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Abstract
Sexual differences in morphology, ranging from subtle to extravagant, occur commonly in

many animal species. These differences can encompass overall body size (sexual size di-

morphism, SSD) or the size and/or shape of specific body parts (sexual body component di-

morphism, SBCD). Interacting forces of natural and sexual selection shape much of the

expression of dimorphism we see, though non-adaptive processes may be involved. Differ-

ential scaling of individual features can result when selection favors either exaggerated

(positive allometry) or reduced (negative allometry) size during growth. Studies of sexual di-

morphism and character scaling rely on multivariate models that ideally use an unbiased

reference character as an overall measure of body size. We explored several candidate ref-

erence characters in a cryptically dimorphic taxon, Hadrurus arizonensis. In this scorpion,

essentially every body component among the 16 we examined could be interpreted as di-

morphic, but identification of SSD and SBCD depended on which character was used as

the reference (prosoma length, prosoma area, total length, principal component 1, or meta-

soma segment 1 width). Of these characters, discriminant function analysis suggested that

metasoma segment 1 width was the most appropriate. The pattern of dimorphism in H. ari-
zonensismirrored that seen in other more obviously dimorphic scorpions, with static allome-

try trending towards isometry in most characters. Our findings are consistent with the

conclusions of others that fecundity selection likely favors a larger prosoma in female scor-

pions, whereas sexual selection may favor other body parts being larger in males, especial-

ly the metasoma, pectines, and possibly the chela. For this scorpion and probably most

other organisms, the choice of reference character profoundly affects interpretations of

SSD, SBCD, and allometry. Thus, researchers need to broaden their consideration of an
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appropriate reference and exercise caution in interpreting findings. We highly recommend

use of discriminant function analysis to identify the least-biased reference character.

Introduction
The morphology of animals can be shaped by both natural selection and sexual selection [1,2].
Natural selection favors morphologies that enhance growth, reproduction, and survival, result-
ing in increased fitness for a given environment. Sexual selection favors morphologies that
facilitate mating success via intrasexual competition intersexual mate choice, and post-
copulatory success [3–5]. Sexual dimorphism—the different appearances of females and males
of the same species—can arise from either of these adaptive processes, but it may also result
from non-adaptive processes such as body-size scaling, genetic correlations between female
and male body size, and phylogenetic constraints or inertia [6–9]. Sexual dimorphism can en-
compass an overall increase in size of one sex over the other (sexual size dimorphism, SSD), or
it can be restricted to certain body parts, affecting their size, shape, or both (sexual body com-
ponent dimorphism, SBCD). To distinguish between effects on overall size and effects on the
size or shape of individual components (�characters) that may or may not result in overall size
differences, we introduce the latter term.

Dimorphism can also be considered from the perspective of allometry, as both often exist at
the interface of natural and sexual selection. Allometry describes how body characters interact
over the size range of an organism. Differential scaling of individual features results as selection
favors either exaggerated (positive allometry) or reduced (negative allometry) size of some
body components as body size increases, whereas others may remain proportional (isometry).
Differences in scaling result from several interacting forces, including the physics of the struc-
tural shape in relation to the physical properties of the materials [10,11], and biological consid-
erations of optimal use under natural selection with sometimes confounding effects of sexual
selective pressures [12–14]. Whereas most characters follow negative allometry or isometry
[15–17], characters shaped by sexual selection often exhibit strongly positive allometries
[18–21]. However, the preponderance of sexual characters with positive allometries in the liter-
ature may be biased by extensive examination of exaggerated or extreme examples [16]. Indeed,
a recent literature review demonstrated that many sexual signals, weapons, and other sexual
traits exhibit isometry or even negative allometry. Thus, because positive allometry may actual-
ly occur in a minority of sexual traits, sexual selection alone may be insufficient to produce a
positive allometric trend, and the presence of positive allometry may not be indicative of sexual
selection [16,22–24].

A growing body of literature documents sexual differences in overall size and/or body com-
ponent proportions of numerous animal species. This has certainly been the case for scorpions,
although few authors have established a single measure or set of measures of overall body size,
on average female scorpions show larger body sizes in terms of area or mass [25]; however,
total length is often skewed toward males due to their often more elongate metasoma segments
[26]. The exaggerated size of the pectines in males represents the most consistently dimorphic
body component, resulting from an increase in both the number and size of the pectinal teeth
[25]. Pectines comprise sensory organs that detect both physical [27] and chemical cues from
the substrate [28–30]. The enhanced pectines of males are associated with mating, as they can
follow the pheromonal trails laid down by females [31–33] and assess appropriate substrates
for spermatophore deposition [34–38].

Cryptic Dimorphism and Allometry in the ScorpionHadrurus arizonensis

PLOSONE | DOI:10.1371/journal.pone.0120392 March 20, 2015 2 / 23

Competing Interests: The authors have declared
that no competing interests exist.



Several other body parts are frequently dimorphic in scorpions. The variably modified che-
lae structure of males [39–42] presumably aids in holding the female during the mating dance
(promenade aux deux) [43,44]. The more elongate metasoma of males [45–48] potentially facil-
itates a sexual sting, fencing (le arbre droit), clubbing, and maybe even sexual identification
while maintaining distance from a potentially aggressive female [25,49]. Sexual differences in
prosoma and mesosoma size and shape may relate to the female’s role of producing and carry-
ing offspring [50–54]. The functions of other occasionally dimorphic traits remain less clear,
including differences in the telson and aculus shape [41,55], and in the presence of male acces-
sory glands (e.g., subacular glands in several scorpion species [56,57] and the acular bulb in
mature male Anuroctonus [58,59]).

Most studies that document scorpion dimorphism have reported differences in one or sev-
eral body components, usually within the context of taxonomic descriptions. Often, the differ-
ences have been expressed by comparing the range of values for females and males, or the
ratios for a single body part (e.g., length-to-width) to one or more other components (e.g., pro-
soma length, metasoma segment 5 length; [60]). Although these measures have their place in
the literature, and greatly ease rapid identification of species or sex, they may lead to wrong in-
ferences or spurious correlations [61], and cannot be used to discern which particular feature
or body part might be under the influence of selection. When one sex is larger overall than the
other, for example, differences in body components may simply reflect this SSD. And in the
classic case for ratios, the conventional interpretation that sexual selection favors large male
head size relative to overall length of lizards has been reinterpreted as fecundity selection favor-
ing, instead, a larger trunk in females [62,63]. Thus, more refined approaches are required to
understand the selective pressures that generate or maintain dimorphism, and even then differ-
entiating the influences of natural and sexual selection on individual body components can be
especially challenging [64,65].

Statistical methods such as analysis of covariance and regression are ideally suited for exam-
ining dimorphism and character scaling, as they can better normalize data, control for con-
founding variables, and are far more sensitive for evaluating subtle characters [66] that may
still be under the control of natural or sexual selection. Potentially dimorphic characters or de-
viations from isometry are often identified by controlling for one body component, which acts
as an overall indicator of general body size, followed by evaluation of how each body compo-
nent of interest responds to changes in body size. The optimal scenario is to use a reference
character that correlates with size, is independent of nutritional state[67], and is itself non-
dimorphic[63]. However, the choice of an appropriate reference character can be fraught with
difficulty [62,63,68–70], and may require the measurement of numerous body components.
Choice of a reference character for body size can profoundly affect the assessment of dimor-
phism and its interpretation.

Here, we address the difficulties associated with measuring sexual dimorphism and charac-
ter scaling through rigorous analyses of morphological variation in the desert hairy scorpion,
Hadrurus arizonensis. Specifically, we used several alternative reference characters to evaluate
SSD and SBCD for 16 morphological characters. We also assessed sexual differences in the stat-
ic allometry of multiple body components to better understand their relationships to sexually
dimorphic traits and the potential selective forces that shape them.

The desert hairy scorpion has long been viewed as non-dimorphic in characters other than
the pectines [71,72]. Although Williams [56] mentioned that adult males have a longer meta-
soma than females, Stahnke [73] questioned the finding, and called for a more robust analysis
beyond the raw data, including the use of ratios and statistical tests for comparison. Tallarovic
[36] indicated there was no exaggerated dimorphism. While collecting specimens for other
studies, one of us (GAF) became convinced that cryptic dimorphism existed in the species. The
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methodology presented here not only confirmed this suspicion, but should be useful for assess-
ing sexual dimorphism and allometry in other scorpions. As our findings indicate for this scor-
pion, and probably for most other organisms, the choice of reference character can profoundly
affect interpretations of SSD, SBCD, and the ways in which selection might act on these traits.

Materials and Methods

Ethics Statement
All methods in this study complied with the requirements of the Institutional Animal Care and
Use Committee of Loma Linda University, which regulates animal research at this institution.
At the time of the study, no protocol reviews or permits were required for any studies of inver-
tebrates. However, the research met the ethical and academic integrity policies set forth by the
Office of Research Affairs, and was reviewed and approved by the Faculty of Graduate Studies.
This study also complied with federal and state laws, asH. arizonensis is not an endangered or
protected species, and collections were made from public lands, where no permits or permis-
sions were required for the activities performed.

Scorpions
We collected adult specimens ofH. arizonensis from the western Sonoran Desert between
Cabazon andWhitewater, Riverside County, California, USA (33.898354, -116.682936:
33.910966, -116.651685). We captured them at night during the months of July to October
using ultraviolet light sources [74]. We acquired a sample of 173 adult scorpions consisting of
82 males and 91 females (89.9–111.7 mm overall body length).

Morphological measurements
Using electronic calipers, we measured to the nearest 0.1 mm the following characters (Fig. 1):
total length (Tot L, edge of prosoma to end of metasoma); prosoma length (Pro L) and width
(Pro W, at median eye); chela length (Chela L), width (Chela W), and height (Chela H); meta-
soma segments 1 and 5 length (Met 1 L, Met 5 L) and width (Met 1 W, Met 5 W); total meta-
soma length (Met L); length (Tel L), width (Tel W) and height (Tel H) of the telson; and
pectine length (Pec L) [60]. We visually determined sex by relative length and arrangement of
the pectines. We could have measured numerous additional characters reported in other stud-
ies (e.g., femur, patella, and other chela dimensions), but focused on what we believed were the
most frequently reported dimorphic characters in scorpions. A secondary consideration was
that the chosen measures could easily and reliably be done in the field for future comparisons.
Although we measured mass and mesosoma size, we chose not to analyze these characters be-
cause both vary substantially with nutrition [67,75,76]. Taking measurements caused no appar-
ent injury to the animals.

Statistics
Prior to all statistical tests, we screened the data to verify compliance with parametric assump-
tions. We removed a small number of statistical outliers (studentized residuals>1.96) for spe-
cific body components while retaining other measurements of those individuals. Unless
specified otherwise, statistical tests were conducted using SPSS 20.0 for Macintosh (Statistical
Package for the Social Sciences, Inc., Chicago, 2011), with α = 0.05. Following Nakagawa [77],
we chose not to adjust α for multiple tests. As an intuitive indicator for the magnitude of sex
differences, we computed the percent difference for all characters analyzed (c.f. [78,79]) using
the mean of each sex (i.e. [male—female] divided by 0.5 [male + female]).
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We subjected the morphological measurements to five sets of analyses involving parametric
tests [80,81]. Although pectine length and arrangement were used to determine sex, we elected
to include Pec L in some analyses for comparative purposes, but omitted it from several analy-
ses, as specified below.

First, we directly compared all body size components of females and males using indepen-
dent-samples t-tests. We computed Cohen's d as a measure of effect size, with values of ~0.2,
~0.5, and�0.8 loosely corresponding to small, medium, and large effects, respectively [82].
Second, we employed discriminant function analysis (DFA) to determine which characters in
multivariate space best discriminated between the sexes and those that were most neutral. We
used an omnibus model including 14 variables (Pro L, Pro W, Chela L, Chela W, Chela H, Met
1 L, Met 1 W, Met 5 L, Met 5 W, Met L, Tel L, Tel W, Tel H, Tot L); the model excluded Pro A,
a derived character which violated multicollinearity (tolerance = 0.00), and Pec L, which we
used to determine sex. The DFA model was constructed with equal probability for group as-
signment and leave-one-out cross-validation. To determine the discriminating power of

Fig 1. Morphology of representative Desert Hairy scorpion (Hadrurus arizonensis). Body components
measured in this study are labeled.

doi:10.1371/journal.pone.0120392.g001
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prosoma area, a second DFA was run which substituted Pro A for the components Pro L and
Pro W. Following DFA, contrasts were conducted using ANCOVAs to determine which char-
acters reliably separated the sexes after adjustment for the other characters or predictors [83].
In each ANCOVA, the variable of interest was declared the DV, sex was treated as a between-
subjects factor, and the remaining characters were entered as covariates. Third, we conducted a
principal component analysis (PCA) with Varimax rotation to evaluate covariance among the
body size components and to create more general and uncorrelated measures of body size and
shape. We excluded Pec L from the PCA model.

Fourth, we examined sexual dimorphism using five candidate reference characters via mul-
tiple analysis of covariance (MANCOVA) and analysis of covariance (ANCOVA) models.
These models included sex as a between-subjects factor and one of the five covariates (reference
characters) to control for overall body size. The covariates, tested in separate models, included
Pro L, Pro A, and Tot L, as each has been used previously as an estimator of scorpion size and
to evaluate sexual dimorphism [25,46,76,84]. We used principal component 1 (PC1) as the
fourth covariate, which comprised a more general measure of body size based on multiple char-
acters and has been recommended as a useful reference character for scaling [85,86]. Our fifth
covariate, Met 1 W, was chosen because it contributed least to the discrimination between
sexes in the DFA model. To our knowledge, no study has demonstrated dimorphism of this
character in any scorpion. For MANCOVA and ANCOVAmodels, we always tested the as-
sumption of homogeneity of regression slopes by including an interaction term, and then re-
moved the term from the final model if the interaction was non-significant.

Finally, we used standard major axis (SMA) regression [87–89] to assess static allometry in
females and males separately. Static allometry deals with comparisons among individuals in a
population which are all at the same developmental stage, and can be distinguished from onto-
genetic or developmental allometry, which makes comparisons across developmental stages ei-
ther within the individual or at the population level [90]. We conducted bivariate analyses
using the program SMATR [89], with α = 0.05, iterations (used for testing for common slope,
Likelihood ratio test) = 10000, and H0 slope = 1 (F-test). We log10-transformed all variables in-
cluding the square root of the prosoma area [46]. We compared the results from using four dif-
ferent reference characters to control for body size: Pro L, Pro A, Tot L, and Met 1 W. If male
and female slopes were found to be the same, we conducted follow-upWald tests to evaluate
differences in elevation and shifts along the slope [87,89].

Results
When morphological characters were considered individually via t-tests, adult female and male
H. arizonensis exhibited sexual dimorphism in some but not all body components (Table 1).
Females had significantly larger prosomas, averaging 2.06%, 1.52%, and 3.37% larger in length,
width, and area, respectively. However, males had significantly larger Chela L (2.17%), Met 1 L
(5.33%), Met 5 L (6.57%) and Met 5 W (1.74%), Met L (7.81%), Tot L (2.89%), and Pec L
(17.09%). The remaining characters were not significantly different between the sexes
(<1% difference).

The initial DFAmodel, which included 14 characters measured from 137 scorpions, con-
firmed that morphological differences between the sexes were highly significant (Wilks’ Λ = 0.12,
χ2 = 266.87, df = 14, P< 0.001, canonical correlation = 0.936), with means for the discriminant
function scores of-2.22 (range = -0.38 –-4.33) and 3.12 (range = 1.25–6.01) for females and
males, respectively. Every scorpion (100%) was correctly assigned for both original and cross-val-
idated classification. The three best discriminating characters were Met L, Met 5 L, and Pro L
(standardized coefficients of 1.52, 1.10, and-1.03, respectively; all other characters 0.56; Table 2).
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Squared structure coefficients indicated that the function accounted for 12%, 7% and 1% of the
variance in these characters, respectively. Signs for the function coefficients indicated that the dif-
ference between the sexes could largely be explained by the difference between metasoma length
(represented by Met L andMet 5 L) and prosoma length, with males characterized by a longer

Table 1. Comparison of morphological characters of adult female andmaleHadrurus arizonensis.

Character ♀ ♂ Mean t—statistic df P-value Mean Difference Percent Difference (♂ to ♀) Cohen's d

(N) (N) ♀ ♂

Pro L 90 83 13.1 12.9 -3.44 171 0.001 -0.3±0.1 -2.06 -0.52

Pro W 86 70 10.5 10.3 -2.07 154 0.04 -0.2±0.8 -1.52 -0.34

Pro A 86 70 137.5 132.9 -2.55 154 0.01 -4.6±1.8 -3.37 -0.41

Chela L 90 83 19.7 20.2 3.85 171 <0.001 0.4±0.1 2.17 0.59

Chela W 90 82 4.4 4.4 0.05 170 0.957 0.0±0.0 0.04 0.01

Chela H 86 70 6.9 6.8 -1.08 154 0.281 -0.1±0.1 -0.92 -0.18

Met 1 L 86 70 6.9 7.3 5.83 154 <0.001 0.4±0.1 5.33 0.94

Met 1 W 86 70 6.7 6.8 0.41 154 0.682 0.0±0.1 0.32 0.07

Met 5 L 86 70 12.8 13.7 8.66 154 <0.001 0.9±0.1 6.57 1.4

Met 5 W 85 69 5.8 5.9 2.48 152 0.014 0.1±0.0 1.74 0.41

Met L 87 77 47.7 51.6 10.75 162 <0.001 3.9±0.4 7.81 1.69

Tel L 89 83 12.8 12.8 0.06 170 0.952 0.0±0.1 0.04 0.01

Tel W 90 83 5.8 5.8 -0.49 171 0.625 0.0±0.0 -0.42 -0.07

Tel H 90 83 5.4 5.4 0.72 171 0.474 0.0±0.0 0.6 0.11

Tot L 89 79 100.6 103.5 4.12 166 <0.001 2.9±0.7 2.89 0.64

Pec L 85 68 10.1 12 18.8 151 <0.001 1.9±0.1 17.09 3.08

Mean (± 1 S.E.) difference between the sexes, relative to males (males larger if positive value; females larger if negative value)

doi:10.1371/journal.pone.0120392.t001

Table 2. Standardized canonical coefficients of morphological characters ofHadrurus arizonenesis
from two separate discriminant function analyses (DFAs).

Character DF 1 DF 2

Met L 1.518 1.620

Pro A -1.392

Met 5 L 1.099 1.091

Pro L -1.025

Pro W -0.563

Tot L -0.354 -0.505

Tel L -0.430 -0.399

Tel W -0.323 -0.373

Met 5 W 0.308 0.369

Met 1 L 0.231 0.203

Chela W -0.200 -0.219

Chela H -0.196 -0.171

Chela L 0.147 0.078

Tel W -0.125 -0.073

Met 1 W 0.020 -0.068

DF1: Discriminant function for DFA that excluded the character prosoma area due to multicolinearity

DF2: Discriminant function for DFA that excluded the characters prosoma length and width to test the

influence of prosoma area

doi:10.1371/journal.pone.0120392.t002
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metasoma relative to the prosoma. Contrasts using ANCOVA revealed that, after adjustment for
all other predictors, only five characters provided significant discrimination between the sexes
(listed in order of effect size): Met L (P< 0.001, partial η2 = 0.28; adjusted marginal means
for females and males, 48.5 ± 0.2 and 51.0 ± 0.2 mm, respectively); Met 5 L (P< 0.001, partial
η2 = 0.20; adjusted marginal means for females and males, 12.9 ± 0.1 and 13.6 ± 0.1 mm, respec-
tively); Pro L (P< 0.001, partial η2 = 0.11; adjusted marginal means for females and males,
13.2 ± 0.04 and 12.8 ± 0.1 mm, respectively); ProW (P = 0.005, partial η2 = 0.06; adjusted mar-
ginal means for females and males, 10.5 ± 0.05 and 10.2 ± 0.1 mm, respectively); and Tel L
(P = 0.036, partial η2 = 0.035; adjusted marginal means for females and males, 12.7 ± 0.1 and
13.0 ± 0.1 mm, respectively).

The second DFA model testing the influence of Pro A included 13 characters and was simi-
larly significant (Wilks’ Λ = 0.13, χ2 = 265.75, df = 13, P< 0.001, canonical correlation = 0.935),
with female and male discriminant function means of-2.20 (range = -4.36 –-0.15) and 3.09
(range = 1.09–5.92) respectively. Every scorpion (100%) was correctly assigned for both origi-
nal and cross-validated classification. The three best discriminating characters were Met L, Pro
A, and Met 5 L (standardized coefficients of 1.62, -1.39, and 1.09, respectively; all other charac-
ters� |0.51| Table 2). Squared structure coefficients indicated that the function accounted for
13%, 1%, and 7% of the variance in these characters, respectively. As in the first model, signs
on the discriminant function coefficients indicated that the difference between the sexes could
largely be explained by the difference between metasoma length (represented by Met L and
Met 5 L) and size of the prosoma (Pro A). Contrasts performed using ANCOVA revealed that,
after adjustment for all other predictors, only Met L (P< 0.001, partial η2 = 0.33; adjusted mar-
ginal means for females and males, 48.3 ± 0.2 and 51.2 ± 0.2 mm, respectively), Pro A
(P< 0.001, partial η2 = 0.24; adjusted marginal means for females and males, 140.5 ± 0.8 and
129.4 ± 1.1 mm2, respectively), Met 5 L (P< 0.001, partial η2 = 0.20; adjusted marginal means
for females and males, 12.9 ± 0.1 and 13.6 ± 0.1 mm, respectively), and Tel L (P = 0.049, partial
η2 = 0.031; adjusted marginal means for females and males, 12.7 ± 0.1 and 13.0 ± 0.1 mm, re-
spectively) reliably separated the sexes.

In both DFA models, Met 1W was a poorly discriminating character (Table 2), and
ANCOVA contrasts supported this conclusion (contrast following DFA model 1, P = 0.92, par-
tial η2 = 0.001; contrast following DFA model 2, P = 0.74, partial η2 = 0.001). Thus, we consid-
ered Met 1 W to be the most suitable (i.e., most neutral) reference character, and added it to
the remaining analyses.

The two principal components extracted from the PCA captured 77.4% of the variance
(Table 3). The first (PC1), explaining 45.8% of the variance, was comprised largely of prosoma
and telson size and shape, width of the two metasoma segments, and chela shape (width and
height). The second (PC2), explaining 31.6% of the variance, included primarily overall meta-
soma length, length of the two metasoma segments, total length, and chela length. Females av-
eraged significantly larger for PC1 (t135 = 5.36, P< 0.001, Cohen's d = 0.93), and significantly
smaller for PC2 (t135 = 15.17, P< 0.001, Cohen's d = 2.65).

The five characters selected for use as the reference or covariate for overall size in the MAN-
COVA and ANCOVAmodels (Pro L, Pro A, Tot L, PC1, and Met 1 W) provided incongruent
results (Fig. 2, S1 Table). Use of Pro L, Pro A, and PC1 yielded largely identical interpretations
(Pro L and Pro A both showing 12 of 15 characters dimorphic), with PC1 showing the greatest
number of differences (14 of 16 characters dimorphic, and the other two characters displaying
an interaction between sex and PC1). Most measures for the chela, metasoma, telson, pectine,
and total length were substantially larger in males. Use of either Tot L (10 of 15 characters di-
morphic) or Met 1 W (11 of 15 characters dimorphic) as the covariate indicated that females
had significantly greater size for all prosoma measures. Remarkably, the dimorphism of some
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body components was reversed depending on which reference character was used. Prosoma
characters were male-biased when PC1 was the reference and female-biased when Tot L and
Met 1 W was the reference. Chela W was female-biased with Tot L as the reference, and male-
biased with Pro L, Pro A, and PC1 as the reference. Telson W was female-biased with Tot L
and Met 1 W as the covariate, and male-biased with Pro L and Pro A as the reference. Telson
W was female-biased with Tot L as the reference, and male-biased with Pro L, Pro A, and PC1
as the reference. When multiple characters were combined in MANCOVA models, the results
generally conformed with the ANCOVAmodels for individual characters.

A small number of interactions existed between sex and the covariate in the MANCOVA
and ANCOVAmodels (14 of 99 models; 14.1%). In these models, the direction of sexual di-
morphism could not be inferred because of a violation of the assumption of homogenous re-
gression slopes. Detailed explanation of each interaction goes beyond our purposes.

Based on SMA regression and SMATR output, we categorized allometric relationships
(slope relative to 1.0) among the 16 body components and four reference characters as either
positive, isometric, or negative. Allometric relationships were most often identical between the
sexes, with only 28.3% of the models (17 out of 60) demonstrating a contrasting allometry
(Fig. 3; S2 Table). Three body components (Pro A, Met 1 L, and Met 5 W) displayed the same
allometry pattern across all four reference characters, whereas 13 body components showed
contrasting allometries among the four reference characters. Prosoma L and Pro A as reference
characters were similar to each other, showing congruent allometries for 9 of 14 body compo-
nents. Total L and Met 1 W as reference characters were also similar to each other, yielding
congruent allometries for 12 of 14 body components. However, allometric relationships de-
rived from the two pairs of reference characters differed substantially from each other. Use of
Pro L and Pro A as reference characters showed primarily positive allometry and isometry for
both females (Pro L: 12 positive, 3 isometric; Pro A: 9 positive, 5 isometric, 1 negative) and
males (Pro L: 7 positive, 8 isometric; Pro A: 8 positive, 7 isometric). In contrast, use of Tot L

Table 3. Factor loadings for the two principal components (PC1, PC2) extracted from the principal
component analysis ofHadrurus arizonensismorphological characters.

Character Factor Loadings

PC1 PC2

Pro A 0.916 0.261

Pro W 0.878 0.245

Pro L 0.874 0.266

Tel W 0.802 0.294

Tel H 0.774 0.401

Met 1 W 0.760 0.407

Tel L 0.753 0.463

Chela H 0.692 0.351

Met 5 W 0.643 0.451

Chela W 0.619 0.445

Chela L 0.543 0.725

Tot L 0.543 0.759

Met 5 L 0.343 0.880

Met 1 L 0.287 0.800

Met L 0.216 0.929

Variance Explained (%) 45.8 31.6

doi:10.1371/journal.pone.0120392.t003
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and Met 1 W as reference characters yielded comparatively more isometry and/or negative al-
lometry for females (Tot L: 3 positive, 10 isometric, 2 negative; Met 1 W: 2 positive, 11 isomet-
ric, 2 negative) and males (Tot L: 4 positive, 11 isometric; Met 1 W: 3 positive, 12 isometric).
Negative allometry was rare and only present for body components Pro L and Chela L in fe-
males. Although differences existed between sexes in designation of allometry as positive, iso-
metric, or negative, only one body component differed statistically between the sexes in slope,
and that was Tel W (Fig. 4D, S2 Table).

Representative comparisons in allometry between males and females for Met 1 W (the least
biased) as the reference character are illustrated in Fig. 4 and summarized in S3 Table. Three
body components (Pro L, Pro W and, Pro A) exhibited only a shift in elevation (y-intercept)
between females and males. Seven body components (Chela L, Met 1 L, Met 5 L, Met 5 W, Met
L, Tot L and, Pec L) showed a shift in both elevation and along a common slope. One body
component (Tel W) showed a difference between slopes. Four body components were identical
for the two sexes, showing no shifts in elevation or common slope (Chela W, Chela H, Tel L
and, Tel H).

Fig 2. Sexual body component dimorphism (SBCD) in Hadrurus arizonensis, comparing the results of
alternative reference characters. Analysis of covariance (ANCOVA) results are expressed as percent
difference in marginal means between the sexes (y-axis) for each body component (x-axis groupings) when
using different reference characters (covariates; indicated by bar pattern). Alternative reference characters
included prosoma length (Pro L), prosoma area (Pro A), total length (Tot L), principal component 1 (PC1), and
metasoma segment 1 width (Met 1 W). Percent difference was calculated as ((male marginal mean—female
marginal mean)/((male marginal mean—female marginal mean)/2)) x 100. Thus, bars above zero indicate
body components showing male-biased SBCD, and bars below zero indicate female-biased SBCD. Bars with
an asterisk (*) indicate a significant difference between sexes. Missing bars (indicated by arrows) occur
where a significant interaction between sex and the covariate (heterogeneous regression slopes) existed,
precluding ANCOVA and obfuscating male-female differences. Note the incongruent interpretations of SBCD
depending on which reference character is used in the ANCOVA. Additional details are provided in S1 Table.

doi:10.1371/journal.pone.0120392.g002
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Fig 3. Effects of reference character on allometric trends of body components. Allometric slopes (±
95%CI) determined from four alternative reference characters are paired against each of 16 y-axis
characters for females (N = 84–90) and males (N = 65–83). The reference characters included A: prosoma
length (Pro L); B: prosoma area (Pro A); C: total length (Tot L); and D: metasoma segment 1 width (Met 1 W).
Bars identified with an asterisk (*) indicate a significant difference between the slope and null hypothesis of
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Discussion
Although most scorpion species exhibit dimorphism in overall size (SSD) or individual body
components (SBCD), the methods generally relied on to detect these (ranges in character mea-
surements, ratios, and ANCOVA using a dimorphic reference character as a covariate) usually
cannot identify which body parts are subject to selection. Here, we explored several candidate
reference characters for overall body size to better understand sexual dimorphism and charac-
ter scaling in a cryptically dimorphic taxon, H. arizonensis. We begin our discussion with gen-
eral patterns of dimorphism, and then describe the dilemma of choosing an appropriate
reference character for assessing dimorphism and allometry. We then consider sexual dimor-
phism and allometry of individual body components, and the selection forces that have poten-
tially shaped them.

General pattern of dimorphism
The most obvious conclusion from our analyses is that H. arizonensis could be interpreted as
dimorphic in essentially every character. Simple t-tests demonstrated statistically significant di-
morphism in multiple characters (10 of 16 measured; Table 1). Some characters had relatively
small effect sizes (e.g., those of the telson), whereas others showed moderate (e.g., those of the
Pro L and Chela L) or even large effect sizes (e.g., metasoma lengths and Pec L). However, uni-
variate comparisons like these need to be viewed cautiously; if one sex is larger overall than the
other sex, then a reference character for overall size needs to be controlled for. When control-
ling for overall size using ANCOVA, the identification of dimorphic body components varied
depending on which character was used as the reference. With interactions included, 13 of 15
characters were dimorphic when each of Pro L, Pro A, Tot L, or Met 1 W was used as the covar-
iate, and all 16 characters were dimorphic when employing PC1 as the covariate. Collectively,
the ANCOVAmodels could suggest that every body component we measured is sexually di-
morphic, even if most differences are quite small (<5%), i.e., cryptic. The fact that dimorphism
exists at all inH. arizonensis has been largely overlooked by previous investigators [36,56,73].

Choice of reference character and its implications
The choice of reference character or covariate for analysis of body component dimorphism
varies widely among studies, and can substantially influence an assessment of dimorphism
[69]. Most investigations rely on some measure of overall size as the covariate, or a proxy such
as carapace width [91,92] or length [93], prothorax width [94,95], mass [96], total length
[97,98], or snout-vent length [99,100], usually without offering justification. In each case, one
can ask which is the target of selection: the reference character itself, the body component
under consideration, or both? This problem was brought to the forefront recently by those
studying lizards [62,63,68]. Previously, male-biased head size dimorphism was universally ana-
lyzed and interpreted using snout-vent length (SVL) as the reference character, and head size
was considered the target of selection. Then the question arose as to whether selection was tar-
geting the female's trunk (resulting in longer trunk via fecundity selection) or the male's head
(resulting in larger size via sexual selection). As trunk length and head length are constituents
of SVL, selection on either or both of these components could affect SVL, rendering SVL an in-
appropriate reference character. In spiders the common reference character is carapace width

1.0 by F-test of standard major axis regression. Significant slopes above 1.0 indicate positive allometry;
significant slopes below 1.0 indicate negative allometry; and non-significant slopes indicate isometry.
Additional details are supplied in S2 Table.

doi:10.1371/journal.pone.0120392.g003
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Fig 4. Select allometric relationships of female (open circles, dashed line) andmale (closed circles, solid line)Hadrurus arizonensis. A–F depict
static allometric scaling relationships of select body characters with metasoma segment 1 width (Met 1W) as the reference character. A. Prosoma length (Pro L)
plot illustrates a difference in y-intercept between the sexes. B. Chela height (Chela H) illustrates no difference between the sexes. C. Telson width (Tel W)
illustrates a difference in slopes between the sexes. D–F Illustrate differences in both y-intercept and in shifts along the slope for metasoma length (Met L), total
length (Tot L), and pectine length (Pec L). Scales are logarithmic. N = 84–90 females and 65–83males. Additional details are supplied in S3 Table.

doi:10.1371/journal.pone.0120392.g004
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[92]. However, to study the comparative allometry of fang size in three spider species (Scytodes
thoracica, Loxosceles reclusa, and, Varacosa avara), Suter and Stratton [70] opted to use ster-
num width as a proxy for size. The authors contended that use of carapace width was inappro-
priate, as it has been targeted by selection to a greater extent in Scytodes (indirectly due to
venom gland hypertrophy [101]) than in other species. These examples illustrate the difficulties
in choosing an appropriate reference character, the need to understand the organism of inter-
est, and the potential for misinterpretation if these considerations are inadequately addressed.

Heretofore, scorpion sexual dimorphism and static allometry investigations have used several
reference characters, including total length (Bothriurus bonariensis: [43]), prosoma + mesosoma
(Centruroides vittatus: [49]), and prosoma area (Centruroides margariatatus: [46]). Studies of
scorpion ontogenetic allometry and life history have utilized several prosoma measures
[42,76,102,103]. We were initially interested in the use of a prosoma measure as a reference
character inH. arizonensis due to precedent [92,104], its heavy loading on PC1 (c.f. [105]), and
its avoidance of both the nutritional effects of the mesosoma and the frequent dimorphism pres-
ent in the metasoma, each of which can influence total length. However, based on other scorpi-
on species [41,45,106] and the findings of this study, the prosoma may itself be dimorphic, and
therefore less than ideal [62,63]. Our DFAmodels support this conclusion, as prosoma variables
had large unique contributions to each of the discriminant functions. We therefore considered
body components that were poorly discriminating in the DFAmodels and demonstrated no di-
morphism via t-test. Of the body components meeting these criteria (Chela W, Chela H, Met 1
W, Tel W, and Tel H), we propose Met 1 W as the best candidate reference character because it
was the most neutral of all characters in the DFAmodels, and in contrast to other body compo-
nents [39,41,59,107–109] has a high likelihood of neutrality in other scorpion taxa.

Sexual size dimorphism (SSD)
The question of whether overall body size dimorphism exists inH. arizonensis remains unclear.
Some body components were larger in females, and others were larger in males. When overall
body size dimorphism was evaluated by examining whether the majority of individual body
components showed female-larger dimorphism (negative percent difference, with most bars of
a given color below zero line in Fig. 2) or male-larger dimorphism (positive percent difference),
the direction of dimorphism shifted based on the reference character (covariate) employed.
Using the prosoma (Pro L or Pro A) or PC1 as the reference character, the majority of body
components averaged larger in males. However, Tot L as the reference character indicated the
opposite situation, with most body components larger in females, excluding those commonly
larger in male scorpions (Met 1 L, Met 5 L, Met L, and Pec L). Use of Met 1 W as the reference
resulted in most characters averaging larger in males, and this would be our preferred interpre-
tation, though it raises the question of which characters contribute most to overall size. Body
mass would be an inappropriate measure of SSD because it is subject to nutritional and
reproductive status.

Principal component 1 is a commonly used measure of body size in many taxa [85,86], and
has been used as an indicator of overall size in scorpions [47]. InH. arizonensis, PC1 was posi-
tively and strongly associated with prosoma size, and averaged larger in females. However, in-
terpretation of PC1 as a measure of overall size is complicated by the fact that it included
characters representing both size (Pro L, Pro A, and Tel L) and, presumably, shape (e.g., Pro
W, Tel W, Tel H, Met 1 W). Although PC1 is most commonly associated with size, it is not un-
common for both size and shape variables to load highly on a single component [86]. For ex-
ample, variables representing both size and shape loaded highly on Graham et al.’s [47] PC1
used to differentiate scorpion species.
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Considering the discordant measures of SSD, we cannot conclude which sex is larger overall.
Nevertheless, we are confident that females have a larger prosoma and that males are longer
overall (Tot L) due to their longer metasoma. These interpretations accord with the t-tests,
ANCOVAs, and prior interpretations for scorpions in general [25,26].

Sexual body component dimorphism (SBCD), allometry, and potential selection. Our
findings suggest that selection may act differently on the prosoma ofH. arizonensis than on
most of the body parts that extend from or beyond the prosoma, particularly the metasoma.
The DFAmodels separated the sexes primarily on differences in prosoma variables (which load-
ed highly on PC1) and metasoma length variables (which loaded highly on PC2). In this section,
we focus on inferences about individual body components. Although dimorphism (or the po-
tential for dimorphism) is often noted in the scorpion literature (e.g., [25,41,46,55,110,111]),
static allometry remains little studied in these taxa [43,46,49], and the use of different methods
to analyze sexual dimorphism and allometry renders comparisons among studies problematic.

Female-biased dimorphism of the prosoma is consistent with the conclusion of others that
fecundity selection has favored an increase in size of the prosoma of scorpion females com-
pared to males that, along with the mesosoma, could support larger broods, larger offspring
size, or both [50–54]. We therefore suggest that the prosoma should be avoided as a reference
character for assessment of dimorphism and allometry in scorpions unless detailed analysis re-
veals it to be neutral for a given species. Isometry was the most common allometric trend for
prosoma body measures across all reference characters inH. arizonensis, though some discor-
dance existed. Using Met 1 W as the reference, the presence in females of negative allometry in
Pro L and isometry in Pro W and Pro A suggests that the potential influence of fecundity selec-
tion may be constrained by other factors in this species.

Scorpions use their chela primarily to grasp items, particularly in predatory, defensive, and
mating contexts, and therefore several interacting forces could influence selection on this body
component. InH. arizonensis, choice of reference character confounded interpretation of
SBCD for this particular body component, but male-biased chela length was apparent with
Met 1 W as the reference character. Examples of both male-larger [111,112] and female-larger
chela [41,113] can be found among scorpions, although evaluation of dimorphism using a neu-
tral reference character could strengthen these interpretations. Chela are of utmost importance
in prey capture and defense, to the point that envenomation is rarely or never used in adults of
several scorpion species [114–117]. However, because diet and predators are presumably simi-
lar for the two sexes (to our knowledge these remain unstudied), we suggest that SBCD of this
character inH. arizonensismay have arisen largely from either intrasexual or intersexual selec-
tion (c.f. [43]). Chela structure is important in mating behavior, and modifications of chela for
this purpose have been suggested [39,41–44]. Female Chela L was the only character other
than Pro L to display negative allometry (with Pro A, Tot L, or Met 1 W as reference), whereas
Chela W and Chela H showed isometry with Met 1W as the reference character (Fig. 3). Larger
females may have disproportionately shorter chela in order to maintain the ability to interact
efficiently with males during the promenade aux duex under a “one size fits all”model (sexual
selection) [14,43]. AsH. arizonensis relies largely, but not exclusively, on venom to obtain prey
[118,119], natural selection may also act to increase relative Chela L in smaller females to en-
hance prey capture.

Although the metasoma is a prominent feature in scorpions, acting as the base and point of
articulation for their venomous sting, the shape and structure of this tail can be variable both
among species and between sexes [25]. Indeed, we found H. arizonensismales to possess a sub-
stantially longer metasoma (including segments 1 and 5) than females. Choice of reference
character affected only degree of dimorphism for measures of metasoma length. Elaboration of
the metasoma in the males of many species (e.g., [25,40,107,112,120] argues for a sexual role
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for this body segment, which could include combat with other males [49], clubbing or deflec-
tion of sting attempts by resistant females (e.g. [37,121]), and sexual stings toward females (e.g.
[122,123]). A male-longer metasoma could alternatively be a by-product of different selection
pressures on more sedentary females compared to more vagile males [121,124,125], resulting
in different foraging [126] or defense/escape [49] tactics. We suspect that sexual selection has
shaped the dimorphism of this body component inH. arizonensis, but more study is needed.
The direction of allometry in metasoma body components was largely similar across all refer-
ences and isometry was the dominant trend. Positive allometry was present for Met 1 L for
both sexes across all references. As the first metasoma segment is the connection between the
scorpion body and tail, a disproportional increase in the size of this segment in larger individu-
als may be related to mechanical constraints.

Variation in telson morphology by species and sex has been described [25,55,59,127], but ex-
planations invoking functional relationships seem to be absent. Interpretations of dimorphism
differed depending on reference character, but subtle female-biased dimorphism (Tel W) existed
with Met 1 W as the reference character. As the telson harbors the venom glands and the mus-
culature that controls venom expulsion, SBCD in this structure could have important implica-
tions for possible sexual differences in venom availability and use. Scorpions (with a few
exceptions) rely on their venom not only for predation and defense [119,128,129], but males
may also use their venom in a sexual sting, which has been described inH. arizonensis [122].
Stabilizing selection nevertheless may be acting on the telson to optimize venom supply for both
sexes. Telson characters were generally isometric or positively allometric (Tel H for females, Tel
W for males) with Met 1W as the reference. Larger scorpions tend to possess disproportionately
larger telsons, but predominantly isometrically-scaled chela suggests a consistent reliance ofH.
arizonensis on venom rather than chela for subjugation of prey. It would be interesting to com-
pare allometry of the telson and chelae in Pandinus imperator, which uses venom to subdue
prey when young, but relies primarily on the chelae as adults [114].

Variation in pectine size and structure may be the best characterized SBCD, as it is unique
to scorpions and often relied upon by investigators to determine sex. Our pectine-related re-
sults align well with findings from other species: females had smaller pectines than males, and
the pectines were the most dimorphic character by t-test and in all ANCOVAmodels. Pectines
function to identify physical [27] and chemical cues [28] on the substrate, which enable phero-
monal sex discrimination [32], mate trailing [29,32], and spermatophore deposition
[34,35,121], suggesting a strong influence from sexual selection. Intersexual and interspecific
differences in pectine structure may reflect, for example, differing degrees of vagility in scorpi-
ons. Males typically travel more and occupy larger home ranges than females, particularly dur-
ing the breeding season when males are searching for mates, and given the sensory importance
of the pectines, exaggeration of this body component in males is reasonable [58,124,130–132].
However, the pectines may also function in prey detection [133,134], and therefore could be
under the influence of natural selection. Positive allometry with Met 1 W as the reference char-
acter (significant for males and approaching significance for females) similarly suggests selec-
tion arising from the functional roles of pectines in adults.

Conclusions
In our attempt to statistically characterize cryptic sexual dimorphism and character scaling in
H. arizonensis, we encountered serious difficulties in finding a suitable reference character for
overall body size. Of the reference characters we examined (Pro L, Pro A, Tot L, PC1, and Met
1 W), the prosoma-based characters and PC1 are likely poor choices in this species, as they are
all dimorphic measures, and the prosoma characters contributed unique variance within DFA
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models sufficient to differentiate the sexes. Although Tot L was also dimorphic, it was a poorly
discriminating character in DFA models, and therefore potentially a better choice of reference
for H. arizonensis. We selected Met 1 W as the best reference character however, as it was the
most neutral of all characters examined. We suspect that Met 1 W as a reference has the great-
est likelihood of utility in other scorpion taxa, as Tot L and the other body components evaluat-
ed often demonstrate greater dimorphism in other taxa than in H. arizonensis.

The direction of dimorphism inH. arizonensis for most characters mirrored that seen in
other more obviously dimorphic scorpions. Our findings are consistent with the conclusions of
others that fecundity selection likely favors a larger prosoma in female scorpions, whereas sexu-
al selection may favor other body parts being larger in males, especially length measures of the
metasoma, pectines, and possibly the chela. While we expected most characters to be isometric
inH. arizonensis, we were surprised by both the negative allometry of Pro L (female) and posi-
tive allometry of Met 1 L (both sexes). As methodology for evaluating static allometry is still
being established for scorpions, interspecific comparisons await future study.

For H. arizonensis, and probably for most other organisms, the choice of reference character
can profoundly affect interpretations of SSD, SBCD, and allometry. Thus, researchers need to
broaden their consideration of an appropriate reference, and exercise more caution in inter-
preting their findings, especially as they relate to selection. We highly recommend use of dis-
criminant function analysis as a useful means for identifying the most appropriate (unbiased)
reference character. Further studies including more species and a wider range of morphological
characters will shed further light on our understanding of sexual dimorphism and character
scaling in scorpions.
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S1 Dataset. Raw data measurements of body components inHadrurus arizonensis. A small
number of statistical outliers (studentized residuals>1.96) were removed for specific body
components while retaining other measurements of those individuals.
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S1 Table. Comparison of marginal means (± 1 S.E.) for morphological characters (depen-
dent variables, DVs) of adult female (N = 84–90 for each character) and male (N = 65–83
for each character) Hadrurus arizonensis fromMANCOVA (grey shading) and ANCOVA
models using four alternative reference characters (covariates) to assess dimorphism. Anal-
yses conducted using untransformed data.
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S2 Table. Comparisons of static allometry for morphological characters of adult female
(N = 83–91) and male (N = 64–81)Hadrurus arizonensis from standard major axis regres-
sion models using four alternative reference characters. Slope values of each sex were com-
pared to the theoretical isometric value of 1.0. The male and female slopes were then compared
to each other for each morphological character, testing for commonality of slopes and eleva-
tions (y-intercept) between the sexes.
(XLSX)

S3 Table. Comparisons of static allometry for morphological characters of adult female
(N = 83–91) and male (N = 64–81)Hadrurus arizonenesis from reduced major axis regres-
sion models using 4 alternative reference characters. Slope values of each sex were compared
to the theoretical isometric value of 1. The male and female slopes were then compared to each
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