
Emerging role of liver-bone axis in osteoporosis☆

Hongliang Gao a,b,c,e,1, Xing Peng c,1, Ning Li c,1, Liming Gou a,b, Tao Xu c, Yuqi Wang c,  
Jian Qin i, Hui Liang h, Peiqi Ma f, Shu Li e,****, Jing Wu a,b,g,***, Xihu Qin d,**,  
Bin Xue a,b,c,d,*

a Department of Nephrology, State Key Laboratory of Reproductive Medicine, Children’s Hospital of Nanjing Medical University, Nanjing, Jiangsu, PR China
b Jiangsu Key Laboratory of Early Development and Chronic Disease Prevention in Children,Nanjing, Jiangsu,PR China
c Core Laboratory, Department of Clinical Laboratory, Sir Run Run Hospital, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical 
University, Nanjing, Jiangsu, PR China
d Department of General Surgery, The Affiliated Changzhou Second People’s Hospital of Nanjing Medical University, Changzhou, Jiangsu, PR China
e Department of pathophysiology, Wannan Medical College, Wuhu, Anhui, PR China
f Medical Imaging Center, Fuyang People’s Hospital, Fuyang, Anhui, PR China
g Jiangsu Province Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, Jiangsu, PR China
h Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, PR China
i Department of Orthoprdics, Sir Run Run Hospital, Nanjing Medical University, Nanjing, Jiangsu , PR China

A R T I C L E  I N F O

Keywords:
Chronic liver diseases
Endocrine
Hepatokines
Liver-bone axis
Osteoporosis

A B S T R A C T

Background: Increasing attention to liver-bone crosstalk has spurred interest in targeted interventions for various 
forms of osteoporosis. Liver injury induced by different liver diseases can cause an imbalance in bone meta-
bolism, indicating a novel regulatory paradigm between the liver and bone. However, the role of the liver-bone 
axis in both primary and secondary osteoporosis remains inadequately elucidated. Therefore, exploring the exact 
regulatory mechanisms of the liver-bone axis may offer innovative clinical approaches for treating diseases 
associated with the liver and bone.
Methods: Here, we summarize the latest research on the liver-bone axis by searching the PubMed and Web of 
Science databases and discuss the possible mechanism of the liver-bone axis in different types of osteoporosis. 
The literature directly reporting the regulatory role of the liver-bone axis in different types of osteoporosis from 
the PubMed and Web of Science databases has been included in the discussion of this review (including but not 
limited to the definition of the liver-bone axis, clinical studies, and basic research). In addition, articles discussing 
changes in bone metabolism caused by different etiologies of liver injury have also been included in the dis-
cussion of this review (including but not limited to clinical studies and basic research).
Results: Several endocrine factors (IGF-1, FGF21, hepcidin, vitamin D, osteocalcin, OPN, LCAT, Fetuin-A, PGs, 
BMP2/9, IL-1/6/17, and TNF-α) and key genes (SIRT2, ABCB4, ALDH2, TFR2, SPTBN1, ZNF687 and SREBP2) 
might be involved in the regulation of the liver-bone axis. In addition to the classic metabolic pathways involved 
in inflammation and oxidative stress, iron metabolism, cholesterol metabolism, lipid metabolism and immuno-
metabolism mediated by the liver-bone axis require more research to elucidate the regulatory mechanisms 
involved in osteoporosis.
Conclusion: During primary and secondary osteoporosis, the liver-bone axis is responsible for liver and bone 
homeostasis via several hepatokines and osteokines as well as biochemical signaling. Combining multiomics 
technology and data mining technology could further advance our understanding of the liver-bone axis, 
providing new clinical strategies for managing liver and bone-related diseases.
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The translational potential of this article is as follows: Abnormal metabolism in the liver could seriously affect 
the metabolic imbalance of bone. This review summarizes the indispensable role of several endocrine factors and 
biochemical signaling pathways involved in the liver-bone axis and emphasizes the important role of liver 
metabolic homeostasis in the pathogenesis of osteoporosis, which provides novel potential directions for the 
prevention, diagnosis, and treatment of liver and bone-related diseases.

1. Pathogenesis of osteoporosis

Osteoporosis is defined as a systemic skeletal disorder characterized 
by a decrease in bone mass and microarchitecture deterioration, with a 
consequent increase in bone fragility and susceptibility to fracture [1]. 
Traditionally, osteoporosis is divided into primary and secondary oste-
oporosis. Primary osteoporosis can be divided into postmenopausal 
osteoporosis, senile osteoporosis, and idiopathic osteoporosis [2]. 
Osteoporosis caused by endocrine disease, blood disease, malnutrition, 
drugs, or other diseases at various age levels in men and women was 
defined as secondary osteoporosis. With the increase in aging and the 
high incidence of chronic metabolic diseases, the incidence of osteopo-
rosis has gradually increased [3], and the incidence of 
osteoporosis-related fractures has increased. Therefore, osteoporosis 
remains a growing problem worldwide.

Bone is a dynamic, mineralized tissue that performs vital functions in 
the body, including providing support, providing protection, storing 
calcium, housing bone marrow, and facilitating movement [4]. During 
human growth and development, bone needs continuous and dynamic 
remodeling to adapt to body changes [5]. Furthermore, homeostatic 
maintenance of dynamic alterations requires the concerted actions of 
bone-forming osteoblasts and bone-resorbing osteoclasts [6]. As shown 
in Fig. 1, when mechanical signals and/or microdamage were sensed by 
osteocytes, the bone turnover process, which includes the bone resorp-
tion phase, the reversal phase, the matrix deposition phase, and the 
mineralization phase, was maintained by osteoclasts derived from he-
matopoietic stem cells and osteoblasts derived from bone 
marrow-derived mesenchymal stem cells [7]. In the bone microenvi-
ronment, osteoblasts, osteoclasts, and mechanosensing osteocytes 
exhibited complex interactions. However, when the balance is 
disturbed, osteoporosis occurs due to a variety of pathological changes. 
A decreased balance during bone remodeling with aging and after 
menopause may result in either osteoporosis or osteopenia. In addition 
to the normal aging process and menopause, there are many other 
clinical, medical, behavioral, and nutritional risk factors involved in the 

etiology of bone loss.

2. Liver-bone axis

The liver is the largest internal organ in the human body and is 
responsible for the metabolism and storage of three principal nutrients: 
carbohydrates, fats, and proteins. In addition, the liver contributes to the 
breakdown and excretion of alcohol, medicinal agents, and toxic sub-
stances and the production and secretion of bile [8]. In addition, 
liver-derived proteins, known as hepatokines, can also regulate the 
metabolism of remote tissues [9]. Liver-centered organ crosstalk has 
received significant attention recently [10–14]. In addition, the liver is 
tightly regulated by bone [15–18].

The physical distance separating the liver and bone prevents direct 
physical interaction between these two tissues, and proteins, enzymes, 
and cytokines secreted by the liver become important ways to influence 
bone metabolism (Table 1). Moreover, bone has recently been charac-
terized as an endocrine organ that serves as a rheostat regulating glucose 
metabolism, and these factors derived from bones can regulate global 
energy homeostasis by altering insulin sensitivity, feeding behavior, and 
adipocyte commitment [19,20]. Osteokines derived from bone can also 
regulate liver metabolism via the endocrine system (Table 1). Therefore, 
crosstalk between the liver and bone has attracted increasing interest in 
recent years.

However, various liver injuries can impair the secretory and 
biosynthetic functions of the liver and further lead to abnormal bone 
metabolism. At the same time, abnormalities in the secretion of osteo-
kines in a pathological state are vital for the regulation of the liver. This 
finding reminds us of a novel mode of the liver-bone axis under physi-
ological and pathological conditions. Here, we summarize recent studies 
on the homeostatic regulation of the liver-bone axis in different types of 
osteoporosis, and understanding the regulatory mode of endocrine 
signaling between the liver and bone may improve the prevention, 
diagnosis, and treatment of liver-related bone metabolic diseases.

Figure 1. Five phases of the bone remodeling process. The bone surface is covered by lining cells; when mechanical signals and/or microdamage are sensed by 
osteocytes, bone resorption is initiated by osteoclasts. Osteoblasts derived from hematopoietic stem cells are responsible for reversal and matrix deposition followed 
by mineralization, after which osteoblasts eventually become bone lining cells or osteocytes.
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3. Regulation of the liver-bone axis in primary osteoporosis

3.1. Senile osteoporosis

Spontaneous bone loss is one of the main features of aging and can 
increase the risk of osteoporotic fracture and mortality [21]. With 
advancing age, bone resorption exceeds bone formation, leading to a 
gradual loss of bone mass and deterioration of bone microarchitecture. 
This imbalance is influenced by various factors, including hormonal 
changes, genetic predisposition, and lifestyle factors such as inadequate 
nutrition and physical inactivity [22]. Moreover, more attention should 
be given to the pathological changes in multiple organs, such as the 
liver, lungs, brain, and muscles, during aging, such as disorders of lipid 
metabolism and an inflammatory environment.

In old age, fat is redistributed outside the usual fat deposits, and 
lipids can accumulate in nonadipose tissues in the liver and are 
considered risk factors for aging-related diseases, including osteoporosis 
[23]. Abnormal fat accumulation in the liver ultimately leads to MAFLD 
[24,25]. However, the underlying mechanism of MAFLD and osteopo-
rosis remains unclear. It has been reported that MAFLD and its severity 
are independently associated with an increased incidence of low bone 
mineral density (BMD) (in the lumbar spine and total hip) [26]. In 
addition, J. Jadzic [27,28] reported that MAFLD could be a contributing 
factor that negatively affects vertebral bone strength in postmenopausal 
women. However, a meta-analysis revealed no significant differences in 
the BMD (in the arms, ribs, lumbar spine, pelvis, or femur) between 
patients with MAFLD and those with non-MAFLD [29]. However, the 
underlying mechanism of MAFLD and osteoporosis remains unclear. In 
addition, the aging process is characterized by a chronic inflammatory 
state called “inflammaging” [23], which shares major molecular and 
cellular features with metabolism-induced inflammation called “meta-
flammation”. The excessive activation of osteoclasts by inflammation is 
also closely related to osteoporosis. In addition, chronic liver inflam-
mation caused by aging may also participate in the occurrence of oste-
oporosis through the release of inflammatory factors.

Indeed, there has been little research on liver-bone crosstalk in 
aging-related osteoporosis. A previous study [30] showed that Sirtuin 2 
(SIRT2) plays a role in liver-bone crosstalk. Aged SIRT2-KOhep mice had 
significantly greater bone mass than age-matched controls because of 
the inhibition of osteoclastogenesis. SIRT2 is a deacetylase that belongs 
to the class III family of histone deacetylases, which are located mainly 

in the cytoplasm and are abundantly expressed in the liver [31]. 
Recently, Lin [32] reported a new mechanism of liver-bone crosstalk 
regulated by hepatocyte SIRT2. They found that liver-specific SIRT2 
deficiency inhibits osteoclastogenesis and alleviates bone loss in mouse 
models of senile osteoporosis through upregulating leucine-rich 
α-2-glycoprotein 1 (LRG1) levels in hepatocyte-derived small extracel-
lular vehicles. SIRT2 has been shown to improve metabolic balance 
physiologically. It has been reported that SIRT2 can enhance the AKT 
signaling pathway and improve hepatic insulin sensitivity [33]. In 
addition to promoting glycolysis, SIRT2 can also promote gluconeo-
genesis [34]. SIRT2 can also promote fatty acid oxidation, thus relieving 
lipid metabolic stress in the liver, which may be useful for alleviating 
hepatic lipotoxicity [35]. Pathologically, SIRT2 can also alleviate 
inflammation, promote liver regeneration, maintain iron homeostasis, 
aggravate fibrogenesis and regulate oxidative stress in the liver [36]. 
Given the levels of oxidative stress and inflammation in the elderly liver, 
SIRT2 may also play an important role in alleviating oxidative stress and 
inflammation. Studies have reported that SIRT2 can effectively mitigate 
oxidative stress damage [37,38] and inflammation [39–41] within the 
liver. More intriguingly, SIRT2 is also capable of regulating iron meta-
bolism homeostasis in the liver. It was reported that SIRT2 could inhibit 
iron export in primary hepatocytes and HepG2 cells [42], which helps to 
maintain iron homeostasis and improve cell viability. These findings 
suggested that SIRT2 may participate in the regulation of the liver-bone 
axis by maintaining liver homeostasis.

In addition, secreted hepatokines are mainly related to the mainte-
nance of bone mass, suggesting an interesting relationship between the 
liver and bone. Xu [43] also demonstrated that BMP 9, which is pro-
duced and secreted by the liver, significantly increased bone mass and 
improved bone biomechanical properties in aged mice through the 
smad1-Stat1-P21 axis. Other hepatokines, such as FGF21, an endocrine 
hormone produced mainly by the liver, have been shown to regulate 
bone metabolism in animals through the FGF21-insulin-like growth 
factor binding protein 1 (IGFBP1) axis [44,45]. However, in a clinical 
study, FGF21 might be involved in the age-associated decrease in BMD 
(in the hip and spine), especially in the spine, through increased bone 
turnover, and IGFBP1 is unlikely to be the downstream effector of FGF21 
[46]. The growth hormone (GH)-IGF-1 axis is also involved in bone 
remodeling and metabolism and has an essential role in the achievement 
and maintenance of bone mass throughout life. GH acts both directly on 
bones and indirectly through liver-derived IGF-1 or locally produced 

Table 1 
Hepatokines and osteokines involved in the liver-bone axis.

Type and 
Head

Name Secreted by Effect on liver Effect on bone

Hepatokines Bone Morphogenetic 
Protein 9 (BMP 9)

Hepatic 
stellate cell

Inhibit hepatosteatosis Increase bone formation and suppress bone 
resorption

Fibroblast growth factor 21 
(FGF21)

Hepatocyte Alleviate the development of metabolic dysfunction-associated 
steatohepatitis (MASH)

Maintain bone mass

Insulin-like growth factor 1 
(IGF-1)

Hepatocyte Biomarker for metabolic dysfunction-associated fatty liver 
disease (MAFLD) 
Lipid regulation 
Downregulate liver fibrosis

Promote the differentiation of osteoblasts

Hepcidin Hepatocyte Supress iron overload and oxidative stress Maintain bone mass
Lecithin cholesterol 
acyltransferase (LCAT)

Hepatocyte Reverse cholesterol transportation to liver and alleviate liver 
fibrosis

Promote the differentiation of osteoblasts and 
inhibited the differentiation of osteoclasts

Fetuin A Hepatocyte Potential biomarker in the development of MAFLD Modulation of bone mineralization
Vitamin D Hepatocyte Inhibit insulin resistance, alleviate steatosis, 

necroinflammation and fibrosis in MAFLD
Stimulate the differentiation of osteoblasts 
and osteoclasts

Prostaglandins (PGs) Hepatocyte Positively associate with and liver fat and insulin resistance Regulatie the recruitment, differentiation, and 
activity of osteoblast and osteoclast

Osteokines Osteocalcin (OC) Osteoblast Supress accumulation of lipids in liver Promote bone mineralization and increases 
bone strength

Sclerostin Osteocyte High sclerostin levels are related to fat deposition and 
associated with deranged liver function

Decrease bone formation

Osteopontin (OPN) Osteoblast 
&osteoclast

Activate hepatic stellate cells which accelerating the 
development of MAFLD and even to hepatocellular carcinoma 
(HCC)

Activate osteoclastic bone resorption and 
reduce osteoblastic bone formation
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IGF-1 [47]. However, as individuals grow older, low levels of IGF-1 and 
GH can be detected in individuals aged ≥60 years [48].

These findings illustrated the interorgan action of the liver-bone axis 
in senile osteoporosis. However, fundamental laboratory research is still 
needed to prove the important regulatory role of the liver-bone axis in 
aging-related osteoporosis, thus providing a potential and promising 
therapeutic target.

3.2. Postmenopausal osteoporosis (PMOP)

PMOP, also known as osteoporosis after menopause, is a condition 
characterized by decreased bone density and an increased risk of frac-
tures in women after they have gone through menopause [49]. During 
menopause, the levels of estrogen, a hormone that helps maintain bone 
density, decrease significantly, which disrupts the delicate balance be-
tween bone formation and resorption, resulting in a net loss of bone 
mass [50,51].

It is well known that estrogens influence the differentiation and 
lifespan of mature osteoclasts and osteoblasts, as well as the lifespan of 
osteocytes. Estrogens can directly regulate the activity of these three 
types of cells through estrogen receptors [52]. By activating the 
Src/Shc/ERK signaling pathway [53] and downregulating JNK, estrogen 
can inhibit the apoptosis of osteoblasts. Accumulating studies have 
shown that oxidative stress increases with age, which is related to the 
pathophysiology of PMOP [54,55]. In response to oxidative stress, nu-
clear factor erythroid 2-related factor 2 (Nrf2) is released from 
Kelch-like ECH-associated protein 1 (Keap1) and accumulates in the 
nucleus, followed by upregulation of Nrf2/ARE antioxidant pathways 
[56]. Renlei Yang [57] reported that 17β-estradiol plays an 
anti-osteoporosis role by promoting osteoblastic bone formation 
through the ESR1-Keap1-Nrf2 axis. In addition, estrogen inhibited 
proinflammatory cytokines, such as interleukin-1β (IL-1β), interleukin-6 
(IL-6), and TNF-α, which promote osteoclast differentiation. In addition, 
estrogen can also increase TGF-β and osteoprotegerin (OPG) levels, 
which inhibit osteoclast differentiation [58–60].

Although estrogen directly regulates osteoblasts and osteoclasts, we 
cannot ignore the indirect regulation by which estrogen modulates the 
skeletal system by positively regulating liver metabolism. The liver is an 
estrogen-targeted organ [61], and estradiol has been shown to inhibit 
hepatic stellate cell proliferation and fibrogenesis in animal models 
[62]. Due to the lack of estrogen during menopause, the liver appears to 
be more vulnerable to developing liver diseases such as MAFLD and 
primary biliary cholangitis (PBC) (a condition of autoimmune liver 
diseases) in females [63]. Up to a point, heavier individuals tend to have 
a higher BMD, however, the correlation between the body mass index 
and bone mass appeared to be U-shaped [64]. Therefore, after taking the 
mechanical stimulation of body weight into account, the low bone mass 
in PMOP patients might be partially caused by metabolism abnormal-
ities under MAFLD.

The impaired synthetic and secretory functions of the liver under 
these conditions could further lead to osteoporosis. It has been reported 
that the serum IGF-1 concentration is significantly decreased in PMOP 
patients [65]. In addition, the structure of IGF-1 is similar to that of 
insulin, which might indicate that the presence of qualitative bone ab-
normalities in postmenopausal women with T2DM may be associated 
with the presence of MAFLD after menopause [66].

In addition, osteoporosis is a common complication of autoimmune 
liver diseases. Umit Secil Demirdal [67] demonstrated the presence of 
autoantibodies associated with autoimmune liver diseases in post-
menopausal women, which might indicate an association between 
autoimmune liver diseases and osteoporosis.

Moreover, altered iron metabolism is closely associated with osteo-
porosis initiation and progression [68]. The iron deposition of hepcidin, 
which is responsible for reducing intestinal iron absorption and inhib-
iting macrophage (macrophage/bone) iron deposition, is regulated by 
estrogen [69,70]. Yanli Hou [71] reported that estrogen could greatly 

contribute to iron homeostasis by regulating hepatic hepcidin expres-
sion directly through a functional ERE in the promoter region of the 
hepcidin gene. Thus, these studies indicated a regulatory relationship 
between the liver and bone postmenopause (Fig. 2).

In conclusion, the relationship between bone metabolism and the 
liver is complex in patients with PMOP. However, the precise mecha-
nisms involved in the regulation of the liver-bone axis in the context of 
PMOP have not been precisely established, and a vast amount of clinical 
and basic research is still needed, which might further help build a better 
understanding of the treatment for PMOP.

4. Regulation of the liver-bone axis in secondary osteoporosis

4.1. Cirrhosis-induced bone loss

Chronic liver disease frequently progresses to liver cirrhosis, 
following different processes that involve liver cell degeneration and 
extensive necrosis. Historically, the severity of liver cirrhosis is evalu-
ated by the Child-Pugh classification and Model for End-Stage Liver 
Disease (MELD) score [72]. Patients with cirrhosis often develop oste-
oporosis, with an incidence of approximately 20%–50 %, which is 
defined as hepatic osteodystrophy (HOD) [73,74]. Nevertheless, R. 
Wakolbinger [75] found a significant loss of bone structural integrity at 
the early stage of cirrhosis which indicated a liver-bone axis in the 
development of cirrhosis. In our previous study [16], we identified a 
critical hepatokine, LCAT, which is involved in the regulation of the 
liver-bone axis in patients with cirrhosis. Briefly, the unusually high 
expression of PP2Acα in the liver of patients with cirrhosis leads to the 
downregulation of LCAT through the dephosphorylation of the tran-
scription factor USF1. Surprisingly, exogenous supplementation with 
recombinant LCAT relieved liver fibrosis and increased the BMD (right 
femur of mice) in a mouse HOD model by promoting the reversal of 
cholesterol transport from the bone to the liver via the liver-bone axis.

In addition, 10 %–25 % of circulating IGF-1 is crucial for normal 
bone development, and decreased concentrations of IGF-1 are observed 
in individuals who develop liver cirrhosis compared with healthy in-
dividuals [76–78] and are negatively related to clinical liver impairment 
[79]. Shoshana Yakar [80] reported decreased circulating IGF-1 levels 
and attenuated bone growth in liver Igf-1 and acid labile subunit (ALS) 
double-knockout mice, which indicated the important role of the 
IGF-1/IGFBP3/ALS ternary complex in osteoporosis pathophysiology. 
Therefore, this finding implies that IGF-1 may also be involved in the 
regulation of the liver-bone axis in cirrhosis.

Cirrhosis typically follows chronic inflammation [81]. Inflammation 
has been identified as a potential risk factor for osteoporosis [82]. 
During cirrhosis, sinusoidal endothelial cells, Kupffer cells and hepato-
cytes release proinflammatory cytokines, such as tumor necrosis 
factor-alpha (TNF-α), interleukin-6 (IL-6), and interleukin-1 beta (IL-1) 
[83], which cause an increase in overall inflammation levels in the body 
and might also result in decreased bone mass [84]. It has been reported 
that circulating IL-6 and TNF-α levels are significantly greater in patients 
with cirrhosis. However, another study showed that serum IL-1 and 
TNF-α levels were not different between patients with cirrhosis and 
controls, but the levels of interleukin-2 (IL-2) and IL-6 in the serum of 
patients with cirrhosis were significantly elevated. Therefore, more ex-
periments are needed to demonstrate the specific mechanism by which 
inflammatory factors regulate cirrhosis-induced bone loss through the 
liver-bone axis.

Moreover, OC, an osteoblast-derived factor, tightly regulates multi-
ple target organs, including the pancreas, liver, muscle, adipose tissue, 
testes, and central and peripheral nervous systems [85]. It has been 
reported [86] that the livers of Osc-/Osc- mice exhibit lipid accumulation 
and steatosis, and mice treated with OC exhibit no accumulation of 
lipids and exhibit normal liver morphology when fed a high-fat diet [87,
88]. In patients with end-stage cirrhosis, plasma OC is decreased 
[89–91]. However, the mechanism by which OC participates in the 
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progression of liver cirrhosis is still unclear.
Another endogenous Wnt antagonist secreted almost exclusively by 

osteocytes, sclerostin, decreases bone formation by repressing osteoblast 
differentiation and proliferation [92–94]. A study in human cadaveric 
donors with alcoholic liver cirrhosis (ALC) revealed that ALC induced an 
increase in osteocytic sclerostin expression, suggesting its role in 
mediating low bone formation among ALC individuals. Yumie Rhee [95] 
reported that the serum sclerostin level was significantly greater in pa-
tients with cirrhosis than in controls and that patients with Child‒Pugh 
class B or C cirrhosis had higher sclerostin levels than patients with class 
A cirrhosis or controls after subgroup analysis. Furthermore, the scle-
rostin level showed an inverse correlation with the serum albumin 
concentration, which is a marker of liver dysfunction. In addition, they 
also found that serum sclerostin levels seemed to be greater in patients 
with alcoholic cirrhosis than in patients with hepatitis B virus 
(HBV)-associated cirrhosis, which was consistent with a recent report by 
Gonza’lez-Reimers [96]. However, Robert Wakolbinger [97] reported a 
contrasting sclerostin level based on a pilot study of individuals with 
various forms of liver cirrhosis-induced bone loss (ALD, viral hepatitis, 
nonalcoholic fatty liver disease, hemochromatosis and autoimmune 
hepatitis). They found that patients with ALD had significantly lower 
sclerostin levels, probably because alcohol promotes osteocyte apoptosis 
[98]. Considering that osteoblast activity is reduced in hepatic cirrhosis 
[99], the low sclerostin levels observed in ALD patients could serve as an 
attempt to preserve osteogenesis. Therefore, to further investigate the 
specific mechanism of sclerostin in cirrhosis-induced bone loss, 
large-scale cohort studies and the consideration of the different etiol-
ogies of cirrhosis and ethnicities are essential.

In general, the abnormal secretion of hepatokines and osteokines 
indicated that the liver-bone axis is regulated by cirrhosis-induced bone 
loss. Certainly, there might be other relevant factors that contribute to 
the maintenance of bone tissues through the liver-bone axis. However, 
the specific mechanism is not yet clear. Therefore, screening potential 

regulatory factors with the help of comprehensive multiomics research 
may reveal new therapeutic targets for the treatment of HOD.

4.2. Chronic cholestatic liver disease (CCLD) induced bone loss

Primary biliary cholangitis (PBC) and primary sclerosing cholangitis 
(PSC) are important causes of chronic cholestasis and are the most 
common causes of cholestatic liver disease. It has been reported that the 
incidence of osteoporosis in patients with PBC and PSC ranges from 15 % 
to 40 % [100–102]. Chronic cholestasis results in reduced bile acid 
levels in the intestine and affects the absorption of vitamin D and 
vitamin K, which further leads to deficient absorption of calcium salts. 
Moreover, vitamin D and its metabolites must bind to vitamin D-binding 
protein (VDBP), which is expressed in the liver, to circulate in the blood. 
However, VDBP expression decreases with the progression of chronic 
liver disease [103] and might indirectly participate in the regulation of 
the liver-bone axis. In contrast to the occurrence of osteoporosis 
accompanied by low bone formation in PBC patients, patients with PSC 
often exhibit increased bone resorption.

T helper 17 (Th17) cells are adaptive immune cells that play myriad 
roles in the body and have been reported to mediate bone loss under 
different pathological conditions [104]. Using a classic PSC animal 
model, Tobias Schmidt [105] reported that Abcb4− /− mice exhibited an 
increased frequency of Th17 cells in the liver, which enhanced IL-17 
production and thus led to increased bone resorption.

4.3. Hepatitis virus infection-induced bone loss

Approximately 5 % of the world’s population (350–400 million 
people) and 2 % of the world’s population (approximately 180 million 
people worldwide) are chronically infected with the hepatitis B virus 
(HBV) and hepatitis C virus (HCV), respectively. With long-term in-
fections of HBV and HCV, bone loss is frequently reported in these 

Figure 2. Potential liver-bone axis in patients with PMOP. Under normal physiological conditions, estrogens can directly and indirectly regulate the activity of 
osteoblasts and osteoclasts. However, CLD, such as MAFLD, autoimmune liver diseases and altered iron metabolism caused by estrogen deficiency, might contribute 
to abnormal bone metabolism during PMOP.
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individuals [106–110]. However, the mechanism of bone mass loss in 
patients with viral hepatitis is poorly understood.

It has been reported that the serum levels of soluble TNF receptor 
p55 (sTNFR-55) in patients with HBV- and HCV-related cirrhosis are 
inversely correlated with BMD (in the lumbar spine and femoral neck) 
and positively correlated with urinary deoxypyridinoline, a biochemical 
marker of bone resorption [111]. However, recent studies revealed that 
patients with noncirrhotic chronic hepatitis B infection also exhibited 
bone loss. Chien-Hua Chen [107] reported that patients with non-
cirrhotic CHB infection, especially males, had a significantly greater risk 
of osteoporosis. Yuan-Yuei Chen [112] also showed that in noncirrhotic 
CHB patients, the clearance rate of HBeAg in women was greater than 
that in men, and the detection rate of anti-HbeAg and HBsAg antibodies 
in premenopausal women was greater than that in postmenopausal 
women and men. In addition, a higher estradiol level in women in-
creases the level of interferon-γ in lymphocytes and enhances the spe-
cific antigen response of monocytes in peripheral blood, which leads to 
greater inflammatory activity in male HBV patients than in female pa-
tients and contributes to a significant reduction in bone mineral density.

Currently, HBV-mediated immunomodulation and chronic inflam-
mation are recognized as possible mechanisms for noncirrhotic CHB- 
induced osteoporosis. When HBV infection remains active for a long 
time, the receptor activator of nuclear factor-κB ligand (RANKL)-re-
ceptor activator of nuclear factor-κB (RANK)-OPG system is out of bal-
ance, thus facilitating the overactivation of osteoclasts [113]. Moreover, 
HBV can induce fatty changes in hepatocytes, regulate lipid and sugar 
transport by activating sterol regulatory element binding protein 1c and 
peroxisome proliferator-activated receptor γ, and ultimately lead to 
systemic insulin resistance and other metabolic disorders [114]. In 
addition, HBV- and HCV-mediated iron overload might contribute to 
bone loss after infection [115]. However, the precise regulatory mech-
anism involved remains unclear.

It is also worth mentioning that an increased risk of osteopenia and 
osteoporosis was associated with the use of antiviral drugs [116]. One 
study [117] raises the question of whether drugs used to treat the disease 
may also cause varying degrees of bone density loss in patients, but this 
remains to be studied.

4.4. MAFLD-induced bone loss

MAFLD, formerly known as nonalcoholic fatty liver disease, affects 
approximately a quarter of the world’s adult population and poses a 
major health and economic burden to all societies [118,119]. Increasing 
experimental evidence supports a pathophysiological link between 
MAFLD and osteoporosis [120]. Interestingly, the two diseases share 
common risk factors, including but not limited to aging, a sedentary 
lifestyle, and sex hormone deficiencies, suggesting that they may be 
linked beyond simple coincidence. However, the precise mechanism 
underlying the association between MAFLD and decreased bone mass 
remains controversial.

A key feature of MAFLD is the low-grade inflammatory state, could 
not only developing metabolic dysfunction-associated steatohepatitis 
but also affecting extrahepatic organs [121]. During MAFLD, the pro-
duction of proinflammatory cytokines such as TNF-α, IL-1, and IL-6, 
which are produced mainly by inflammatory cells infiltrating the 
liver, increases. As mentioned before, inflammation has been identified 
as a potential risk factor for osteoporosis through excessive activation of 
osteoclasts. Elevated TNF-α levels were observed in patients with 
MAFLD [122]. RANKL, which belongs to the TNF superfamily, binds to 
RANK on the surface of osteoclast precursors and promotes osteoclas-
togenesis and bone resorption [123]. In addition, as a soluble decoy 
receptor of RANKL, OPG can inhibit the RANKL-RANK interaction, thus 
preventing bone resorption. It has been reported that liver fibrosis in 
MAFLD patients is significantly correlated with low BMD (in the lumbar 
spine, femur neck, and total hip), suggesting an association between the 
aggravation of hepatic inflammation, fibrosis, and bone loss in MAFLD 

patients [124]. Under inflammatory conditions, activated T cells and B 
cells can also secrete other pro-osteoclastogenic molecules, such as 
RANKL and IL-17A, which leads to the induction of bone loss [125].

Fetuin-A, which is exclusively secreted by the liver, is reduced in 
MAFLD patients and might serve as a potential biomarker for the 
development of MAFLD [18]. Moreover, the serum fetuin-A level was 
also decreased in patients with osteoporosis, and fetuin-A-deficient 
Ahsg− /− mice exhibited impaired bone development. In addition, 
other hepatokines mentioned above, such as IGF-1, FGF21, and IGFBP1, 
might also be related to osteoporosis in MAFLD patients. Studies per-
formed in patients with MAFLD have shown that the level of IGF-1 is 
lower in MAFLD patients than in healthy controls and is negatively 
associated with the histological severity of MAFLD [126–128]. IGF-1 
also induces cellular senescence and inactivates hepatic stellate cells 
[129]. Notably, low levels of IGF-1 in MAFLD patients with osteoporosis 
directly impair osteoblast differentiation and growth. In contrast, both 
the serum FGF21 level and liver FGF21 mRNA level is increased in 
MAFLD patients as long as the level of IGFBP1 increases and serves as an 
independent predictor of hepatic steatosis [130,131]. Considering the 
regulatory effect of FGF21 on IGFBP1, the FGF21-IGFBP1 axis might 
also play an important role in MAFLD-induced osteoporosis.

In addition, OPN is a phosphorylated glycoprotein secreted mainly 
by osteoblasts and osteoclasts that was originally found in the bone 
marrow. OPN is a prerequisite for activating osteoclastic bone resorption 
and reducing osteoblastic bone formation in unloaded mice, and OPN- 
deficient mice are resistant to osteoporosis [132]. Patients with 
MAFLD were reported to have significantly greater serum OPN levels 
than patients in the control group [133]. OPN also negatively regulates 
the liver by activating hepatic stellate cells, which accelerates the 
development of MAFLD and even HCC [134]. Moreover, genetic 
depletion of OPN protected mice fed a high-fat diet from 
obesity-induced hepatic steatosis [135]. These findings also demon-
strated that the liver-bone axis is regulated between MAFLD and 
osteoporosis.

Bone-derived OC [136] showed an unexpected regulatory effect on 
the liver. Clinical studies have shown that a reduction in the serum OC 
concentration is closely related to the occurrence and development of 
MAFLD [133,137]. Uncarboxylated OC can regulate insulin signaling, 
de novo lipogenesis, and endoplasmic reticulum stress through direct 
binding to its liver-specific receptor, G protein-coupled receptor family 
C Group 6 subtype A [138].

We likewise cannot ignore the important role of sclerostin in MAFLD- 
induced bone loss. It has been reported [99,139] that circulating scle-
rostin levels are significantly lower in MAFLD patients than in normal 
controls and are positively correlated with BMD (in the left femora of 
mice) and negatively correlated with many MAFLD-related biochemical 
parameters, including BMI, liver function tests, triglycerides, insulin and 
HOMA-IR. However, sclerostin levels are increased in patients with 
cirrhosis. This might be explained by “insulin-based”: increased insulin 
in MAFLD patients mimics the action of IGF1 through binding with 
IGF-1 receptors on osteocytes, further suppressing sclerostin production 
[140].

In conclusion, chronic inflammation, the fetuin-A level, the GH/IGF- 
1 axis and disturbances in the FGF21-IGFBP1 axis are the main patho-
physiological factors linking MAFLD with abnormal bone metabolism. 
Some osteokines have also been shown to form a liver-bone axis in 
MAFLD. Furthermore, MAFLD is accompanied by increased inflamma-
tion [141], which impairs the synthetic and secretory functions of 
hepatokines in the liver. Therefore, although many issues related to the 
liver-bone axis in MAFLD patients with osteoporosis have not been 
elucidated to date, growing evidence suggests that screening and sur-
veillance of abnormal bone metabolism and liver function in patients 
with MAFLD should be considered in future strategies and guidelines for 
identifying MAFLD-induced bone loss (Fig. 3).
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4.5. Alcoholic liver disease (ALD)-induced bone loss

ALD is typically caused by long-term excessive alcohol consumption 
and has been described as an independent risk factor for osteoporosis 
[142]. Ethanol has a dose-dependent toxic effect on osteoblasts [143], 
and chronic alcohol consumption suppresses the osteoblastic differen-
tiation of bone marrow cells and promotes adipogenesis, which further 
worsens bone metabolism [144]. ALD comprises a spectrum of liver 
injuries, including simple steatosis, acute alcoholic hepatitis, and 
cirrhosis, which might contribute to bone loss [145]. Therefore, this 
finding suggests a potential liver-bone axis during ALD. However, the 
regulation of the liver-bone axis under ALD-induced bone loss remains 
largely unknown.

As mentioned before, the GH/IGF-1 axis plays an important role in 
bone remodeling and metabolism. It was reported that IGF-1 was 
significantly decreased in alcohol abusers with liver cirrhosis 
[146–148]. Thus, excessive alcohol consumption could also lead to an 
imbalance between osteogenesis and adipogenesis through impairing 
the GH/IGF axis [149]. PGs, which are produced by hepatocytes, are 
cytokines that regulate the recruitment, differentiation, and activity of 
osteoblasts and osteoclasts [150]. Some data have shown that the syn-
thesis of PGs in the liver is reduced due to strict restrictions on food 
intake in severe liver disease patients, and the downregulation of PGs 
could further contribute to bone loss [151,152]. Moreover, as a 
metabolite of arachidonic acid, PGs have been shown to promote the 
formation of new blood and lymphatic vessels, which are essential for 
supplying nutrients to bone [153]. Therefore, under pathological ALD 
conditions, the synthesis of PGs in the liver is blocked, which in turn 
leads to the activation of osteoclasts and bone loss. This might explain 
the mechanism of osteoporosis caused by ALD from a completely new 
perspective.

In addition, inflammatory factors are indispensable risk factors for 
osteoporosis. It has been reported that the concentrations of IL-1, IL-6, 
and TNF-α are increased in patients with ALD [154]. TNF-α and IL-6 

levels caused the activation of osteoclastogenesis via the induction of 
RANKL. Therefore, the abnormal levels of inflammatory factors secreted 
by the liver caused by excessive alcohol intake might contribute 
partially to osteoporosis [155].

The imbalance of RANKL-OPG system might contribute to ALD- 
induced bone loss. RANKL levels are significantly increased in alco-
holic cirrhotic patients [156]; however, García-Valdecasas-Campelo E 
[157] reported that RANKL levels are not altered in ALD patients. OPG 
acts as a decoy receptor for osteoclast activating factor and a receptor 
activator of RANKL and impairs osteoclast function [158]. Increased 
OPG levels were observed in alcohol-dependent subjects in several 
studies [157,159,160] and partly represent a compensatory mechanism 
for the negative balance of bone remodeling in patients with alcoholic 
cirrhosis.

As mentioned above, sclerostin decreases bone formation by 
repressing osteoblast differentiation and proliferation. It was reported 
that sclerostin levels tended (albeit not significantly) to be higher among 
individuals with cirrhosis and demonstrated a significant association 
with liver function impairment, with elevated levels observed among 
patients classified as Child C [161]. However, disparate results were 
observed in several studies. Wakolbinger [97] reported decreased scle-
rostin levels among 16 alcoholics, which might be explained by alcohol 
promoting osteocyte apoptosis. However, the exact role of sclerostin in 
ALD needs further investigation.

Interestingly, other factors, such as alcoholic neuropathy and 
myopathy, that contribute to bone loss in individuals with ALD indicate 
multiorgan crosstalk. Badrick reported [162] a 3 % increase in cortisol 
levels per unit of alcohol consumed, and the increase in cortisol 
observed in chronic alcoholics may indirectly cause osteopenia and 
aseptic necrosis [163]. Muscle mass and strength play crucial roles in 
determining bone mass, and muscle atrophy and bone loss are closely 
intertwined. In this context, muscle atrophy related to alcoholism serves 
as an additional contributing factor to decreased bone mass in alcoholic 
patients [164]. Vitamin D deficiency [165,166] and low testosterone 

Figure 3. Potential role of the liver-bone axis in MAFLD-induced bone loss. Some molecules and proteins secreted by the liver, including IGF-1, FGF21− IGFBP1, 
TNF-α, OPN and fetuin A, contribute to bone loss in MAFLD. Besides, bone derived OC, OPN and sclerostin could also regulated the metabolism of liver dur-
ing MAFLD.
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levels are associated with muscle atrophy in alcoholics [167,168], which 
in turn leads to bone loss. In addition, vitamin D is closely related to 
Ca2+ levels and plays a vital role in bone development and 
calcium-dependent signaling [169]. Alcohol-induced liver injury can 
reduce the levels of VDBP and the hydroxylation of vitamin D by the 
liver [170,171]. In addition, deficient vitamin D levels are positively 
correlated with lower high-density lipoprotein levels, which might lead 
to abnormal cholesterol metabolism [172]. Abnormal upregulation of 
cholesterol leads to an increase in fat content in the bone marrow, which 
is also known to worsen osteoblast function and lead to osteopenia 
[173]. We hypothesize that the decrease in bone mass in ALD patients 
may be partially attributed to abnormalities in cholesterol metabolism 
caused by vitamin D deficiency.

The liver is the main organ of alcohol metabolism and the target 
organ of alcohol injury. Aldehyde dehydrogenase 2 (ALDH2), a key 
enzyme that detoxifies the ethanol metabolite acetaldehyde, is highly 
expressed in the liver, heart, and brain [174–176]. Compared with WT 
mice, Aldh2− /− mice had reduced cancellous bone volume and bone 
formation when exposed to ethanol, likely due to increased circulation 
levels of acetaldehyde. However, liver-specific Aldh2 knockout mice are 
needed to observe the regulation of the liver-bone axis under the in-
fluence of alcohol.

Furthermore, there is no doubt that ALD can be prevented by alcohol 
abstinence. It has been reported that decreased serum OC in alcoholics 
improves with abstinence after 6 months [177]. Another bone resorp-
tion marker, cross-lap, increased after 8 weeks of abstinence, indicating 
a high turnover rate [178]. In addition, the lower IGF-I bioavailability 
was also improved after abstention [147].

This evidence indicated the regulation of the liver-bone axis between 
ALD and osteopenia (Fig. 4). Therefore, elucidating the precise 

mechanism of ALD-induced bone loss will provide a more theoretical 
basis and potential treatments for the clinical treatment of osteoporosis 
caused by alcohol intake.

4.6. Hereditary hemochromatosis (HHC)-induced bone loss

HHC is caused by mutations in the hereditary hemochromatosis 
protein, transferrin receptor 2 (TFR2), hemojuvelin, hepcidin, or ferro-
portin genes [179]. Most HHC subtypes result in low hepcidin levels and 
iron overload, and abnormal iron accumulation in various tissues can 
lead to fatal complications such as liver cirrhosis, heart failure, or dia-
betes [180]. Importantly, bone is highly susceptible to fluctuations in 
iron concentration [170,181]. Therefore, alterations in bone meta-
bolism are certainly affected in HHC patients. Osteoporosis was detected 
in 29%–34 % and osteopenia in 74%–79 % of HHC patients, and the risk 
of vertebral fractures has been reported to reach 20 % [182]. Mainte-
nance of systemic and cellular iron homeostasis predominantly regu-
lated by the liver through the iron regulatory hormone hepcidin is vital 
for normal physiological functions in mammals [172]. To date, 
HHC-induced disease models have provided insights into the impact of 
HHC on bone metabolism, showing that, for example, hepcidin defi-
ciency leads to bone loss via suppressed bone formation [183]. How-
ever, the molecular mechanism underlying hepcidin regulation by 
hemochromatosis proteins is incompletely understood. TFR2, which is 
predominantly expressed in the liver, serves as an important regulator of 
hepcidin [184]. It was reported that the hepatocyte-specific deletion of 
Tfr2 cells results in an iron overload phenotype [185]. However, the 
precise mechanism by which liver iron overload caused by Tfr2 defi-
ciency leads to osteoporosis has not been thoroughly elucidated to date. 
In addition, based on a hindlimb unloading model, Zi Xu [186] observed 

Figure 4. Potential role of the liver-bone axis in ALD-induced bone loss. Alcohol-induced liver injury can reduce the levels of VDBP and the hydroxylation of 
vitamin D by the liver, which might further induce abnormal cholesterol metabolism and lead to bone loss. Other inflammatory factors, such as IL-1, IL-6 and TNF-α, 
as well as PGs, also contribute to bone loss. In addition, ALDH2 deficiency could increase the circulation levels of acetaldehyde and lead to bone loss.
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an elevated hepcidin level in the liver and a reduced ferroportin-1 level 
in the duodenum, which led to abnormal iron metabolism, suggesting 
that unloading-induced bone loss was orchestrated by iron overload and 
coupled with the regulation of hepcidin by the liver.

Liver dysfunction is one of the leading pathologies in HHC. There-
fore, the lower BMD may not be explained solely by iron toxicity. This 
has been confirmed by a cross-sectional study of 93 patients with HH, 
where bone fragility was observed in 25 % of patients with HH and was 
independent of the severity of iron overload but strongly associated with 
cirrhosis [187]. Moreover, patients homozygous for p.C282Y are at a 
high risk of developing general liver disease, with men additionally 
showing significantly increased rates of hepatocellular carcinoma [188].

An unappreciated potential mode of regulation of the liver-bone axis 
might contribute to bone loss in HHC. Therefore, elucidating the regu-
lation of iron metabolism by liver damage is of great interest for targeted 
therapy for bone loss in HHC.

4.7. Schistosomiasis infection-induced bone loss

The neglected tropical disease schistosomiasis caused by blood flukes 
of the genus Schistosoma continues to scour humankind. Schistosomiasis 
affects approximately 200 million people, and approximately 700 
million people are at risk in 74 countries [189,190]. Waterborne flat-
worm larvae penetrate the skin and move in the bloodstream through 
the heart and lungs to the liver [191]. Here, they mature and mate in the 
portal circulation before laying eggs that lodge in the liver. Parasite egg 
antigens can induce a severe host immune response resulting in granu-
lomas and portal fibrosis in the liver, thus leading to 
schistosome-associated liver abnormalities.

Unexpectedly, schistosomiasis infection also leads to reduced bone 
mass. Indeed, the incidence of osteoporosis in schistosomiasis patients 
was considerably greater than that in healthy controls in nonendemic 
areas. Wei Li [192] demonstrated that the increase in RANKL produced 
by Tfh cells was correlated with host osteoclast-mediated bone loss in 
the context of schistosome infection. However, this study was unable to 
elucidate the entire mechanism of schistosomiasis infection-induced 
bone loss. As mentioned before, schistosomiasis infection invariably 
results in severe liver damage, such as liver fibrosis. This degree of liver 
injury results in the secretion of the corresponding liver-derived factors, 
thus further affecting bone homeostasis through the circulation. 
Therefore, we need to consider the effect on the skeletal system caused 
by liver damage. There are few clinical studies showing how long 
schistosome infection leads to bone loss. However, schistosome infection 
has been linked to growth inhibition in children [193], even those with 
low parasitic burdens. In addition, significant bone loss in mice during 
the chronic phase of infection has been reported to occur 11–13 weeks 
postinfection [192]. However, it should be noted that in areas where 
schistosomiasis is endemic, regular screening and treatment are neces-
sary. Additionally, following the diagnosis of schistosome infection, 
immediate assessment of changes in bone metabolism is essential to 
prevent the occurrence of osteoporosis.

4.8. HCC induces bone loss

A subset of patients with MAFLD or hepatitis virus infection can 
develop progressive liver disease leading to cirrhosis and HCC [194]. 
Therefore, given the negative effects of MAFLD, hepatitis virus infection, 
and cirrhosis on bone metabolism, we cannot ignore the regulatory 
relationship between the liver and bone in the presence of HCC. Ac-
cording to clinical research in China, Fu [195] reported that the inci-
dence of osteoporosis in patients with liver cancer significantly 
increased due to a decrease in serum calcium; metabolic disorders 
involving vitamin D, calcium, and phosphorus; and an increase in 
parathyroid hormone. There are few reports in the literature describing 
bone loss in HCC, let alone the precise mechanism involved.

The inflammatory environment is favorable for HCC development, 

and the oversecretion of inflammatory factors could further lead to bone 
loss. Stimulating the release of inflammatory cytokines is the key mo-
lecular mechanism by which spectrin, beta, and nonerythrocytic 1 
(SPTBN1) induces the occurrence and disappearance of liver cancer 
[196]. SPTBN1 not only plays a powerful role in the occurrence and 
development of HCC but also affects bone health by promoting the 
proliferation and differentiation of osteoblasts and vascularization in 
bone through the TGF-β/Smad3 and STAT1/Cxcl9 pathways [197]. 
Targeting SPTBN1 may benefit fracture healing and drug discovery and 
might benefit patients with HCC and osteoporosis [198]. Similarly, co-
morbid genes might also indicate a liver-bone axis model. Sharon Russo 
[199] reported that mutations in the ZNF687 gene cause severe Paget’s 
disease of bone, resulting in severe alterations in bone remodeling, and 
strikingly, in this mouse model, the mutation was also associated with 
high penetrance of HCC. This phenomenon suggests that liver-bone 
crosstalk may occur in HCC.

Secreted hepatokine levels are also decreased in HCC patients due to 
liver function damage. It has been reported that IGF-1 expression in the 
livers of HCC patients is significantly lower than that in the livers of non- 
HCC patients with cirrhosis and healthy controls. This might be one of 
the causes of HCC-induced osteoporosis. However, OPN, a protein 
secreted by osteoblasts, is highly expressed in HCC. Serum OPN could 
serve as a potential biomarker for HCC [200]. These results provide new 
ideas for the regulation of liver-bone crosstalk in HCC. However, more 
research is needed in the future to verify the regulatory mechanism of 
liver bone.

Liver transplantation is the only effective way to treat a variety of 
end-stage liver diseases, such as HCC. The survival rate of transplant 
patients has increased exponentially, which has led to a greater under-
standing of long-term complications secondary to the underlying pa-
thology or the various treatments that must be followed. Metabolic bone 
disease is a chronic complication of liver transplantation that reduces 
quality of life, and liver transplant recipients have a significantly 
increased risk of osteoporosis and fractures [201,202]. A clinical study 
revealed a decreased level of serum OPG and an increased level of serum 
Dickkopf-related protein 1 after living donor liver transplantation, 
which indicated enhanced osteoclast activity [203]. Moreover, recent 
research has shown that bone density can be used as an indicator to 
predict posttransplant survival in liver transplant recipients with HCC 
[204,205]. In addition, ischemia/reperfusion injury and the use of im-
munosuppressants [206,207] after liver transplantation, which can lead 
to bone loss, cannot be disregarded, and further research is needed to 
determine the underlying molecular mechanisms involved.

Bone is now the second major site and accounts for approximately 
25 % of extrahepatic metastases from HCC [208]. The primary types of 
bone metastasis are osteolytic and osteoblastic according to the pre-
dominant activities of certain cell types, and an impaired balance be-
tween bone formation and resorption is frequently observed in both 
types of metastases. Yang Lu [209] reported that most (90.7 %) of the 
lesions were mixed osteolytic and osteoblastic based on a cohort of 43 
consecutive patients who were diagnosed with bone metastasis from 
HCC. OB can be stimulated by metastatic tumor cell-derived factors, 
including FGFs, urokinase-type plasminogen activator, endothelin-1, 
IGF-1, bone morphogenic proteins, and vascular endothelial growth 
factor (VEGF) [210–214]. However, little is known about osteoblastic 
bone metastasis in HCC. Sterol regulatory element-binding protein 2 
(SREBP2) is an important enzyme in cholesterol metabolism and is 
highly expressed in HCC [215]. It was rather surprising that activating 
Srebp2 promoted osteoclastogenic gene expression [216]. Moreover, 
BMP2 serves as a downstream effector of Srebp2, Bmp2 transcription is 
inhibited by SREBP2, and decreased BMP2 levels are negatively asso-
ciated with osteoblast activity [217,218]. Therefore, we can reasonably 
consider that the abnormal cholesterol metabolism caused by the 
elevated SREBP2 level in HCC could disrupt the bone microenviron-
ment, thus promoting HCC bone metastasis. In addition, osteoclast 
activation is a prerequisite for the occurrence of osteolytic bone 
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metastasis. In addition to RANKL and OPG produced by osteoblasts, the 
activation of osteoclasts induced by inflammatory factors such as TNF-α 
and ILs is also a significant factor in osteolytic bone metastasis. In 
addition, Bixiang Zhang [219] reported that the long noncoding RNA 
H19 induced the epithelial to mesenchymal transition of HCC cells by 
sponging microRNA-200b-3p and aggravated osteolytic bone remodel-
ing by reducing osteoprotegerin expression via the inactivation of p38 
mitogen-activated protein kinase (MAPK) signaling. Soon after, they 
demonstrated that bone-metastasized HCC-derived EVs could localize to 
orthotopic HCC sites and promote HCC progression by transferring 
ALKBH5-targeting miR-3190-5p (miR-3190) [220]. Furthermore, Hao 
Zheng [221] also reported that increased osteoclast differentiation 
caused by a normal increase in the m6A modification of anillin 
actin-binding protein promoted HCC bone metastasis.

In conclusion, a complex regulatory network of the liver-bone axis is 
involved in HCC-related bone metabolism (including bone loss after 
liver transplantation, overuse of immunosuppressants, and HCC bone 
metastases). However, further research is needed to elucidate the 
detailed mechanisms of liver-bone crosstalk in HCC, thus providing a 
new therapeutic strategy for clinical treatment.

5. Diagnosis and treatment targeting the liver-bone axis

The diagnosis of osteoporosis is made when patients have fragility 
fracture or a T score ≤ − 2.5 at the lumbar spine, femoral neck, total hip, 
or distal one-third of the radius on dual-energy X-ray absorptiometry 
(DXA) examination [222]. The lowest T score on an individual’s DXA 
examination is used for the diagnosis of primary osteoporosis. However, 
it is not particularly precise to rely on DXA alone for diagnosis, as sec-
ondary osteoporosis frequently occurs. Thus, we should pay more 
attention to the assessment of liver function. A thorough history, phys-
ical examination, and laboratory evaluation should be performed for 
various extrahepatic and/or intrahepatic factors. Additional attention 
should be devoted to the factors that are abnormally expressed in the 
serum during various primary or secondary osteoporosis processes. By 
assessing the expression levels of these factors, such as IGF-1, FGF21 and 
LCAT, it is possible to predict the progression of osteoporosis and pro-
vide a potential additive therapeutic intervention.

Once osteoporosis has been confirmed, timely anti-osteoporosis 
treatment is crucial. Generally, osteoporosis therapy consists of phar-
macologic and nonpharmacologic treatments [102]. For non-
pharmacologic treatments, in addition to adequate calcium/vitamin 
D/protein intake, maintaining a healthy weight, remaining active with 

Figure 5. Potential factors and mechanism involved in the liver-bone axis. Various endocrine factors (IGF-1, FGF21, hepcidin, vitamin D, OC, OPN, LCAT, 
fetuin-A, PGs, BMP2/9, IL-1/6/17, TNF-α) and key genes (SIRT2, ALDH2, TFR2, SPTBN1, ZNF687, SREBP2) might be involved in the regulation of liver-bone axis in 
different liver injuries induced bone loss. In addition to classical metabolic pathways such as inflammation and oxidative stress, iron metabolism, cholesterol 
metabolism, lipid metabolism and immune metabolism mediated by the liver-bone axis might also play some roles in regulating bone loss.
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weight-bearing exercise, and avoiding excess alcohol and caffeine intake 
were also necessary. In addition, factors that might lead to liver damage 
should also be avoided. On the other hand, there are two groups of 
pharmacological osteoporosis treatments: antiresorptive and anabolic 
agents [223]. Bisphosphonates, denosumab, and raloxifene mainly 
target and block osteoclast activity to decrease bone resorption and bone 
loss. Moreover, anabolic agents such as teriparatide and abaloparatide 
can transiently stimulate the parathyroid hormone receptor to stimulate 
osteoblasts and bone formation [224]. In addition, treatments for liver 
injury under pathophysiological conditions cannot be ignored. As an 
association between the liver and bone is established, a medication that 
could target both diseases would be a great advancement. It was re-
ported that treatment of hypogonadism and iron overload with testos-
terone replacement and phlebotomy was effective in improving bone 
mass in a small study of six hypogonadal men with hemochromatosis 
[225]. Vitamin E, a potent antioxidant, could resolve MAFLD at a dose of 
800 IU/d [226] and effectively suppress bone resorption in post-
menopausal women with osteopenia [227]. In addition, there are also 
some other emerging pharmacological options. Semaglutide, a 
glucagon-like peptide-1 receptor agonist (GLP-1RA), was shown to in-
crease bone mass and reduce fracture risk in addition to resulting in 
increased rates of MASH resolution [228,229]. The FXR agonist obe-
ticholic acid, which is a promising option for MAFLD management, 
might decrease osteoclastogenesis and prevent bone loss [230,231]. 
Therefore, targeting primary liver injury may provide novel insights into 
the treatment of osteoporosis in the clinic.

With in-depth research based on the liver-bone axis in different types 
of osteoporosis, more precise treatments targeting liver damage and 
osteoporosis should be developed. Currently, specific recombinant 
proteins, agonists, and inhibitors involved in the liver-bone axis might 
prove to be effective against osteoporosis. In addition, powerful mul-
tiomics approaches are creating new opportunities to annotate proteins 
involved in the regulation of the liver-bone axis, and the development of 
therapeutic targets based on these approaches will provide a solid 
theoretical basis for clinical practice.

6. Conclusion and perspectives

As a classical endocrine organ, the liver is involved in numerous 
pathophysiological regulatory processes. Liver-centered organ crosstalk 
has received significant attention, and concepts such as the “liver–gut 
axis”, “liver–brain axis”, “liver–lung axis”, and “liver–kidney axis” have 
been developed to illustrate the relationships between organs. In addi-
tion, the liver also showed tight regulation of the newly defined endo-
crine organ, bone, which could be defined as the “liver-bone axis”. 
Therefore, further elucidating the crosstalk between classical and newly 
defined endocrine organs could provide new ideas for basic and clinical 
research.

In this review, we discussed the potential regulation of the liver-bone 
axis under different physiopathological conditions both in primary 
osteoporosis and secondary osteoporosis (Fig. 5). Several endocrine 
factors (IGF-1, FGF21, hepcidin, vitamin D, OC, OPN, LCAT, fetuin-A, 
PGs, BMP2/9, IL-1/6/17, and TNF-α) and key genes (SIRT2, ALDH2, 
TFR2, SPTBN1, ZNF687 and SREBP2) might be involved in the regula-
tion of the liver-bone axis. In addition to the classic metabolic pathways 
involved in inflammation and oxidative stress, iron metabolism, 
cholesterol metabolism, lipid metabolism and immunometabolism 
mediated by the liver-bone axis require more research to elucidate the 
regulatory mechanisms involved in osteoporosis. Multiomics technology 
and data mining technology could certainly advance our understanding 
of the liver-bone axis in the future, providing new clinical strategies for 
managing liver and bone-related diseases. Moreover, we cannot deny 
that multiple organ crosstalk networks are based on the liver-bone axis, 
and the regulatory functions of other organs, such as muscle, kidney, 
brain, and intestine, will also be evaluated in subsequent scientific 
research.
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