provides additional biometric validation for the metabolic

syndrome as a coherent entity.

To our knowledge, this statistical methodology has not been

applied to measures associated with allostatic load. Good model fit

with a single, common factor would provide novel, empirical

evidence of allostatic load as a unitary construct. Further, CFA can

be used to examine whether components of allostatic load

continue to covary when the metabolic syndrome is conjointly

modeled. Accordingly, we employ CFA in the present study to test:

1) whether a single common factor underlies variation in

physiological systems associated with allostatic load (as available

in the present study); and 2) whether allostatic load parameters

continue to load on a single common factor if a second factor

representing the metabolic syndrome is also modeled.

Methods

Participants
Data for the present study were derived from the University of

Pittsburgh Adult Health and Behavior project, a registry of

behavioral and biological measurements on Non-Hispanic Cau-

casian and African American individuals (30–54 years old)

recruited via mass-mail solicitation from communities of south-

western Pennsylvania, USA (principally Allegheny County)[31,33–

36]. Exclusion criteria for entry into the parent study included

a reported history of atherosclerotic cardiovascular disease,

chronic kidney or liver disease, cancer treatment in the preceding

year, neurological disorders, or psychotic illness. Other exclusions

included pregnancy and the use of insulin, nitrates, glucocorticoid,

antiarrhythmic, psychotropic, or prescription weight-loss medica-

tions. This study was approved by the University of Pittsburgh

Institutional Board. Written informed consent was obtained in

accordance with approved protocol guidelines of the University of

Pittsburgh Institutional Review Board.

Additional exclusion criteria for the current analyses included

use of antihypertensives, oral hypoglycemics, cholesterol-lowering

medications, immunosuppressants, cold medications or antibiotics.

Of the 1007 members of the parent project who met the above

criteria, circulating interleukin-6 (IL-6) and C-reactive protein

(CRP) concentrations were available for a subsample of 723

individuals. Of these, 73 individuals with IL-6 levels greater than

10 pg/ml or CRP levels greater than 10 mg/L, suggesting the

presence of acute illness (e.g., common respiratory infections), and

5 individuals who were missing components of the metabolic

syndrome were dropped, resulting in a final sample of 645

individuals.

Measures
The measures included in the present analysis were systolic and

diastolic blood pressure, body mass index (BMI) and waist

circumference, fasting glucose, insulin, high-density lipoprotein

cholesterol, triglycerides, plasma IL-6 and CRP, and paced and

unpaced heart rate variability at rest. Participants were asked to

fast overnight for 8 hours and avoid exercise for 12 hours and

alcohol for 24 hours before coming into the laboratory in the

morning to have blood drawn. At this visit, a nurse completed

a medical history and medication use interview, obtained

measurements of height and weight for the determination of

BMI (kg/m2), took two manual BP measurements, obtained

a measurement of waist circumference, and drew a 40-mL blood

sample. BP measurements were made after the subject was seated

for 20 minutes with the arm supported, using the appropriate cuff

size for the subject’s arm circumference. Serum glucose, HDL-

cholesterol, and triglyceride concentrations were measured by the

Heinz Nutrition Laboratory, School of Public Health, University

of Pittsburgh, which has met criteria for the Centers for Disease

Control and Prevention – National Heart, Lung, and Blood

Institute Standardization Program since 1982. Insulin concentra-

tion was measured in duplicate with a radioimmunoassay (Code-a-

count; Diagnostic Products, Inc, Los Angeles, CA). IL-6 levels

were determined in duplicate by high sensitivity quantitative

sandwich enzyme immunoassay kit (R & D Systems, Minneapolis,

MN) according to manufacturer’s directions. CRP was measured

at the University of Vermont’s Laboratory of Clinical Bio-

chemistry Research with the BNII nephelometer from Dade

Behring utilizing a particle enhanced immunonephelometric assay.

These methods were previously described in detail by Marsland

and colleagues, 2010 [31].

To measure resting cardiac vagal activity, heart rate was

recorded continuously using a 2-lead electrocardiogram (ECG)

attached bilaterally to the wrists. While seated in a temperature

and sound-controlled chamber and after a 10-minute rest period,

two successive 5-minute, resting ECG recordings were obtained.

During the first, patients were instructed to relax and breathe at

a comfortable rate (unpaced breathing). During the second (paced

breathing), participants were asked to breathe naturally in

Factor Structure of Allostatic Load
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response to two auditory tones signaling them to inhale and

exhale. Respiration was paced at a rate of 11 breaths/minute

based on pilot observations that affirmed this is a comfortable rate

for most people. Respiration was monitored throughout using

a thoracic strain-gauge. ECG signals were digitized at a sampling

rate of 1000 Hz (LabView acquisition software, National Instru-

ments Corporation, Austin, Texas). Before calculating estimates of

HRV, the digitalized ECG signals were examined and artifactual

detections of R-wave occurrences were corrected. All procedures

and analyses followed Task Force guidelines [37].

The sequential cardiac interbeat interval time series from the

paced and unpaced resting baselines were assessed to determine

the component frequencies using a point process analysis de-

veloped at the University of Amsterdam, PSPAT [38]. This

program yields results similar to a Fourier decomposition, but does

not assume a continuous underlying generator function. Concep-

tually, the analysis is consistent with the integral-pulse frequency-

modulation approach used in recent modeling of the neural basis

of HRV [39]. High frequency HRV (HFHRV) was defined as

0.15 Hz–0.39 Hz. The square root of the mean of the squares of

successive normal-to-normal interval differences (RMSSD) was

also calculated for the measurements obtained under paced and

unpaced respiration.

CRP, insulin, glucose, triglycerides, RMSSD and HFHRV

values were log normal (base e) transformed to better approximate

a normal distribution. Reciprocal transformation was applied to

normalize raw score distributions of the IL-6 values.

Data Analysis
Confirmatory factor analysis was conducted based on Bentler

and Weeks’ model [24] using the EQS program [25]. Tests of

significance were set at.05 (two-tailed). The ratio of cases to

variables was over 50:1, and the ratio of cases to parameters was

16:1. Both were sufficient for conducting CFA. A chi-square test

was used to evaluate the congruency between the hypothesized

model and empirical data, although it is well recognized that chi-

square tests are sensitive to large sample size [40,41]. As such, 3

other model fit indices were used: comparative fit index (CFI; 0.95

or above; indicative of good fit), average absolute standardized

residuals (0.05 or less; indicative of good fit), and root mean square

error of approximation (RMSEA; 0.05 or less; indicative of good

fit) [25].

Age, sex and race were statistically adjusted in each analysis. As

models including paced or unpaced respiration produced similar

results and 20 participants were missing data for unpaced

respiration, we present models with paced respiration in the

manuscript. A model substituting unpaced respiration is presented

in Figure S1. The first step was a confirmatory factor analysis of

the metabolic syndrome components. Fasting insulin and glucose,

BMI and waist circumference, fasting HDL-cholesterol and

triglycerides, SBP and DBP were arranged by physiological system

to load on four first-order factors, ‘‘insulin resistance’’, ‘‘adiposity’’,

‘‘dyslipidemia’’, and ‘‘BP’’. The model included a single second-

order latent factor, hypothesized to underlie common variability

among the four first-order factors, consistent with the conceptu-

alization of the metabolic syndrome. We have published this

model previously [31] but present it here as it forms the basis for

the later models.

In the second model, we added an inflammation factor, defined

by IL-6 and CRP, and a vagal tone factor, defined by HFHRV

and RMSSD during paced respiration, to the metabolic syndrome

model from above to determine whether all variables included in

the conceptualization of allostatic load and available in this study

were associated with a single second-order factor, which we label

the ‘‘allostatic load’’ factor.

In the third model, we modeled two second-order factors and

allowed the multiple first order factors to load on both an

‘‘allostatic load’’ factor, comprised of blood pressure, lipids,

adiposity, insulin resistance, inflammation and HRV factors, and

a ‘‘metabolic syndrome’’ factor, comprised of blood pressure,

lipids, adiposity and insulin resistance factors. This model tests

whether the data are consistent with the presence of a factor

representing allostatic load while conjointly modeling a factor

representing metabolic syndrome, as previously defined. Good

model fit of this two factor model would indicate distinct

covariance between metabolic syndrome and allostatic load

variables.

As systemic inflammation is strongly associated with the

metabolic syndrome and, indeed, has been proposed as a compo-

nent of the syndrome [31], in the fourth model we examined

whether any residual correlation independent of the metabolic

syndrome may be attributed solely to inflammation. Similarly, in

a fifth model, we examined whether any residual correlation

independent of the metabolic syndrome may be attributed solely

to vagal tone.

Results

Sample Characteristics
Demographic characteristics of the sample and descriptive

statistics of the metabolic, vagal and inflammatory variables are

displayed in Table 1. Participants were on average 45 years of age,

82% non-Hispanic white, 52% female and 16% current smokers.

The sample was on average in the overweight range with average

serum lipids and blood pressures in the normal range.

Table 1. Descriptive statistics of participants’ demographic
and biomedical characteristics.

Mean or % SD

Age 44.65 6.55

Sex (male/female) 48%/52%

Race (European-Americans/African Americans) 82%/18%

Education (years) 15.60 2.74

Current smokers 15.8%

Insulin (uU/ml) 12.79 6.53

Glucose (mg/dl) 95.81 16.68

Body mass index (kg/m2) 27.16 5.38

Waist circumference (inches) 35.85 5.87

High density lipoprotein cholesterol (mg/dl) 54.05 14.19

Triglycerides (mg/dl) 120.55 86.93

Systolic blood pressure (mmHg) 116.35 13.27

Diastolic blood pressure (mmHg) 78.50 9.43

Interleukin-6 (pg/ml) 1.79 1.68

C-reactive protein (mg/L) 1.65 1.79

Paced RSSMD 36.96 29.83

Unpaced RSSMD 36.05 23.17

Paced high frequency band 63484.76 3911.84

Unpaced high frequency band 33016.56 1994.70

doi:10.1371/journal.pone.0047246.t001
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Model 1: Do Components of the Metabolic Syndrome
Load on a Single Common Factor?
As presented previously [31], CFA of the metabolic syndrome

provided a reasonably good fit to the data in this sample (Figure 1).

The CFI of the model was 0.98, with the average absolute

standardized residual = 0.02 and RMSEA=0.08. Although the

statistically significant chi-square test (x2 = 57.51, df = 12, N= 645,

p,0.01) indicated some difference between the estimated and

observed variance-covariance matrices; it is well known that x2

statistics are sensitive to large sample sizes and it is recommended

to employ multiple fit statistics in this context [40,41]. The

measured variables tended to load strongly on their respective

factors, with the potential exception of the loading of glucose on

the insulin resistance factor. Each of the subfactors loaded

significantly on the second-order factor. The good fit for the

metabolic syndrome model provides a strong basis from which to

evaluate whether the factor structure underlying other potentially

correlated variables is independent of variance attributable to the

metabolic syndrome.

Model 2: Do Allostatic Load Components Load on
a Single Common Factor?
In the next model, we determined whether an inflammatory

factor (defined by IL-6 and CRP), a vagal factor (defined by

HFHRV and RMSSD under paced respiration at rest), and

‘‘insulin resistance’’, ‘‘adiposity’’, ‘‘dyslipidemia’’, and ‘‘BP’’

factors (as defined above) could all be represented with a single

common underlying factor (Figure 2). The CFI of the model was

0.97, with the average absolute standardized residual = 0.03 and

RMSEA=0.06, indicative of good model fit. Again, although the

statistically significant chi-square test (x2 = 145.05, df = 42,

N= 645; p,0.001) indicated some difference between the

estimated and observed variance-covariance matrices, this was

likely due to large sample size. IL-6 and CRP showed a moderate

to strong association with the ‘‘inflammation’’ factor. The path

coefficient for the association between inflammation and the

common, second-order factor was substantial. For the vagal

measures, HFHRV and RMSSD loaded strongly on a ‘‘vagal

tone’’ factor. This factor, in turn, was moderately associated with

the second-order factor. The negative path coefficient indicated

that higher levels of the metabolic and inflammatory parameters

were associated with lower vagal tone. The model including

HFHRV and RMSSD during unpaced respiration produced

similar results and is presented in Figure S1. Overall, these results

indicated that a single common factor underlies variation in

allostatic load components, as available in the present study.

Model 3: Do Allostatic Load Parameters Load on a Single
Common Factor Independent of the Metabolic
Syndrome Factor?
In the third model, we aimed to determine whether there was

evidence for covariation among the allostatic load parameters

when a metabolic syndrome factor was conjointly modeled

(Figure 3). Overall, the model with two second-order factors

Figure 1. Model 1: Factor structure of the metabolic syndrome. Age, sex and race covaried; relevant medications excluded. MS – Second-
order metabolic syndrome factor; IR – insulin resistance factor; boxes represent indicator variables and circles reflect latent factors. x2 = 57.51, df = 12,
p,0.001, N= 645; CFI = .98, average absolute standardized residuals = .02, RMSEA= .08.
doi:10.1371/journal.pone.0047246.g001
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provided a good fit to the data with CFI, average absolute

standardized residual and RMSEA within acceptable ranges

(x2 = 125.00, df = 38, p,0.001, N= 645; CFI= .97, average

absolute standardized residuals = .02, RMSEA= .06). This result

provides evidence for distinct factors representing allostatic load

and metabolic syndrome parameters.

As Model 2 is nested within Model 3, we can use the change in

chi-square between the models to determine which model provides

a better fit to the data. The improved fit for Model 3 relative to

Model 2 (Dx2 (4) = 20.05, p,0.01), suggests that a model with two

second-order factors, representing both allostatic load and

metabolic syndrome, is significantly more consistent with the

observed data that a one second-order factor model. This provides

further evidence for a factor representing allostatic load, in-

dependent of a metabolic syndrome factor, but also raises the

possibility that two constructs underlie allostatic load as repre-

sented by this set of indicators.

We note that when two second-order factors are conjointly

modeled, the allostatic load second-order factor is represented by

all putative components. Although the metabolic syndrome

residual factor has components of cardiometabolic risk, un-

expectedly, blood pressure does not contribute meaningfully and

the weight factor has an anomalous loading. This occurs despite

factor loading consistent with theory when the metabolic

syndrome is modeled independently (Figure 1). This result likely

suggests that the allostatic load and metabolic syndrome con-

structs, as defined in this paper, are strongly interrelated and,

despite evidence of independent constructs from the overall

change in model fit, individual path co-efficients may be estimated

with some uncertainty.

Supplementary Analyses: Is the ‘‘Allostatic Load’’ Factor
Solely Attributable to Inflammation or Vagal Tone?
Model 3 shows that allostatic load is not just synonymous with

the metabolic syndrome, but is the residual covariance of risk

indicators attributable only to the inclusion of inflammation, or

alternatively, only to the inclusion of vagal tone? In Model 4

(Figure S2), we built upon Model 3 to determine whether the

second-order factor representing allostatic load parameters might

be attributable to inflammation alone. Forcing the second-order

factor to reflect inflammation only resulted in acceptable model fit

statistics (CFI = .97, average absolute standardized residuals = .03,

RMSEA= .06) but a significant decrement in model fit relative to

Model 3 (Dx2 (1) = 16.44, p,0.001). This indicated that a model

in which the second-order factor was defined by both in-

flammation and vagal tone first-order factors fit the data better

than a second-order factor defined by inflammation alone. Thus,

inflammation did not fully account for additional covariation

between allostatic load parameters independent of the covariation

among metabolic parameters.

In Model 5, we determined whether covariation between

allostatic load parameters, independent of the metabolic syn-

drome, is solely attributable to vagal tone. Defining the second-

order factor by vagal tone alone resulted in a significant decrement

Figure 2. Model 2: Single second-order factor model: common factor underlying allostatic load parameters. Age, sex and race
covaried; relevant medications excluded. AL – Second-order allostatic load factor; IR – insulin resistance factor; boxes represent indicator variables
and circles reflect latent factors. x2 = 145.05, df = 42, p,0.001, N = 645; CFI = .97, average absolute standardized residuals = .03, RMSEA= .06.
doi:10.1371/journal.pone.0047246.g002
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in model fit (Dx2 (1) = 182.52, p,0.001) and also yielded

unacceptable overall model fit statistics (CFI = .92, average

absolute standardized residuals = .06, RMSEA= .10). As such,

factor loadings for Model 5 are not presented. The significant

decrement in model fit indicated that a model in which the

second-order factor was defined by both inflammation and vagal

tone first-order factors fit the data better than a second-order

factor defined by vagal tone alone. Like inflammation, then, vagal

tone did not fully account for the residual covariation among

allostatic load indicators (when adjusted for a second-order factor

reflecting the metabolic syndrome), indicating that optimal

structure is attained by inclusion of both vagal tone and

inflammatory markers.

Discussion

The present study sought to determine: a) whether the pattern

of covariation among various indicators of allostatic load merits

interpretation of allostatic load as a unitary construct; and b) the

relation of such a construct to characteristics of the metabolic

syndrome. Our results support a single, second-order factor

underlying the allostatic load components available in this study

(metabolic, inflammatory and vagal measures). Further, the

common, latent factor reflecting covariation among allostatic load

components persisted when a second latent factor representing

metabolic syndrome facets was conjointly modeled. Thus, this

study demonstrates that allostatic load components share common

variance, as hypothesized [18,19], and that this common variance

does not simply reflect correlation of allostatic load components

with the metabolic syndrome. Unlike most prior studies, we

utilized CFA to define allostatic load and metabolic syndrome.

This measurement model approach garners several analytic

advantages, including the use of the continuous distributions of

the measured parameters and lack of reliance on thresholds, which

may be sample-specific or lack validation. Further, the magnitude

of factor loadings is determined empirically and does not rely on

an assumption that all component measures contribute with equal

weighting. Most notably, CFA can also provide an empirical test of

whether a hypothesized model structure is consistent with the

patterns of association that are obtained in observed data.

_ENREF_37 Future applications of CFA in relation to the metric

of allostatic load could include the use of allostatic load factors to

predict age-related outcomes (e.g., cognitive and physical function,

cardiovascular disease) and development of scoring systems of

potential clinical utility [42].

It is notable that although one second-order factor unifying the

first-order factors of blood pressure, dyslipidemia, insulin re-

sistance, adiposity, inflammation and vagal tone provided a good

fit to the data, the model incorporating two second-order factors –

one reflecting all of the allostatic load components and the second

reflecting metabolic syndrome components only – did provide

Figure 3. Model 3: Two second-order factor model: allostatic load and metabolic syndrome factors. Age, sex and race covaried; relevant
medications excluded. MS resid.: Second-order metabolic syndrome factor with allostatic load parameters simulataneously modeled; AL resid.:
Second-order allostatic load factor with metabolic syndrome pathways simultaneously modeled; IR – insulin resistance factor; boxes represent
indicator variables and circles reflect latent factors. x2 = 125.00, df = 38, p,0.001, N = 645; CFI = .97, average absolute standardized residuals = .02,
RMSEA= .06. Dx2 (4) = 20.05, p,0.01.
doi:10.1371/journal.pone.0047246.g003
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a significantly improved fit. This result indicates that residual

variance in allostatic load parameters form a common factor even

when adjusted for the metabolic syndrome. Nonetheless, it also

raises the possibility that two constructs may underlie variability in

measures commonly used to index allostatic load, at least for the

measures available in this study. It is plausible that one factor may

represent primary mediators, such as stress-related hormones,

sympatho-vagal balance and inflammatory cytokines, whereas the

second factor may reflect secondary mediators that typically

emerge over time, such as progressive changes in cardiovascular

and metabolic function. Further validation studies, optimally

including additional measures, both of primary mediators not

available here (e.g., cortisol, epinephrine and norepinephrine) and

secondary mediators not subsumed by the metabolic syndrome

(e.g., peak expiratory flow [43]), will help to clarify whether

a model incorporating two second-order factors holds as well

across a broader array of physiological parameters.

We note, however, that the measures of allostatic load available

in this study could be construed as an extended cardiometabolic

risk profile, and not a distinct construct per se. Systemic

inflammation, in particular, is closely related to adipose tissue

health and may play a primary pathogenic role in the metabolic

syndrome [44]. Further, the inverse association between vagal

tone and markers of systemic inflammation observed in this study

could be consistent with the ‘‘cholinergic anti-inflammatory

pathway’’ [45,46], which describes bi-directional communication

between vagus nerve fibers and inflammatory mediators observed

in animal models [46–48] and epidemiologic studies [49–52]. This

again underscores the need for additional studies with greater

representation of the multiple physiological systems currently

hypothesized to represent allostatic load, to test whether allostatic

load persists independent of a broad definition of cardiometabolic

risk.

Evidence from genomics and metabolomics is beginning to

characterize genetic pleitropy and common biology underlying

metabolic syndrome [12,13,15–17]. The cluster of fatty acid

desaturase genes 1–3 (FADS1-3), which has been associated with

lipids [53], glucose and insulin [54,55] and resting heart rate [56]

in genome-wide association studies, is now an established predictor

or polyunsaturated fatty acids and their ratios in metabolomic

studies [17,57,58]. Glucokinase (hexokinase 4) regulator (GCKR),

a pleiotropic risk locus associated with fasting glucose, insulin and

triglyceride levels [15], is strongly associated with mannose,

a derivative of glucose involved in glycosylation, and mannose:-

glucose ratio [17]. Adiponectin, a marker of adipose tissue health,

predicts all facets of the metabolic syndrome as well as systemic

inflammation [12,14].

It is hypothesized that chronic stress and associated over-

activation of stress hormones and pro-inflammatory cytokines

affect a range of cellular and metabolic activities in allostatic load

[18,19,43]. Genomic and metabolomic studies could establish

overlapping and distinct pathways contributing to metabolic

syndrome and allostatic load. A greater understanding of the

structure of these constructs through CFA modeling provides an

important basis for such research.

The present findings should be interpreted in the context of

a number of limitations. First, our study is cross-sectional, which

precludes causal interpretation of relationships among factors or

indication of stability or change in model structure over time. In

addition, our study was limited to European- and African-

Americans, potentially limiting generalizability. Finally, the

conceptual model (allostasis) from which allostatic load is derived

posits several primary mediators, some of which (e.g., cortisol,

catecholamines) were not available in this data set.

Despite these shortcomings, our findings demonstrate that

peripheral markers of systemic inflammation, vagal tone and

components of the metabolic syndrome load on a common latent

factor. In addition, these measures continued to load on this

common, latent factor when conjointly modeled with a second

latent factor reflecting facets of the metabolic syndrome. These

observations provide novel support for the common variance of

diverse physiological systems postulated in the construct of

allostatic load.

Supporting Information

Figure S1 Single second-order factor model: common factor

underlying allostatic load parameters including vagal tone during

unpaced respiration. Age, sex and race were covaried; relevant

medications excluded. AL – Second-order allostatic load factor; IR

– insulin resistance factor; boxes represent indicator variables and

circles reflect latent factors. x2 = 161.28, df = 42, p,0.001,

N= 625; CFI= .96, average absolute standardized residuals = .03,

RMSEA= .07.

(TIF)

Figure S2 Model 4: Two second-order factor model: residual

inflammation and metabolic syndrome factors. Age, sex and race

were covaried and relevant medications excluded; relevant

medications excluded. MS resid. – Second-order metabolic

syndrome factor simultaneously modeled with an inflammation

factor; IR – insulin resistance factor; boxes represent indicator

variables and circles reflect latent factors. x2 = 141.44, df = 39,

p,0.001, N=645; CFI = .97, average absolute standardized

residuals = .03, RMSEA= .06. Dx2(1) = 16.44, p,0.001.

(TIF)
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