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Ageing is considered as a snowballing phenotype of the accumulation of

damaged dysfunctional or toxic proteins and silent mutations (poly-

morphisms) that sensitize relevant proteins to oxidative damage as inborn

predispositions to age-related diseases.

Ageing is not a disease, but it causes (or shares common cause with) age-

related diseases as suggested by similar slopes of age-related increase in the

incidence of diseases and death. Studies of robust and more standard species

revealed that dysfunctional oxidatively damaged proteins are the root cause

of radiation-induced morbidity and mortality. Oxidized proteins accumulate

with age and cause reversible ageing-like phenotypes with some irreversible

consequences (e.g. mutations). Here, we observe in yeast that aggregation rate

of damaged proteins follows the Gompertz law of mortality and review argu-

ments for a causal relationship between oxidative protein damage, ageing and

disease. Aerobes evolved proteomes remarkably resistant to oxidative

damage, but imperfectly folded proteins become sensitive to oxidation. We

show that a-synuclein mutations that predispose to early-onset Parkinson’s

disease bestow an increased intrinsic sensitivity of a-synuclein to in vitro oxi-

dation. Considering how initially silent protein polymorphism becomes

phenotypic while causing age-related diseases and how protein damage

leads to genome alterations inspires a vision of predictive diagnostic,

prognostic, prevention and treatment of degenerative diseases.
1. Introduction
While powerful technologies led to a rapid growth of a descriptive molecular cell

biology and to the development of new drugs, the benefit to human health

remains dismal to modest. Studies of the consequences of advanced ageing and

age-related diseases (ARD), rather than their causes, are not likely to lead to

their mitigation. Molecular details accumulate in the absence of critical phenom-

enological studies such that the bottleneck to the progress of biomedical science

appears more at the level of concepts than technologies. Here, we propose

simple concepts about plausible common causes and mechanisms of ARD, and

ageing itself, and avoid consideration of ‘mechanistic studies’ of late-stage dis-

eases and ageing. However, they can be readily accommodated within the

framework of the proposed concepts.

Ageing is age-related acceleration of the degradation of cellular and tissue

homeostasis causing malfunction, morbidity and death predisposed by inborn

‘weak links’. The incidence of nearly all human ARD and death increases expo-

nentially with age, with similar slopes (about fifth power of time) suggesting a

plausible common root cause, termed intrinsic ageing [1]. Here, we enquire

about the existence of a basic chemistry of intrinsic ageing ‘clock’ (subjected to

extrinsic influences) and explore which biological substrates are the inborn

weak links predisposing to particular ARD. We conclude that oxidative protein

damage is a likely common cause of ageing and ARD emerging via a common

mechanism with ‘snowballing’ phenotypic consequences (symptoms).
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The literature on biology of ageing and reactive oxygen

species (ROS) is exhaustive and exhausting. While countless

correlations between ROS, oxidative stress, ARD and ageing

cannot be chance products, there is no sign of a conceptual

‘home run’. Contradictory conclusions about biological effects

of ROS range from obviously deleterious (e.g. [2]) to vitally

important (e.g. [3]). But adopting ROS activity during evol-

ution into some useful biological pathways does not make

ROS harmless. The identity, extent, timing and location of oxi-

dized molecules are of essence for the understanding of

biological (phenotypic) effects of ROS.

When, in the evolutionary past, atmospheric oxygen rose

20-fold and energy-efficient oxidative phophorylation made

its way into eukaryotic cells, the adaptation to noxious levels

of ROS became the condition of survival. The severity of prime-

val biological effect of ROS can be appreciated by observing

rapid death of obligate anaerobic bacteria and archaea exposed

to atmospheric oxygen, unadapted to high ROS levels in their

oxygen-free environments. The fact that addition of standard

antioxidants to growth medium allows for survival and

aerobic growth of obligate anaerobes [4] shows that ROS

activity kills non-adapted cells. This cytotoxic property of

ROS was adopted in apoptotic cell death (review [3]) and bac-

terial killing by the specialized cells of the immune system [5].

This is a hybrid paper—a select short review complemen-

ted by experimental data in support of new concepts that

define why and how particular oxidative damage underlies

ageing and ARD [6–8]. We posit that variable patterns of oxi-

dative proteome damage generate the variety of progressing

but largely reversible cellular ageing phenotypes. Ageing and

its countless manifestations, including ARD, appear as snow-

balling phenotypes—functional consequences of age-related

accumulation of oxidative damage to the vulnerable com-

ponents of the proteome. We further propose that ARD can

emerge as phenotypes of damage to particular disease-

related proteins sensitized to oxidation by subtle structural

alterations caused by silent mutations (polymorphisms).

Phenotypic complexity of advanced ageing and diseases

clearly reflects the complexity of the healthy organism and

not of the cause of ageing and disease. We argue that the

root cause of ageing is simple (i.e. the accumulating oxidative

proteome damage) with functional (phenotypic) conse-

quences increasing with time in intensity and complexity.

This concept, which was put forward by Stadtman and col-

leagues [8], is now further refined and supported by data

reviewed or displayed in this paper showing that:

(i) Ageing-related phenotypes can emerge, progress or

regress, solely at the level of protein damage, without

the necessity for DNA alterations, although they inevi-

tably occur as the consequence of oxidative damage to

proteins dedicated to DNA maintenance [9].

(ii) The principal determinant of protein damage in aero-

bes is the evolved intrinsic protein resistance to

oxidative damage, more so than the variation in

levels of ROS (figures 2 and 3).

(iii) The resistance of native proteins to oxidative damage is

fragile, since it can be lost by random errors in bio-

synthesis and inaccurate folding (figures 1 and 2 and

[9–11]) as well as by consistent folding imperfections

due to silent amino acid substitutions (figure 7) that are

part of global protein polymorphism. The identification

of such mutational polymorphisms would break new
ground in the area of predictive diagnostics of predispo-

sitions to ARD and inspire the design of interventions, at

the level of proteins, for their delay or even reversion.

2. Review, concepts and experiments
2.1. Protein maintenance underlies maintenance of life
Maintenance of life requires renewal of proteins, and the

renewal of cells maintains functional organs that make up

healthy organisms. Because of this hierarchy and the fact that

the lifetime of proteins is generally much shorter than the life-

time of cells and organisms, maintenance of protein activities

underlies maintenance of life. Phenotypic change is due to

altered protein activity that can be affected directly at protein

level by physiological and non-physiological modifications,

such as oxidation. Therefore, we consider here only the main-

tenance of cellular fitness via the maintenance of proteome

fitness and its homeostasis facing chronic exposure to ROS gen-

erated by oxidative metabolism and acute oxidative stress by

UV light, chemicals and ionizing radiation. Unlike after acute

oxidative stress, observed patterns of spontaneous oxidative

proteome damage are ‘snapshots’ of the momentary equilibria

of incurred protein damage and clearance of damaged proteins

by proteasome activity and/or autophagy and the compensa-

tory de novo protein biosynthesis (figures 1 and 6).

We argue that snowballing phenotypes of ageing and

diseases can be the downstream phenotypic consequences

of proteome dysfunction caused by observed accumulation

of damaged proteins. Particular functional deficits, rare on

per-cell basis (e.g. cancer), involve acquired somatic

mutations and/or alterations in DNA methylation pattern

occurring as the consequences of damage to the relevant

dedicated proteins [9,12].

2.2. Physiological versus toxic protein modifications
It is estimated that about 90% of functional protein diversity

stems from numerous physiological post-translational modifi-

cations (PTM). Such physiological PTMs, like phosphorylation,

acetylation, methylation, mono- and poly-ubiquitination, far-

nesylation, etc., result from enzymatic activities and are

enzymatically reversible. Persisting non-physiological protein

modifications, such as non-reparable oxidative protein carbo-

nylation, are irreversible and mostly deleterious to protein

activity, and expectedly to their interactions with partner mol-

ecules. Such non-physiological PTMs presumably interfere

with physiological PTMs. For instance, the amino acid lysine

in proteins is subject to the largest variety of physiological

PTMs and is also among the most frequently carbonylated

amino acids. Interference between two kinds of PTMs would

have complex and varying phenotypic consequences. Severe

cytotoxic effects of particular oligomeric structures formed by

misfolded oxidized proteins will be discussed below.

2.3. Folding and stability determine intrinsic resistance
of proteins to oxidative damage

We have studied functional, phenotypic consequences of the

variability in total oxidative proteome damage in bacteria [9].

To alter exclusively the levels of oxidative damage to proteins
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at constant ROS, we altered in vivo the susceptibility of proteins

to spontaneous oxidation [10,11,13]. Such alterations were

generated in Escherichia coli by changing the expression of

three evolutionarily conserved chaperones acting on different

levels of protein folding (Tig, DnaK/DnaJ and GroES/EL)

and using ribosomal translational fidelity mutants rpsL141
(high fidelity) and rpsD14 (low fidelity) [9].

Increasing UVC irradiation of these strains revealed vari-

ations in kinetics and saturation levels of proteome oxidation

(figure 2). As the survival of irradiated cell population

approaches zero, the level of irreparable oxidative protein

damage (protein carbonylation) reaches saturation. However,

the saturation levels of protein carbonylation and cell survi-

val after exposure to UVC differ: strains with high accuracy

of protein synthesis and folding are resistant to UVC, display

low constitutive proteome carbonylation and a decrease in its

saturation levels relative to the wild-type [9]. The reciprocal

applies as well (figure 2 and chaperone overexpression in [9]).

It appears that deviations from the native structure deter-

mine proteome ‘target size’ (the subpopulation of proteins

sensitive to carbonylation; figure 6) for biological damage

by oxidation. Since the emergence of high ROS levels (2.5–

3 billion years ago), proteins were under strong selective

pressure to acquire functional longevity leading to the evol-

ution of functional structures resistant to oxidative damage.

Therefore, strains from figure 2 and chaperone-down and

-up mutants display expected distinct phenotypic differences

for all tested biological endpoints in proportion to their

protein oxidation levels [9].
2.4. Competitive antagonism between protein folding
and oxidation and its phenotypic consequences

The described results relate to an early proposal by Kurland [14]

that decreased cellular fitness, via decreased translational accu-

racy, may be a consequence of the impact of missense errors on

protein structure and function. Novel mechanistic aspects

emerged largely from Nystrom’s laboratory, and later on from

our laboratory, by showing that (i) misfolding predisposes pro-

teins to oxidative damage [9–11,15] (see also figures 1–3), (ii)

protein oxidation precedes aggregation and vast majority of

carbonylated proteins are found in the form of aggregates

[10,16], and (iii) oxidative damage to misfolded proteins

causes phenotypic changes since such deleterious phenotypes

can be suppressed and reversed by an antioxidant (Trolox—

water-soluble vitamin E) in proportion to the decrease in

protein carbonylation [9]. Even the ‘visibility’ of misfolded pro-

teins by the chaperones requires their oxidation, presumably by

fixing the misfolded structure, since the heat shock response to

misfolding depends on oxidation of the misfolded proteins [15].

The truncated proteins cannot be folded and do not require

oxidation to elicit chaperone induction [15].

Thus, it appears that oxidation (e.g. irreparable carbonyla-

tion) of misfolded proteins locks in their misfolded

structures, preventing the refolding of damaged proteins by

chaperones and leading to phenotypic expression of dysfunc-

tional stably malfolded proteins (figure 3). Hence, there is a

competitive antagonism between chaperone and ROS activi-

ties at the level of their common substrate: the misfolded
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proteins. Apparently, native folding prevents oxidation and

oxidation precludes native folding (figure 3). The observed

reversibility of deleterious phenotypes caused by damaged

proteome (short of mutations fixed by the mutator phenotype

of proteome damage) by the antioxidant Trolox [9] is

expected from a protein-based phenotypic change.

The damage–malfunction scenario might be just one part

of the story. ‘Malfunction’ of an oxidized protein (figure 3)

could sometimes mean altered function or cytotoxic function.

To appreciate the conceptual significance of figure 3, the

recommended papers are [9] and [15].

Protein oxidation is expected to interfere with physio-

logical PTM and, sometimes, act itself as a physiological

modification. Such hypothetical ROS-mediated ‘physiologi-

cal’ PTM, affected by sequence polymorphism (below),

could play regulatory roles upon (or by) the metabolism in

cell signalling and in determination of differentiation path-

ways [17]. Perhaps, it is not accidental that chaperones and

elongation factors are exquisitely sensitive proteomic targets

for carbonylation, from bacterial to human cells [18–21].

Potential regulatory aspects of protein damage, in particular

chaperone oxidation [22], are an open area for research.

The loss of global macromolecular biosynthesis, increased

mutation rates and sensitivity to damage by radiation are the

demonstrated phenotypes of exclusive oxidative damage to

bacterial proteins [9]. These are also characteristic phenotypes

of ageing across species, including human, whereby protein

carbonylation increases quasi-exponentially with person’s

age [8] similarly to the increase in ARD and death rates.

This raises a conceptual question: since the phenotypes of
oxidative proteome damage mimic basic ageing phenotypes,

is ageing the phenotype of the proteome damage?
2.5. Protein misfolding and oxidation as the missing
link between TOR and ROS

The fact that misfolding of erroneous proteins synthesized by

low-fidelity ribosomes increases intrinsic sensitivity of pro-

teins to oxidative damage (figure 2), and reciprocally [9],

has far reaching implications for longevity and health. At

the evolutionary scale, species-specific extension of longevity

apparently coevolved with increased translational fidelity:

there is a correlated 10-fold range of longevity and fidelity

of protein biosynthesis among 17 rodent species [23]. While

it is difficult to live longer by becoming another species,

there is a potent physiological tuning of translational fidelity

via the regulation of the speed of translation by TOR signal-

ling: the faster the translation, the higher is its error rate. This

basic postulate of the kinetic proofreading theory [24,25]

holds also for transcription and replication.
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At the cellular level, mTOR modulates ageing and ARD,

such as diabetes type 2 and cancer, in response to energy

supply (glucose), nutrients (amino acids), growth factors,

oncogenes and stress. Activated mTOR pathway accelerates

translation, decreases its fidelity and increases misfolding

that leads to reduced protein stability [26] and expectedly

(figure 3) to augmented sensitivity to oxidation (figure 6, and

ongoing experiments). The finding that phenotypic effects of

misfolded proteins depend on fixation of misfolded structures

by oxidative damage [9,15] (figure 3) provides the conceptual

‘missing link’ between translational fidelity, protein misfolding

and oxidation, and TOR signalling. Thus, Blagosklonny’s ‘ROS

or TOR’ [27] becomes ‘ROS and TOR’ whereby the link

between ROS and TOR is created by augmented oxidation of

misfolded proteins synthesized under activated TOR regime

(figure 6). The biological effects of rapamycin, metformin

and antioxidants upon ageing and several ARD can now be

better understood at the molecular level.

2.6. Oxidative proteome damage determines
spontaneous and induced mutation rates

Dedicated proteins synthesize, equilibrate and sanitize dNTP

pools for DNA synthesis. They repair and replicate DNA and

correct replication errors by mismatch repair. Since the efficacy

and precision of numerous proteins dedicated to DNA main-

tenance determine the quality of DNA, it was not surprising

to find that proteome damage is highly mutagenic [9]. Spon-

taneous mutation rates in E. coli correlate with roughly

seventh power of proteome carbonylation. Likewise, reducing

solely protein oxidative damage reduces mutation rate in E. coli
by at least fivefold, identifying protein damage as the principal

determinant of spontaneous mutation rates [9].

UVC-induced mutation frequencies correlate with constitu-

tive and UVC-induced protein carbonylation rather than DNA

damage inflicted by UVC—but do correlate with the residual

(unrepaired) mutagenic DNA damage [9]. This means that oxi-

dative damage to the DNA maintenance proteome limits its

efficacy and fidelity, and thereby determines the rates of

induced and spontaneous mutations [9]. Thus, unrepaired

and misreplicated DNA is one of countless phenotypic conse-

quences of proteome damage. Similar conclusions were drawn

from the studies of repair of UVA and UVB damage in human

skin cells [28]. Therefore, protein damage is likely to be

involved—via its effects on DNA—in the initiation step of

cancer and other ARD. Cancer and ARD promotion is analysed

in the companion paper [29].

2.7. Protein damage predicts lifespan and death
There is a remarkable correlation, observed across diverse

species, between the biological age (fraction of lifespan), bio-

logical fitness/performance and global protein carbonylation

[8,9,30–33]. Furthermore, increased protein carbonylation

is found to be associated with a variety of chronic and fatal

ARD that are associated with ROS-generating chronic

inflammatory conditions [34,35].

These associations inspire the question: is protein damage

the cause, the consequence or a correlate (biomarker) of cellular

degeneracy? After decades of serving as a biomarker of oxi-

dative stress, protein carbonylation emerges now as a marker

of the quality of cell-wide proteome folding under physiological
conditions [9–11]. Since the misfolded proteins are particularly

sensitive to oxidation, protein carbonylation can be used as a

probe for ‘quality of folding’ at the level of individual proteins

(figures 1–3) [10] in vitro and in vivo, as well as for probing

the entire proteome from tissue biopsies (figure 6).

Whereas DNA damage incurred by radiation is similar in

standard and extremely resistant bacterial (reviewed in [37])

and animal [31] species, the difference in radiation-induced

oxidative protein damage accounts also for the differences

in DNA repair and survival [9,30,31,36]. Since cell death is

diagnosed hours or days after radiation of bacteria and

small animals, protein damage inflicted during radiation

(and measured immediately after) appears to predict

death [30,36] rather than being its consequence. Studies of

DNA-repair-deficient mutants displaying high mortality

at low levels of proteome damage from low radiation

exposures excluded the possibility that the incurred protein

carbonylation could be the consequence of cell death [30].

Rather, it was shown that a common quantitative corre-

lation exists between protein carbonylation and cell mortality

across bacterial and invertebrate species—regardless of the

source of radiation and species’ inherent radiation resistance

status (fig. 3 in [36], compiled from [30,31]; see also figure 4).

This common correlation establishes oxidative protein

damage as the root cause of cell death or the ‘chemistry of

death’ [36]. The striking similarity between survival curves

versus radiation, or versus lifetime, instigated the question:

does the correlation between protein carbonylation and killing

by exposure to radiation (fig. 1 in [30]) also stand for ‘exposure

to life’ (i.e. radiation resistance versus chrono-resistance)?

The answer is yes (figure 4) [8,36]. Cell death diagnosed by

membrane permeability seems to occur as the direct conse-

quence of protein misfolding fixed by carbonylation (figure 3)

that leads to the formation of cytotoxic pore-like hydrophobic

structures that insert into biological membranes ([38,39] and

references therein).
2.8. Accumulation of damaged proteins follows the
Gompertz law

The Gompertz law of mortality defines ageing as an expo-

nential increase in the probability of death (i.e. death rate)
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with age. Such increase is preceded by a lag period with

no death (i.e. a constant zero mortality rate, in a protected

environment), and followed by exponentially increasing

late-life mortality rate until the extinction of the cohort.

These are the main features of the Gompertz law of mortality,

which applies from unicellular species, like budding yeast, to

complex organisms like mouse and human.

Due to the lack of reliable methods to quantitate in vivo
protein carbonylation in single cells, we applied a well-

established methodology of monitoring Hsp104-GFP aggre-

gates during lifespan of budding yeast, Saccharomyces
cerevisiae, one of the best-described ageing-related phenotypes

[40,41]. Protein aggregates consist of damaged proteins that are

secluded into insoluble particles [40] shown to contain nearly

all persisting carbonylated proteins in bacterial [42], yeast

[40] and mouse [16] cells. Regarding protein aggregation in

ageing, different studies made only qualitative observations,

while quantitative analyses of protein aggregates as a reporter

system for population ageing at single-cell level were missing.

Here, we confronted the replicative lifespan data for the

wild-type S. cerevisiae and its respiration-deficient (petite)

mutant with the protein aggregation propensity at single-

cell level during the lifespan of both strains. We have

observed that, just as the lifespan curve, the age-related

dynamics of protein aggregation also follows the Gompertz

law. The initial increase in mortality rate (i.e. the onset of

ageing) coincides with the first observed protein aggregation

events. Thus, analysis of protein aggregates at single-cell level
can be used as a marker of fitness of a cell population as well

as a reporter of the biological age.

In contrast with other well-known hallmarks of ageing,

like telomere shortening or genomic instability, we show

that under optimal growth conditions, the appearance of

protein aggregates, reflecting the accumulation of damaged

proteins [16,42], follows the Gompertz function (figure 5).
2.9. Ageing as the phenotypic consequence of protein
damage

Now, one can imagine a wealth of emerging phenotypes orig-

inating from the diversity in extent and pattern of oxidative

proteome damage and formulate a hypothesis of a common

basic mechanism of ageing and ARD. The basic predictions

of the concept of phenotypic effects of protein damage in

ageing, such as variability, progression and reversibility,

have already been tested.

Variability and progression of ageing phenotypes at both

population and cellular level are common knowledge. We

have shown that the deleterious, yet reversible, bacterial phe-

notypes akin to cellular ageing (e.g. reduced biosynthetic

capacity and increased mutation rates) can emerge and pro-

gress to lethality (proteomic catastrophe) solely as the

consequence of accumulated protein oxidation [9].

In late 1980s, Stadtman and colleagues [8] showed that

protein carbonylation accumulates in cultured human primary
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skin fibroblasts quasi-exponentially with donor’s age. The

increase in the fraction of carbonylated proteins (measured

also directly in entire small animals and in ex vivo rodent

and human tissues) with the fraction of lifespan of four very

different species (from nematode to human) is remarkably

similar [8], although the lifetimes vary from couple of weeks

to hundred years. By cautiousness, Stadtman’s correlations

were considered to mean that protein carbonylation is a mere

biomarker of oxidative stress during ageing.

Observations relating to the prediction of death by protein

carbonylation levels were made with isogenic and isochronic

populations of the nematode C. elegans [32]. A population of

the same genotype and the same (young) age, maintained in

the same environment, was fractionated according to the

speed of animal movement (while racing unidirectionally in

a weak electric field), which allowed arbitrary separation into

three subpopulations (fast, intermediate and slow). Total

animal protein carbonylation correlated with the speed of

animal movement, whereby the fastest animals displayed the

lowest protein carbonylation. The subpopulation of the fastest

animals was the one with the longest remaining lifespan,

whereas slower worms with intermediate and highest protein
carbonylation exhibited shorter lifespans in proportion to the

measured carbonylation. Remarkably, the lifespan of fast

nematodes is nearly double that of slow nematodes—at pre-

sumably constant genotype and environment. Hence, the

total protein carbonylation level at young age appeared predic-

tive of the duration of the remaining life in isogenic nematodes.

Whereas protein damage in these young post-mitotic animals

is unlikely to be the consequence of their performance, or of

cell death, the pre-existing differences in protein carbonylation

(and other oxidative damage proportional to carbonylation)

appear as the biomarker or even the root cause of both

endpoints. The observed variation in nematodes’ protein car-

bonylation is probably related to the fidelity of protein

biosynthesis and folding since, in the same experiment, nema-

todes’ chaperone and carbonylation levels were correlated—as

in bacteria [9,10].

This research instigates a novel paradigm in ageing

research by considering ageing-related morbidity and mor-

tality as the consequence of cellular dysfunction linked

causally to the accumulation of protein damage. It becomes

obvious that protein carbonylation measures biological age

and predicts the remaining lifespan by reporting on reduced

performance of the damaged proteome causing age-related

degeneracy. Other phenotypes recognized as the hallmarks

of ageing [44], like telomere attrition and genome instability,

can be viewed as downstream consequences of proteome

damage. For instance, telomerase is among the least abun-

dant cellular proteins and is among the human proteins

most sensitive to carbonylation [45].
2.10. Immortality correlates with constant levels of
protein damage

The absence of ageing is defined by constant mortality rate

with increasing age. If this holds for individual cells, and

protein carbonylation were a faithful biomarker for predicting

cell death, then immortal, or immortalized, cell lines should

show constant levels of protein carbonylation. Low constitutive

levels of protein carbonylation were already found in iPS

cells [46]. In table 1, we show the comparison of total protein

carbonylation between mouse ES cells, embryonic fibroblasts

(MEFs), adult mouse skin fibroblasts and derived iPSC, relative



Table 1. Cellular robustness and immortality correlate with low intrinsic
proteome carbonylation levels. For comparison, 10-fold lower protein
carbonylation is detected for D. radiodurans relative to E. coli, as well as in
ES cells compared to HeLa cells. MEFs and the embryonic stem cells were a
generous gift from Dr Alfonso Bellacosa (Fox Chase Cancer Center). Protein
extracts were prepared in 10 mM PBS, pH 7.4, using Dounce homogenizer
in the presence of protease inhibitors (Roche). In the case of E. coli
1 mg ml21 and for D. radiodurans 10 mg ml21 of lysozyme was used.
Protein concentration was determined using the Bradford assay and the
total protein carbonylation was measured as previously described [9].
Protein carbonylation measurements were performed by previous
elimination of lipids and nucleic acids, presumably accounting for
discrepancies with some published data.

cell line
nmol carbonyl/
mg protein

HeLa cells 4.97

CHO fibroblasts 3.88

mouse skin fibroblasts 9.26

P83 mouse embryonic fibroblasts (MEF),

second passage

4.58

embryonic stem (ES) cells I 0.51

induced pluripotent stem cells, 10th passage 2.43

Escherichia coli (exponentially growing) 2.05

Deinococcus radiodurans (exponentially

growing)

0.23
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to E. coli and Deinococcus radiodurans bacteria. This comparison

makes sense since saturation levels of proteome carbonylation

are very similar in all tested species (bacteria, yeast, nematodes,

rotifers, murine and human cells in culture [9,36]; see also

figure 4), revealing similar intrinsic ‘carbonylability’ of pro-

teomes across the species. However, such carbonylability is

readily affected by changing the quality of the proteome

(figures 2 and 8).

The lowest protein carbonylation value was observed for D.
radiodurans, an extremely radiation-resistant bacterium known

for its high constitutive antioxidant protection of proteins

[30,47], followed closely by mouse ES cells (table 1). A high

level of protein carbonylation in mouse skin fibroblasts was

reduced by their transformation into iPSC. Human HeLa

tumour cell line maintains rather high but constant level of

protein carbonylation. Thus, cell immortality (i.e. unlimited

division potential) correlates with constant protein carbonyla-

tion levels, either low (ES, iPSC) or relatively high (tumours).

Constant levels of protein carbonylation were found

along the lifespan of the long-lived (3 decades) cancer- and

ARD-resistant naked mole rat [47], which shows constant

death rate throughout its lifespan [48]. Unexpectedly, a rela-

tively high, but constant across the lifespan, level of protein

carbonylation in naked mole rat is due to high carbonylation

of two abundant proteins [49]. Low carbonylation of all other

proteins in the naked mole rat can be related to about 10-fold

lower error rates in protein biosynthesis [50] and increased

intrinsic protein stability when compared with mouse

proteins [51]. Reduced intrinsic protein oxidability (carbony-

lation) is also related to increased stability of proteins in

pathogenic bacteria [52].
Tumour, ES and iPSC cells are fuelled mainly by low ROS

producing glycolysis. Therefore, it was unexpected that all of

about 60 human tumours tested in our laboratory (hepatocar-

cinoma, pancreatic adenocarcinoma and colon cancer)

displayed increased total protein carbonylation, compared to

nearby healthy tissue of the same organ (unpublished exper-

iments and figure 6). This hints to low proteome quality in

cancers, presumably due to TOR activation (see above),

which is in agreement with constitutively increased chaperone

levels in, and phenotypic variability of, tumour cells [53]. Such

proteomic fragility could inspire therapeutic innovations.

2.11. a-synuclein mutations predisposing to
Parkinson’s disease sensitize a-synuclein to in vitro
oxidation
We can consider ARD as particular details of the ageing pro-

cess with snowballing phenotypic consequences first in the

affected organ. The intrinsic oxidation resistance of natively

folded proteins is fragile (see above). Quantitatively, the

impact of intrinsic protein instability, random biosynthetic

errors and folding inaccuracy on protein carbonylation is

greater than the impact of the variation in ROS [9,10,13,52].

Random translation errors are not frequent enough to affect

all molecules of a given protein species, but will produce a

variety of amino acid substitutions including those that

bestow increased susceptibility to oxidation of individual

molecules. However, one and the same consistent protein

error—originating from a silent gene mutation—is present

in all molecules of the affected protein, and could predispose

such proteoform to oxidation.

To test this hypothesis, we studied human a-synuclein, a

protein whose aggregation is associated with Parkinson’s dis-

ease. As disease progresses, a-synuclein aggregates into

neuro-toxic Lewy bodies [54]. Analyses of the Lewy bodies

from motor neurons of patients with early-onset Parkinson’s

disease revealed that their a-synuclein carries one of

two mutations: A30P (disease onset at age 50–60) or A53T

(disease onset around age 30) [55].

We have irradiated in vitro the two mutant proteoforms

of purified a-synuclein with a range of g radiation doses

and compared their carbonylation with that of the ‘wild-

type’ a-synuclein. We found that both a-synuclein mutants

are more sensitive to protein carbonylation (displaying both

higher rates and saturation levels) compared with the wild-

type, A53T mutant being far more sensitive than the A30P

(figure 7). Supposing that error rates in biosynthesis and fold-

ing of three commercially available a-synuclein proteoforms

are similar, the observed difference in the detected carbonyla-

tion between the wild-type and two mutant a-synucleins

reflects the difference in their intrinsic susceptibility to oxi-

dative damage. Similar results were obtained by hydrogen

peroxide treatment (not shown).

Thus, the intrinsic, mutation-mediated predisposition of

a-synuclein proteoforms to in vitro carbonylation correlates

with predisposition to Parkinson’s disease (and the time

of its onset), and raises the questions of whether (i) protein

sequence polymorphism determines the polymorphism of

protein sensitivity to oxidation, and (ii) intrinsic oxidability

of disease-relevant proteins causes predisposition to particu-

lar ARD. Unless this result with three natural human

a-synuclein proteoforms is a unique exception, we have a
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paradigm for the mechanism of predisposition to ARD and

for monitoring their progression or regression with the rel-

evant molecular biomarker (that, for Parkinson’s disease,

can be found in erythrocytes where a-synuclein is abundant).

Now, we can advance the hypothesis that natural protein

sequence polymorphism translates into polymorphism

of proteomic oxidation patterns of individual proteins reflect-

ing person-specific ensembles of conditional (usually called

silent) mutations. Age-related proteome oxidation [8] is

expected to keep augmenting the biological (phenotypic)

effect of such silent mutations (typically amino acid substi-

tutions) over time and account for inter-individual variation

in the onset of ARD and conditions. Ideally, the identifica-

tion of such polymorphisms should provide for diagnostics,

at any age, of individual’s predisposition to the first in

line (but also second and third in line) disease emerging

with age.
:180249
2.12. Genetics and proteomics of diseases
The proposed concept for the predisposition to ARD inte-

grates genetics and proteomics of human non-infectious

diseases (but it includes predispositions to infectious

diseases). The disease phenotype of a gene mutation that

destroys the function of the encoded protein is considered a

syndrome—an inborn disease manifested from the beginning

of baby’s life. Syndromes are relatively rare due to counter-

selection of reduced reproductive fitness, whereas the

disease-associated silent polymorphic mutations (like those

of a-synuclein in figure 7) are regular predispositions to dis-

eases that emerge typically after the reproductive period

(those appearing earlier were subjected to counter-selection).

Figure 7 suggests that such mutations are conditional, usually

missense, mutations with age (oxidation)-dependent pheno-

typic expression. Polymorphisms that are phenotypically

silent during reproductive period are free to accumulate in

the population.

Hence, it appears that the key genetic difference between

rare syndromes and the omnipresent predispositions to ARD

resides in the nature of relevant mutations that determines

their phenotypic expression period. When ageing and ARD

appear dissociated, as in old-looking healthy centenarians,

it is likely to be due to the chance avoidance of major risk-

carrying ‘weak links’, i.e. oxidation-sensitive proteoforms

(polymorphisms), or to an increased defence against

oxidation of all proteins.

As shown in bacteria [9], mutations affecting proteins

that control the precision of biosynthesis and folding of

many (via altered chaperone activity) or all (via altered ribo-

somal fidelity) proteins should predictably have a systemic

effect on oxidative proteome damage (figure 1). The expected

consequence of such mutations in complex organisms is the

acceleration of ageing and of predisposed ageing-associated

pathologies. Only limited phenotypes of this kind will be

compatible with survival. Consistent with kinetic proofread-

ing, mutations improving the fidelity of biosynthesis and

folding usually display reduced rates of biosynthesis

and growth (as in TOR-Off regimen, see above). Since, in

growing cells, protein biosynthesis and folding consume

presumably over 80% of cellular energy, there is a trade-off

between efficacy and robustness. There is selection for

efficacy (survival and reproduction), not for perfection.
3. Principle of a new preventative and
curative medicine

Here, we propose that the root cause of many, perhaps all, ARD

is simple, measurable, preventable and sometimes reversible by

increased protection [33] and turnover of proteins. To compen-

sate for the malfunction of damaged or lost organs, medicine

uses accessory or replacement strategies: mechanical, optical,

electronic, chemical (drugs) and biological (e.g. organ, tissue

and, recently, cellular transplantation, i.e. cell therapy) pros-

theses. Organs malfunction when their cells malfunction, and

cells malfunction when their proteins malfunction, which

breaks ground for a new approach—protein therapy or ‘proteo-

medicine’. Until the advent of a safe massive manipulation of

somatic gene sequences, proteins are more credible targets for

medical interventions. While artificial protein transplantation

is unthinkable, tissue-based cellular parabiosis is a natural

way of receiving quality proteins (or their mRNA), or metabolic

products thereof, from healthy cells (see the companion paper

[29]). Stimulating the recovery of cells’ inbuilt capacity to

renew their natural proteome homeostasis (de facto cell rejuvena-

tion; see induced pluripotent stem cells in table 1) is both easier

and more realistic than hazardous targeted pharmacological

interference by ‘smart drugs’ with highly evolved complex,

insufficiently understood, cellular and organismal homeostasis.

Just as ‘bad news’ increases exponentially with time through

a vicious circle, so could ‘good news’ (reduction in proteome

damage) keeps increasing via a virtuous circle. One way is by

reducing protein damage and/or stimulating protein turnover

(improving the fidelity of protein synthesis and the efficacy of

protein turnover by proteasome and autophagy) (figure 1),

like after cell reprogramming (table 1) and perhaps during

heterochronic parabiosis [56]. Heterochronic parabiosis exper-

iments (connecting the bloodstreams of isogenic old and

young mice) showed rapid reversibility of common ageing phe-

notypes and even the reversion of age-related cardiac and bone

pathologies [57] and cognitive impairments [58]. However, the

short lifetime of the rejuvenating effects upon interrupted hetero-

chronic parabiosis suggests that defects were compensated,

not corrected. There is apparently a ‘memory’ of the biological

age, presumably mainly at the level of epigenetic genome altera-

tions. Reversible phenotypic compensation, downstream of

age-related genome alterations, by the mTOR downregulation

during heterochronic parabiosis is worth testing.

For all practical purposes, effective ‘generic’ antioxidants,

neutralizers and detoxifiers of ROS should prevent ageing

and ARD, especially if taken from early life. Later-life

consumption of antioxidants should also be useful, with the

exception of already developing cancers (e.g. due to growth

stimulation of early-stage tumours by reducing apoptosis

and increasing the fitness of tumour cells [59]). Remarkably,

two weeks of administration of a spin-trap antioxidant to

aged gerbils reduced protein carbonylation in the brain and

reversed short-term memory loss, but the effect lasts only

during the treatment [33]. The question of whether a lifelong

treatment would delay the onset of ageing remains open.

An alternative approach consists of targeting particular

proteins for disease prevention and healing. In this paper,

we propose that the predisposition to ARD stems (at least

sometimes) from the polymorphism of intrinsic protein sensi-

tivity to oxidative damage caused by protein sequence

polymorphism (figure 8).
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Thus, protection and/or restoration of the protein func-

tion that is the ‘weakest link’ in an individual person’s

health can be a key to prevention or delay of the disease

onset. This opens new avenues for the screening, or synthesis,

of a new class of molecules with the task to specifically pre-

vent damage to fragile variants of disease-relevant proteins

(either as protectors of the site exposed to oxidation or as

chemical chaperones—correctors of structure from oxidation

sensitive to resistant; figure 3). This is conceptually similar

to Vertex Pharmaceuticals’ approach to cystic fibrosis

(F508del-CFTR structure corrector molecules) [60].

Perhaps only a few hundred specific molecules could

both prevent and revert nearly all ARD. Imaginably, sometime

in the future, the entire human population could be taking

protein polymorphism-specific molecules to suppress the

innate fragility (oxidation-sensitivity) of relevant proteoforms.

Proteins, rather than genes, could become subject to disease

mitigation by protection, correction or reversion of biological

function, normally eroding by age-related oxidative damage.

This far-reaching approach aims at a profound change in

public health and longevity, and is technically not more

demanding than the development of current ‘smart drugs’.

The possibility that the inborn health-related genetic inequal-

ities could be remedied by protein structure-correcting/

protecting molecules (preventing and curing ARD as long as

they are consumed) is thrilling. Such direct action upon the

cause of degenerative diseases is reminiscent of low-tech pre-

vention and cure of infectious diseases by vaccination and

antibiotics, successfully applied before any significant knowl-

edge about infection and immunity. Health-wise, acting

‘upstream’ upon the cause(s) of disease(s) eliminates the need

to study their complicated downstream consequences.
4. Closing remarks
Countless publications link the onset of many ARD either

with metabolism and ROS activity (oxidative stress) or with

protein misfolding and aggregation. We merge here these
two phenomenologies in one simple model (figure 3) that inte-

grates TOR signalling (see above) in a way that is compatible

with relevant literature. For instance, the severity and mode

of misfolding caused by numerous mutations in human

SOD1 gene was shown to correlate with destabilization of

SOD1 protein and the onset and severity of neurodegenerative

ALS disease [61]. Furthermore, specific chaperones (HSP90)

can buffer phenotypic expression of Fanconi anaemia dis-

ease-causing missense mutations in FANCA protein [62].

Since chaperone activities are in competitive antagonism

with protein oxidation upon misfolded proteins (figure 3),

pharmacological targeting of misfolded proteins can become

the basis of a new medicine. A repertoire of new small mol-

ecules acting similarly to natural chaperones [62], and local

protectors from ROS activity, could preclude the expression

of latent protein defects that cause ARD. By mitigating ARD

as the main cause of human morbidity and mortality, new

drugs would extend human health span and prolong pro-

ductive life. Assessing the reality and applicability of this

concept requires validation on many ARD. Only a coordinated

international effort could provide adequate efficacy.

Identifying underlying cause(s) and mechanism(s) that

trigger the onset of ARD is the most important global health

project because up to 90% of morbidity and mortality in devel-

oped countries, and progressively so in developing countries,

is associated with age. The incidence of all ARD (principally

rheumatoid, cardiovascular, malignant, neurodegenerative

and immunity-related) increases in human population with

about fifth power of age. We propose that protein damage is

their common root cause and protein sequence polymorphism

the likely determinant of the predisposition to ARD via silent

mutations that sensitize relevant proteins to oxidative damage.
5. Methods related to figure 5
5.1. Strains and growth conditions
WT S288C with Hsp104-GFP fusion was obtained from

INSERM U1001. Petite strains (mutants devoid of mitochon-

dria) were made as previously described [63]. Briefly,

ethidium bromide (10 mg ml21) was added to an exponential

culture and left to grow for at least 12 h and plated. After

2–3 days, petite colonies were picked and cultured. Both

strains were grown on YPD medium with 2% (w/v) glucose

at 308C with shaking. All experiments were performed on

cells from mid-exponential phase: cells were grown until OD

0.6–0.8, harvested by 5 min centrifugation at 4000g, washed

and treated accordingly.

5.2. Gompertz statistical analysis
Regression analysis was performed using R studio software

(v. 3.0.2), with the R Gompertz fitting script that contains

grofit package, which can be found at http://cran.r-project.

org/package=grofit. grofit package was developed to fit many

growth curves obtained under different conditions in order to

derive a conclusive dose–response curve. It fits data to different

parametric models and in addition provides a model-free spline

method to circumvent systematic errors that might occur within

application of parametric methods. This attribute increases the

reliability of the characteristic parameters (e.g. lag phase, maxi-

mal growth rate, stationary phase) derived from a single growth

http://cran.r-project.org/package=grofit
http://cran.r-project.org/package=grofit
http://cran.r-project.org/package=grofit
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curve [64]. For the statistical analysis in the R script, time¼ c

variable was obtained experimentally by micromanipulations

as the time of death, while mort¼ c variable, obtained the

same way, represented the percentage of death among yeast

cells. Plot (MyModel) of the R script outputs three Gompertz

parameters (lag phase, maximum growth rate, maximum

slope), and their standard error.
ing.org/journal/rsob
Open
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5.3. Microscopy: slide preparation
Microscope slides were prepared as follows: 150 ml of YPD

media containing 2% agarose was placed on a preheated

microscope slide, and cooled, before applying yeast cells to

obtain a monolayer. The cells were previously centrifuged

at 4000g for 3 min, and resuspended in 50 ml YPD. Once

dry a coverslip was placed and sealed.

5.4. Live cell imaging and image analysis for counting
protein aggregates

The slide was mounted on VOLOCITY software (v. 6.3; Perkin

Elmer)-driven, temperature-controlled Nikon Ti-E Eclipse

inverted/UltraVIEW VoX (Perkin Elmer) spinning disc confo-

cal set-up. We also employed the auto-focus system (Perfect

Focus, Nikon), and Nano Focusing Piezo Stage (NanoScanZ,

Prior Scientific). Images were recorded through 60xCFI
PlanApo VC oil objective (NA 1.4) using coherent solid state

488 nm/50 mW diode laser with DPSS module, and 1000 �
1000 pixels 14 bit Hamamatsu (C9100–50) electron-multiplied,

charge-coupled device (EMCCD). The exposure time was

300 ms, and 5–10% laser intensity was used. The images

were analysed by using IMAGEJ software. The number of cells

with Hsp104-GFP foci was counted manually. A total of 466

WT OGT cells during 12 h and 207 petite OGT cells during

35 h were examined.
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